Visitor interface for the dfs algorithm.
2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_DIJKSTRA_H
18 #define LEMON_DIJKSTRA_H
22 ///\brief Dijkstra algorithm.
24 ///\todo getPath() should be implemented! (also for BFS and DFS)
25 ///\todo dijkstraZero() solution should be revised.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/invalid.h>
30 #include <lemon/error.h>
31 #include <lemon/maps.h>
35 template<class T> T dijkstraZero() {return 0;}
37 ///Default traits class of Dijkstra class.
39 ///Default traits class of Dijkstra class.
40 ///\param GR Graph type.
41 ///\param LM Type of length map.
42 template<class GR, class LM>
43 struct DijkstraDefaultTraits
45 ///The graph type the algorithm runs on.
47 ///The type of the map that stores the edge lengths.
49 ///The type of the map that stores the edge lengths.
50 ///It must meet the \ref concept::ReadMap "ReadMap" concept.
52 //The type of the length of the edges.
53 typedef typename LM::Value Value;
54 /// The cross reference type used by heap.
56 /// The cross reference type used by heap.
57 /// Usually it is \c Graph::NodeMap<int>.
58 typedef typename Graph::template NodeMap<int> HeapCrossRef;
59 ///Instantiates a HeapCrossRef.
61 ///This function instantiates a \ref HeapCrossRef.
62 /// \param G is the graph, to which we would like to define the
64 static HeapCrossRef *createHeapCrossRef(const GR &G)
66 return new HeapCrossRef(G);
69 ///The heap type used by Dijkstra algorithm.
71 ///The heap type used by Dijkstra algorithm.
75 typedef BinHeap<typename Graph::Node, typename LM::Value,
76 HeapCrossRef, std::less<Value> > Heap;
78 static Heap *createHeap(HeapCrossRef& R)
83 ///\brief The type of the map that stores the last
84 ///edges of the shortest paths.
86 ///The type of the map that stores the last
87 ///edges of the shortest paths.
88 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
90 typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
91 ///Instantiates a PredMap.
93 ///This function instantiates a \ref PredMap.
94 ///\param G is the graph, to which we would like to define the PredMap.
95 ///\todo The graph alone may be insufficient for the initialization
96 static PredMap *createPredMap(const GR &G)
98 return new PredMap(G);
101 ///The type of the map that stores whether a nodes is processed.
103 ///The type of the map that stores whether a nodes is processed.
104 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
105 ///By default it is a NullMap.
106 ///\todo If it is set to a real map,
107 ///Dijkstra::processed() should read this.
108 ///\todo named parameter to set this type, function to read and write.
109 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
110 ///Instantiates a ProcessedMap.
112 ///This function instantiates a \ref ProcessedMap.
113 ///\param g is the graph, to which
114 ///we would like to define the \ref ProcessedMap
116 static ProcessedMap *createProcessedMap(const GR &g)
118 static ProcessedMap *createProcessedMap(const GR &)
121 return new ProcessedMap();
123 ///The type of the map that stores the dists of the nodes.
125 ///The type of the map that stores the dists of the nodes.
126 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
128 typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
129 ///Instantiates a DistMap.
131 ///This function instantiates a \ref DistMap.
132 ///\param G is the graph, to which we would like to define the \ref DistMap
133 static DistMap *createDistMap(const GR &G)
135 return new DistMap(G);
139 ///%Dijkstra algorithm class.
141 /// \ingroup flowalgs
142 ///This class provides an efficient implementation of %Dijkstra algorithm.
143 ///The edge lengths are passed to the algorithm using a
144 ///\ref concept::ReadMap "ReadMap",
145 ///so it is easy to change it to any kind of length.
147 ///The type of the length is determined by the
148 ///\ref concept::ReadMap::Value "Value" of the length map.
150 ///It is also possible to change the underlying priority heap.
152 ///\param GR The graph type the algorithm runs on. The default value
153 ///is \ref ListGraph. The value of GR is not used directly by
154 ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
155 ///\param LM This read-only EdgeMap determines the lengths of the
156 ///edges. It is read once for each edge, so the map may involve in
157 ///relatively time consuming process to compute the edge length if
158 ///it is necessary. The default map type is \ref
159 ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>". The value
160 ///of LM is not used directly by Dijkstra, it is only passed to \ref
161 ///DijkstraDefaultTraits. \param TR Traits class to set
162 ///various data types used by the algorithm. The default traits
163 ///class is \ref DijkstraDefaultTraits
164 ///"DijkstraDefaultTraits<GR,LM>". See \ref
165 ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
168 ///\author Jacint Szabo and Alpar Juttner
169 ///\todo A compare object would be nice.
172 template <typename GR,
176 template <typename GR=ListGraph,
177 typename LM=typename GR::template EdgeMap<int>,
178 typename TR=DijkstraDefaultTraits<GR,LM> >
183 * \brief \ref Exception for uninitialized parameters.
185 * This error represents problems in the initialization
186 * of the parameters of the algorithms.
188 class UninitializedParameter : public lemon::UninitializedParameter {
190 virtual const char* exceptionName() const {
191 return "lemon::Dijkstra::UninitializedParameter";
196 ///The type of the underlying graph.
197 typedef typename TR::Graph Graph;
199 typedef typename Graph::Node Node;
201 typedef typename Graph::NodeIt NodeIt;
203 typedef typename Graph::Edge Edge;
205 typedef typename Graph::OutEdgeIt OutEdgeIt;
207 ///The type of the length of the edges.
208 typedef typename TR::LengthMap::Value Value;
209 ///The type of the map that stores the edge lengths.
210 typedef typename TR::LengthMap LengthMap;
211 ///\brief The type of the map that stores the last
212 ///edges of the shortest paths.
213 typedef typename TR::PredMap PredMap;
214 ///The type of the map indicating if a node is processed.
215 typedef typename TR::ProcessedMap ProcessedMap;
216 ///The type of the map that stores the dists of the nodes.
217 typedef typename TR::DistMap DistMap;
218 ///The cross reference type used for the current heap.
219 typedef typename TR::HeapCrossRef HeapCrossRef;
220 ///The heap type used by the dijkstra algorithm.
221 typedef typename TR::Heap Heap;
223 /// Pointer to the underlying graph.
225 /// Pointer to the length map
226 const LengthMap *length;
227 ///Pointer to the map of predecessors edges.
229 ///Indicates if \ref _pred is locally allocated (\c true) or not.
231 ///Pointer to the map of distances.
233 ///Indicates if \ref _dist is locally allocated (\c true) or not.
235 ///Pointer to the map of processed status of the nodes.
236 ProcessedMap *_processed;
237 ///Indicates if \ref _processed is locally allocated (\c true) or not.
238 bool local_processed;
239 ///Pointer to the heap cross references.
240 HeapCrossRef *_heap_cross_ref;
241 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
242 bool local_heap_cross_ref;
243 ///Pointer to the heap.
245 ///Indicates if \ref _heap is locally allocated (\c true) or not.
248 ///Creates the maps if necessary.
250 ///\todo Error if \c G or are \c NULL. What about \c length?
251 ///\todo Better memory allocation (instead of new).
256 _pred = Traits::createPredMap(*G);
260 _dist = Traits::createDistMap(*G);
263 local_processed = true;
264 _processed = Traits::createProcessedMap(*G);
266 if (!_heap_cross_ref) {
267 local_heap_cross_ref = true;
268 _heap_cross_ref = Traits::createHeapCrossRef(*G);
272 _heap = Traits::createHeap(*_heap_cross_ref);
278 typedef Dijkstra Create;
280 ///\name Named template parameters
285 struct DefPredMapTraits : public Traits {
287 static PredMap *createPredMap(const Graph &G)
289 throw UninitializedParameter();
292 ///\ref named-templ-param "Named parameter" for setting PredMap type
294 ///\ref named-templ-param "Named parameter" for setting PredMap type
298 : public Dijkstra< Graph, LengthMap, DefPredMapTraits<T> > {
299 typedef Dijkstra< Graph, LengthMap, DefPredMapTraits<T> > Create;
303 struct DefDistMapTraits : public Traits {
305 static DistMap *createDistMap(const Graph &G)
307 throw UninitializedParameter();
310 ///\ref named-templ-param "Named parameter" for setting DistMap type
312 ///\ref named-templ-param "Named parameter" for setting DistMap type
316 : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > {
317 typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
321 struct DefProcessedMapTraits : public Traits {
322 typedef T ProcessedMap;
323 static ProcessedMap *createProcessedMap(const Graph &G)
325 throw UninitializedParameter();
328 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
330 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
333 struct DefProcessedMap
334 : public Dijkstra< Graph, LengthMap, DefProcessedMapTraits<T> > {
335 typedef Dijkstra< Graph, LengthMap, DefProcessedMapTraits<T> > Create;
338 struct DefGraphProcessedMapTraits : public Traits {
339 typedef typename Graph::template NodeMap<bool> ProcessedMap;
340 static ProcessedMap *createProcessedMap(const Graph &G)
342 return new ProcessedMap(G);
345 ///\brief \ref named-templ-param "Named parameter"
346 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
348 ///\ref named-templ-param "Named parameter"
349 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
350 ///If you don't set it explicitely, it will be automatically allocated.
352 struct DefProcessedMapToBeDefaultMap
353 : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
354 typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
357 template <class H, class CR>
358 struct DefHeapTraits : public Traits {
359 typedef CR HeapCrossRef;
361 static HeapCrossRef *createHeapCrossRef(const Graph &) {
362 throw UninitializedParameter();
364 static Heap *createHeap(HeapCrossRef &)
366 throw UninitializedParameter();
369 ///\ref named-templ-param "Named parameter" for setting heap and cross
372 ///\ref named-templ-param "Named parameter" for setting heap and cross
375 template <class H, class CR = typename Graph::template NodeMap<int> >
377 : public Dijkstra< Graph, LengthMap, DefHeapTraits<H, CR> > {
378 typedef Dijkstra< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
381 template <class H, class CR>
382 struct DefStandardHeapTraits : public Traits {
383 typedef CR HeapCrossRef;
385 static HeapCrossRef *createHeapCrossRef(const Graph &G) {
386 return new HeapCrossRef(G);
388 static Heap *createHeap(HeapCrossRef &R)
393 ///\ref named-templ-param "Named parameter" for setting heap and cross
394 ///reference type with automatic allocation
396 ///\ref named-templ-param "Named parameter" for setting heap and cross
397 ///reference type. It can allocate the heap and the cross reference
398 ///object if the cross reference's constructor waits for the graph as
399 ///parameter and the heap's constructor waits for the cross reference.
400 template <class H, class CR = typename Graph::template NodeMap<int> >
401 struct DefStandardHeap
402 : public Dijkstra< Graph, LengthMap, DefStandardHeapTraits<H, CR> > {
403 typedef Dijkstra< Graph, LengthMap, DefStandardHeapTraits<H, CR> >
418 ///\param _G the graph the algorithm will run on.
419 ///\param _length the length map used by the algorithm.
420 Dijkstra(const Graph& _G, const LengthMap& _length) :
421 G(&_G), length(&_length),
422 _pred(NULL), local_pred(false),
423 _dist(NULL), local_dist(false),
424 _processed(NULL), local_processed(false),
425 _heap_cross_ref(NULL), local_heap_cross_ref(false),
426 _heap(NULL), local_heap(false)
432 if(local_pred) delete _pred;
433 if(local_dist) delete _dist;
434 if(local_processed) delete _processed;
435 if(local_heap_cross_ref) delete _heap_cross_ref;
436 if(local_heap) delete _heap;
439 ///Sets the length map.
441 ///Sets the length map.
442 ///\return <tt> (*this) </tt>
443 Dijkstra &lengthMap(const LengthMap &m)
449 ///Sets the map storing the predecessor edges.
451 ///Sets the map storing the predecessor edges.
452 ///If you don't use this function before calling \ref run(),
453 ///it will allocate one. The destuctor deallocates this
454 ///automatically allocated map, of course.
455 ///\return <tt> (*this) </tt>
456 Dijkstra &predMap(PredMap &m)
466 ///Sets the map storing the distances calculated by the algorithm.
468 ///Sets the map storing the distances calculated by the algorithm.
469 ///If you don't use this function before calling \ref run(),
470 ///it will allocate one. The destuctor deallocates this
471 ///automatically allocated map, of course.
472 ///\return <tt> (*this) </tt>
473 Dijkstra &distMap(DistMap &m)
483 ///Sets the heap and the cross reference used by algorithm.
485 ///Sets the heap and the cross reference used by algorithm.
486 ///If you don't use this function before calling \ref run(),
487 ///it will allocate one. The destuctor deallocates this
488 ///automatically allocated map, of course.
489 ///\return <tt> (*this) </tt>
490 Dijkstra &heap(Heap& heap, HeapCrossRef &crossRef)
492 if(local_heap_cross_ref) {
493 delete _heap_cross_ref;
494 local_heap_cross_ref=false;
496 _heap_cross_ref = &crossRef;
506 void finalizeNodeData(Node v,Value dst)
508 _processed->set(v,true);
513 ///\name Execution control
514 ///The simplest way to execute the algorithm is to use
515 ///one of the member functions called \c run(...).
517 ///If you need more control on the execution,
518 ///first you must call \ref init(), then you can add several source nodes
519 ///with \ref addSource().
520 ///Finally \ref start() will perform the actual path
525 ///Initializes the internal data structures.
527 ///Initializes the internal data structures.
533 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
534 _pred->set(u,INVALID);
535 _processed->set(u,false);
536 _heap_cross_ref->set(u,Heap::PRE_HEAP);
540 ///Adds a new source node.
542 ///Adds a new source node to the priority heap.
544 ///The optional second parameter is the initial distance of the node.
546 ///It checks if the node has already been added to the heap and
547 ///It is pushed to the heap only if either it was not in the heap
548 ///or the shortest path found till then is longer then \c dst.
549 void addSource(Node s,Value dst=dijkstraZero<Value>())
551 if(_heap->state(s) != Heap::IN_HEAP) {
553 } else if((*_heap)[s]<dst) {
555 _pred->set(s,INVALID);
559 ///Processes the next node in the priority heap
561 ///Processes the next node in the priority heap.
563 ///\return The processed node.
565 ///\warning The priority heap must not be empty!
566 Node processNextNode()
569 Value oldvalue=_heap->prio();
571 finalizeNodeData(v,oldvalue);
573 for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
575 switch(_heap->state(w)) {
577 _heap->push(w,oldvalue+(*length)[e]);
581 if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
582 _heap->decrease(w, oldvalue+(*length)[e]);
586 case Heap::POST_HEAP:
593 ///Next node to be processed.
595 ///Next node to be processed.
597 ///\return The next node to be processed or INVALID if the priority heap
601 return _heap->empty()?_heap->top():INVALID;
604 ///\brief Returns \c false if there are nodes
605 ///to be processed in the priority heap
607 ///Returns \c false if there are nodes
608 ///to be processed in the priority heap
609 bool emptyQueue() { return _heap->empty(); }
610 ///Returns the number of the nodes to be processed in the priority heap
612 ///Returns the number of the nodes to be processed in the priority heap
614 int queueSize() { return _heap->size(); }
616 ///Executes the algorithm.
618 ///Executes the algorithm.
620 ///\pre init() must be called and at least one node should be added
621 ///with addSource() before using this function.
623 ///This method runs the %Dijkstra algorithm from the root node(s)
626 ///shortest path to each node. The algorithm computes
627 ///- The shortest path tree.
628 ///- The distance of each node from the root(s).
632 while ( !_heap->empty() ) processNextNode();
635 ///Executes the algorithm until \c dest is reached.
637 ///Executes the algorithm until \c dest is reached.
639 ///\pre init() must be called and at least one node should be added
640 ///with addSource() before using this function.
642 ///This method runs the %Dijkstra algorithm from the root node(s)
645 ///shortest path to \c dest. The algorithm computes
646 ///- The shortest path to \c dest.
647 ///- The distance of \c dest from the root(s).
649 void start(Node dest)
651 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
652 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
655 ///Executes the algorithm until a condition is met.
657 ///Executes the algorithm until a condition is met.
659 ///\pre init() must be called and at least one node should be added
660 ///with addSource() before using this function.
662 ///\param nm must be a bool (or convertible) node map. The algorithm
663 ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
664 template<class NodeBoolMap>
665 void start(const NodeBoolMap &nm)
667 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
668 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
671 ///Runs %Dijkstra algorithm from node \c s.
673 ///This method runs the %Dijkstra algorithm from a root node \c s
676 ///shortest path to each node. The algorithm computes
677 ///- The shortest path tree.
678 ///- The distance of each node from the root.
680 ///\note d.run(s) is just a shortcut of the following code.
692 ///Finds the shortest path between \c s and \c t.
694 ///Finds the shortest path between \c s and \c t.
696 ///\return The length of the shortest s---t path if there exists one,
698 ///\note Apart from the return value, d.run(s) is
699 ///just a shortcut of the following code.
705 Value run(Node s,Node t) {
709 return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
714 ///\name Query Functions
715 ///The result of the %Dijkstra algorithm can be obtained using these
717 ///Before the use of these functions,
718 ///either run() or start() must be called.
722 ///Copies the shortest path to \c t into \c p
724 ///This function copies the shortest path to \c t into \c p.
725 ///If it \c t is a source itself or unreachable, then it does not
727 ///\todo Is it the right way to handle unreachable nodes?
728 ///\return Returns \c true if a path to \c t was actually copied to \c p,
729 ///\c false otherwise.
732 bool getPath(P &p,Node t)
736 typename P::Builder b(p);
737 for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
738 b.pushFront(pred(t));
745 ///The distance of a node from the root.
747 ///Returns the distance of a node from the root.
748 ///\pre \ref run() must be called before using this function.
749 ///\warning If node \c v in unreachable from the root the return value
750 ///of this funcion is undefined.
751 Value dist(Node v) const { return (*_dist)[v]; }
753 ///Returns the 'previous edge' of the shortest path tree.
755 ///For a node \c v it returns the 'previous edge' of the shortest path tree,
756 ///i.e. it returns the last edge of a shortest path from the root to \c
757 ///v. It is \ref INVALID
758 ///if \c v is unreachable from the root or if \c v=s. The
759 ///shortest path tree used here is equal to the shortest path tree used in
760 ///\ref predNode(). \pre \ref run() must be called before using
762 ///\todo predEdge could be a better name.
763 Edge pred(Node v) const { return (*_pred)[v]; }
765 ///Returns the 'previous node' of the shortest path tree.
767 ///For a node \c v it returns the 'previous node' of the shortest path tree,
768 ///i.e. it returns the last but one node from a shortest path from the
769 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
770 ///\c v=s. The shortest path tree used here is equal to the shortest path
771 ///tree used in \ref pred(). \pre \ref run() must be called before
772 ///using this function.
773 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
774 G->source((*_pred)[v]); }
776 ///Returns a reference to the NodeMap of distances.
778 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
779 ///be called before using this function.
780 const DistMap &distMap() const { return *_dist;}
782 ///Returns a reference to the shortest path tree map.
784 ///Returns a reference to the NodeMap of the edges of the
785 ///shortest path tree.
786 ///\pre \ref run() must be called before using this function.
787 const PredMap &predMap() const { return *_pred;}
789 ///Checks if a node is reachable from the root.
791 ///Returns \c true if \c v is reachable from the root.
792 ///\warning The source nodes are inditated as unreached.
793 ///\pre \ref run() must be called before using this function.
795 bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
797 ///Checks if a node is processed.
799 ///Returns \c true if \c v is processed, i.e. the shortest
800 ///path to \c v has already found.
801 ///\pre \ref run() must be called before using this function.
803 bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
812 ///Default traits class of Dijkstra function.
814 ///Default traits class of Dijkstra function.
815 ///\param GR Graph type.
816 ///\param LM Type of length map.
817 template<class GR, class LM>
818 struct DijkstraWizardDefaultTraits
820 ///The graph type the algorithm runs on.
822 ///The type of the map that stores the edge lengths.
824 ///The type of the map that stores the edge lengths.
825 ///It must meet the \ref concept::ReadMap "ReadMap" concept.
826 typedef LM LengthMap;
827 //The type of the length of the edges.
828 typedef typename LM::Value Value;
829 ///The heap type used by Dijkstra algorithm.
831 /// The cross reference type used by heap.
833 /// The cross reference type used by heap.
834 /// Usually it is \c Graph::NodeMap<int>.
835 typedef typename Graph::template NodeMap<int> HeapCrossRef;
836 ///Instantiates a HeapCrossRef.
838 ///This function instantiates a \ref HeapCrossRef.
839 /// \param G is the graph, to which we would like to define the
841 /// \todo The graph alone may be insufficient for the initialization
842 static HeapCrossRef *createHeapCrossRef(const GR &G)
844 return new HeapCrossRef(G);
847 ///The heap type used by Dijkstra algorithm.
849 ///The heap type used by Dijkstra algorithm.
853 typedef BinHeap<typename Graph::Node, typename LM::Value,
854 typename GR::template NodeMap<int>,
855 std::less<Value> > Heap;
857 static Heap *createHeap(HeapCrossRef& R)
862 ///\brief The type of the map that stores the last
863 ///edges of the shortest paths.
865 ///The type of the map that stores the last
866 ///edges of the shortest paths.
867 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
869 typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
870 ///Instantiates a PredMap.
872 ///This function instantiates a \ref PredMap.
873 ///\param g is the graph, to which we would like to define the PredMap.
874 ///\todo The graph alone may be insufficient for the initialization
876 static PredMap *createPredMap(const GR &g)
878 static PredMap *createPredMap(const GR &)
881 return new PredMap();
883 ///The type of the map that stores whether a nodes is processed.
885 ///The type of the map that stores whether a nodes is processed.
886 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
887 ///By default it is a NullMap.
888 ///\todo If it is set to a real map,
889 ///Dijkstra::processed() should read this.
890 ///\todo named parameter to set this type, function to read and write.
891 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
892 ///Instantiates a ProcessedMap.
894 ///This function instantiates a \ref ProcessedMap.
895 ///\param g is the graph, to which
896 ///we would like to define the \ref ProcessedMap
898 static ProcessedMap *createProcessedMap(const GR &g)
900 static ProcessedMap *createProcessedMap(const GR &)
903 return new ProcessedMap();
905 ///The type of the map that stores the dists of the nodes.
907 ///The type of the map that stores the dists of the nodes.
908 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
910 typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
911 ///Instantiates a DistMap.
913 ///This function instantiates a \ref DistMap.
914 ///\param g is the graph, to which we would like to define the \ref DistMap
916 static DistMap *createDistMap(const GR &g)
918 static DistMap *createDistMap(const GR &)
921 return new DistMap();
925 /// Default traits used by \ref DijkstraWizard
927 /// To make it easier to use Dijkstra algorithm
928 ///we have created a wizard class.
929 /// This \ref DijkstraWizard class needs default traits,
930 ///as well as the \ref Dijkstra class.
931 /// The \ref DijkstraWizardBase is a class to be the default traits of the
932 /// \ref DijkstraWizard class.
933 /// \todo More named parameters are required...
934 template<class GR,class LM>
935 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
938 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
940 /// Type of the nodes in the graph.
941 typedef typename Base::Graph::Node Node;
943 /// Pointer to the underlying graph.
945 /// Pointer to the length map
947 ///Pointer to the map of predecessors edges.
949 ///Pointer to the map of distances.
951 ///Pointer to the source node.
957 /// This constructor does not require parameters, therefore it initiates
958 /// all of the attributes to default values (0, INVALID).
959 DijkstraWizardBase() : _g(0), _length(0), _pred(0),
960 _dist(0), _source(INVALID) {}
964 /// This constructor requires some parameters,
965 /// listed in the parameters list.
966 /// Others are initiated to 0.
967 /// \param g is the initial value of \ref _g
968 /// \param l is the initial value of \ref _length
969 /// \param s is the initial value of \ref _source
970 DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
971 _g((void *)&g), _length((void *)&l), _pred(0),
972 _dist(0), _source(s) {}
976 /// A class to make the usage of Dijkstra algorithm easier
978 /// This class is created to make it easier to use Dijkstra algorithm.
979 /// It uses the functions and features of the plain \ref Dijkstra,
980 /// but it is much simpler to use it.
982 /// Simplicity means that the way to change the types defined
983 /// in the traits class is based on functions that returns the new class
984 /// and not on templatable built-in classes.
985 /// When using the plain \ref Dijkstra
986 /// the new class with the modified type comes from
987 /// the original class by using the ::
988 /// operator. In the case of \ref DijkstraWizard only
989 /// a function have to be called and it will
990 /// return the needed class.
992 /// It does not have own \ref run method. When its \ref run method is called
993 /// it initiates a plain \ref Dijkstra class, and calls the \ref
994 /// Dijkstra::run method of it.
996 class DijkstraWizard : public TR
1000 ///The type of the underlying graph.
1001 typedef typename TR::Graph Graph;
1003 typedef typename Graph::Node Node;
1005 typedef typename Graph::NodeIt NodeIt;
1007 typedef typename Graph::Edge Edge;
1009 typedef typename Graph::OutEdgeIt OutEdgeIt;
1011 ///The type of the map that stores the edge lengths.
1012 typedef typename TR::LengthMap LengthMap;
1013 ///The type of the length of the edges.
1014 typedef typename LengthMap::Value Value;
1015 ///\brief The type of the map that stores the last
1016 ///edges of the shortest paths.
1017 typedef typename TR::PredMap PredMap;
1018 ///The type of the map that stores the dists of the nodes.
1019 typedef typename TR::DistMap DistMap;
1020 ///The heap type used by the dijkstra algorithm.
1021 typedef typename TR::Heap Heap;
1024 DijkstraWizard() : TR() {}
1026 /// Constructor that requires parameters.
1028 /// Constructor that requires parameters.
1029 /// These parameters will be the default values for the traits class.
1030 DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
1034 DijkstraWizard(const TR &b) : TR(b) {}
1036 ~DijkstraWizard() {}
1038 ///Runs Dijkstra algorithm from a given node.
1040 ///Runs Dijkstra algorithm from a given node.
1041 ///The node can be given by the \ref source function.
1044 if(Base::_source==INVALID) throw UninitializedParameter();
1045 Dijkstra<Graph,LengthMap,TR>
1046 dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
1047 if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
1048 if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
1049 dij.run(Base::_source);
1052 ///Runs Dijkstra algorithm from the given node.
1054 ///Runs Dijkstra algorithm from the given node.
1055 ///\param s is the given source.
1063 struct DefPredMapBase : public Base {
1065 static PredMap *createPredMap(const Graph &) { return 0; };
1066 DefPredMapBase(const TR &b) : TR(b) {}
1069 ///\brief \ref named-templ-param "Named parameter"
1070 ///function for setting PredMap type
1072 /// \ref named-templ-param "Named parameter"
1073 ///function for setting PredMap type
1076 DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
1078 Base::_pred=(void *)&t;
1079 return DijkstraWizard<DefPredMapBase<T> >(*this);
1083 struct DefDistMapBase : public Base {
1085 static DistMap *createDistMap(const Graph &) { return 0; };
1086 DefDistMapBase(const TR &b) : TR(b) {}
1089 ///\brief \ref named-templ-param "Named parameter"
1090 ///function for setting DistMap type
1092 /// \ref named-templ-param "Named parameter"
1093 ///function for setting DistMap type
1096 DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
1098 Base::_dist=(void *)&t;
1099 return DijkstraWizard<DefDistMapBase<T> >(*this);
1102 /// Sets the source node, from which the Dijkstra algorithm runs.
1104 /// Sets the source node, from which the Dijkstra algorithm runs.
1105 /// \param s is the source node.
1106 DijkstraWizard<TR> &source(Node s)
1114 ///Function type interface for Dijkstra algorithm.
1116 /// \ingroup flowalgs
1117 ///Function type interface for Dijkstra algorithm.
1119 ///This function also has several
1120 ///\ref named-templ-func-param "named parameters",
1121 ///they are declared as the members of class \ref DijkstraWizard.
1123 ///example shows how to use these parameters.
1125 /// dijkstra(g,length,source).predMap(preds).run();
1127 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1128 ///to the end of the parameter list.
1129 ///\sa DijkstraWizard
1131 template<class GR, class LM>
1132 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1133 dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
1135 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
1138 } //END OF NAMESPACE LEMON