lemon/preflow.h
author deba
Wed, 02 Nov 2005 15:22:28 +0000
changeset 1749 c13f6b4aa40e
parent 1631 e15162d8eca1
child 1762 3915867b6975
permissions -rw-r--r--
Visitor interface for the dfs algorithm.
     1 /* -*- C++ -*-
     2  * lemon/preflow.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_PREFLOW_H
    18 #define LEMON_PREFLOW_H
    19 
    20 #include <vector>
    21 #include <queue>
    22 
    23 #include <lemon/invalid.h>
    24 #include <lemon/maps.h>
    25 #include <lemon/graph_utils.h>
    26 
    27 /// \file
    28 /// \ingroup flowalgs
    29 /// \brief Implementation of the preflow algorithm.
    30 
    31 namespace lemon {
    32 
    33   /// \addtogroup flowalgs
    34   /// @{                                                   
    35 
    36   ///%Preflow algorithms class.
    37 
    38   ///This class provides an implementation of the \e preflow \e
    39   ///algorithm producing a flow of maximum value in a directed
    40   ///graph. The preflow algorithms are the fastest known max flow algorithms
    41   ///up to now. The \e source node, the \e target node, the \e
    42   ///capacity of the edges and the \e starting \e flow value of the
    43   ///edges should be passed to the algorithm through the
    44   ///constructor. It is possible to change these quantities using the
    45   ///functions \ref source, \ref target, \ref capacityMap and \ref
    46   ///flowMap.
    47   ///
    48   ///After running \ref lemon::Preflow::phase1() "phase1()"
    49   ///or \ref lemon::Preflow::run() "run()", the maximal flow
    50   ///value can be obtained by calling \ref flowValue(). The minimum
    51   ///value cut can be written into a <tt>bool</tt> node map by
    52   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    53   ///the inclusionwise minimum and maximum of the minimum value cuts,
    54   ///resp.)
    55   ///
    56   ///\param Graph The directed graph type the algorithm runs on.
    57   ///\param Num The number type of the capacities and the flow values.
    58   ///\param CapacityMap The capacity map type.
    59   ///\param FlowMap The flow map type.
    60   ///
    61   ///\author Jacint Szabo 
    62   ///\todo Second template parameter is superfluous
    63   template <typename Graph, typename Num,
    64 	    typename CapacityMap=typename Graph::template EdgeMap<Num>,
    65             typename FlowMap=typename Graph::template EdgeMap<Num> >
    66   class Preflow {
    67   protected:
    68     typedef typename Graph::Node Node;
    69     typedef typename Graph::NodeIt NodeIt;
    70     typedef typename Graph::EdgeIt EdgeIt;
    71     typedef typename Graph::OutEdgeIt OutEdgeIt;
    72     typedef typename Graph::InEdgeIt InEdgeIt;
    73 
    74     typedef typename Graph::template NodeMap<Node> NNMap;
    75     typedef typename std::vector<Node> VecNode;
    76 
    77     const Graph* _g;
    78     Node _source;
    79     Node _target;
    80     const CapacityMap* _capacity;
    81     FlowMap* _flow;
    82     int _node_num;      //the number of nodes of G
    83     
    84     typename Graph::template NodeMap<int> level;  
    85     typename Graph::template NodeMap<Num> excess;
    86 
    87     // constants used for heuristics
    88     static const int H0=20;
    89     static const int H1=1;
    90 
    91     public:
    92 
    93     ///Indicates the property of the starting flow map.
    94 
    95     ///Indicates the property of the starting flow map.
    96     ///The meanings are as follows:
    97     ///- \c ZERO_FLOW: constant zero flow
    98     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    99     ///the sum of the out-flows in every node except the \e source and
   100     ///the \e target.
   101     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   102     ///least the sum of the out-flows in every node except the \e source.
   103     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
   104     ///set to the constant zero flow in the beginning of
   105     ///the algorithm in this case.
   106     ///
   107     enum FlowEnum{
   108       NO_FLOW,
   109       ZERO_FLOW,
   110       GEN_FLOW,
   111       PRE_FLOW
   112     };
   113 
   114     ///Indicates the state of the preflow algorithm.
   115 
   116     ///Indicates the state of the preflow algorithm.
   117     ///The meanings are as follows:
   118     ///- \c AFTER_NOTHING: before running the algorithm or
   119     ///  at an unspecified state.
   120     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
   121     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   122     ///
   123     enum StatusEnum {
   124       AFTER_NOTHING,
   125       AFTER_PREFLOW_PHASE_1,      
   126       AFTER_PREFLOW_PHASE_2
   127     };
   128     
   129     protected: 
   130       FlowEnum flow_prop;
   131     StatusEnum status; // Do not needle this flag only if necessary.
   132     
   133   public: 
   134     ///The constructor of the class.
   135 
   136     ///The constructor of the class. 
   137     ///\param _gr The directed graph the algorithm runs on. 
   138     ///\param _s The source node.
   139     ///\param _t The target node.
   140     ///\param _cap The capacity of the edges. 
   141     ///\param _f The flow of the edges. 
   142     ///Except the graph, all of these parameters can be reset by
   143     ///calling \ref source, \ref target, \ref capacityMap and \ref
   144     ///flowMap, resp.
   145       Preflow(const Graph& _gr, Node _s, Node _t, 
   146 	      const CapacityMap& _cap, FlowMap& _f) :
   147 	_g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
   148 	_flow(&_f), _node_num(countNodes(_gr)), level(_gr), excess(_gr,0), 
   149 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
   150 
   151 
   152                                                                               
   153     ///Runs the preflow algorithm.  
   154 
   155     ///Runs the preflow algorithm.
   156     ///
   157     void run() {
   158       phase1(flow_prop);
   159       phase2();
   160     }
   161     
   162     ///Runs the preflow algorithm.  
   163     
   164     ///Runs the preflow algorithm. 
   165     ///\pre The starting flow map must be
   166     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   167     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   168     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   169     /// - any map if \c fp is NO_FLOW.
   170     ///If the starting flow map is a flow or a preflow then 
   171     ///the algorithm terminates faster.
   172     void run(FlowEnum fp) {
   173       flow_prop=fp;
   174       run();
   175     }
   176       
   177     ///Runs the first phase of the preflow algorithm.
   178 
   179     ///The preflow algorithm consists of two phases, this method runs
   180     ///the first phase. After the first phase the maximum flow value
   181     ///and a minimum value cut can already be computed, although a
   182     ///maximum flow is not yet obtained. So after calling this method
   183     ///\ref flowValue returns the value of a maximum flow and \ref
   184     ///minCut returns a minimum cut.     
   185     ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
   186     ///value cuts unless calling \ref phase2.  
   187     ///\pre The starting flow must be 
   188     ///- a constant zero flow if \c fp is \c ZERO_FLOW, 
   189     ///- an arbitary flow if \c fp is \c GEN_FLOW, 
   190     ///- an arbitary preflow if \c fp is \c PRE_FLOW, 
   191     ///- any map if \c fp is NO_FLOW.
   192     void phase1(FlowEnum fp)
   193     {
   194       flow_prop=fp;
   195       phase1();
   196     }
   197 
   198     
   199     ///Runs the first phase of the preflow algorithm.
   200 
   201     ///The preflow algorithm consists of two phases, this method runs
   202     ///the first phase. After the first phase the maximum flow value
   203     ///and a minimum value cut can already be computed, although a
   204     ///maximum flow is not yet obtained. So after calling this method
   205     ///\ref flowValue returns the value of a maximum flow and \ref
   206     ///minCut returns a minimum cut.
   207     ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
   208     ///give minimum value cuts unless calling \ref phase2().
   209     void phase1()
   210     {
   211       int heur0=(int)(H0*_node_num);  //time while running 'bound decrease'
   212       int heur1=(int)(H1*_node_num);  //time while running 'highest label'
   213       int heur=heur1;         //starting time interval (#of relabels)
   214       int numrelabel=0;
   215 
   216       bool what_heur=1;
   217       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   218 
   219       bool end=false;
   220       //Needed for 'bound decrease', true means no active 
   221       //nodes are above bound b.
   222 
   223       int k=_node_num-2;  //bound on the highest level under n containing a node
   224       int b=k;    //bound on the highest level under n of an active node
   225 
   226       VecNode first(_node_num, INVALID);
   227       NNMap next(*_g, INVALID);
   228 
   229       NNMap left(*_g, INVALID);
   230       NNMap right(*_g, INVALID);
   231       VecNode level_list(_node_num,INVALID);
   232       //List of the nodes in level i<n, set to n.
   233 
   234       preflowPreproc(first, next, level_list, left, right);
   235 
   236       //Push/relabel on the highest level active nodes.
   237       while ( true ) {
   238 	if ( b == 0 ) {
   239 	  if ( !what_heur && !end && k > 0 ) {
   240 	    b=k;
   241 	    end=true;
   242 	  } else break;
   243 	}
   244 
   245 	if ( first[b]==INVALID ) --b;
   246 	else {
   247 	  end=false;
   248 	  Node w=first[b];
   249 	  first[b]=next[w];
   250 	  int newlevel=push(w, next, first);
   251 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   252 				       left, right, b, k, what_heur);
   253 
   254 	  ++numrelabel;
   255 	  if ( numrelabel >= heur ) {
   256 	    numrelabel=0;
   257 	    if ( what_heur ) {
   258 	      what_heur=0;
   259 	      heur=heur0;
   260 	      end=false;
   261 	    } else {
   262 	      what_heur=1;
   263 	      heur=heur1;
   264 	      b=k;
   265 	    }
   266 	  }
   267 	}
   268       }
   269       flow_prop=PRE_FLOW;
   270       status=AFTER_PREFLOW_PHASE_1;
   271     }
   272     // Heuristics:
   273     //   2 phase
   274     //   gap
   275     //   list 'level_list' on the nodes on level i implemented by hand
   276     //   stack 'active' on the active nodes on level i      
   277     //   runs heuristic 'highest label' for H1*n relabels
   278     //   runs heuristic 'bound decrease' for H0*n relabels,
   279     //        starts with 'highest label'
   280     //   Parameters H0 and H1 are initialized to 20 and 1.
   281 
   282 
   283     ///Runs the second phase of the preflow algorithm.
   284 
   285     ///The preflow algorithm consists of two phases, this method runs
   286     ///the second phase. After calling \ref phase1() and then
   287     ///\ref phase2(),
   288     /// \ref flowMap() return a maximum flow, \ref flowValue
   289     ///returns the value of a maximum flow, \ref minCut returns a
   290     ///minimum cut, while the methods \ref minMinCut and \ref
   291     ///maxMinCut return the inclusionwise minimum and maximum cuts of
   292     ///minimum value, resp.  \pre \ref phase1 must be called before.
   293     void phase2()
   294     {
   295 
   296       int k=_node_num-2;  //bound on the highest level under n containing a node
   297       int b=k;    //bound on the highest level under n of an active node
   298 
   299     
   300       VecNode first(_node_num, INVALID);
   301       NNMap next(*_g, INVALID); 
   302       level.set(_source,0);
   303       std::queue<Node> bfs_queue;
   304       bfs_queue.push(_source);
   305 
   306       while ( !bfs_queue.empty() ) {
   307 
   308 	Node v=bfs_queue.front();
   309 	bfs_queue.pop();
   310 	int l=level[v]+1;
   311 
   312 	for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
   313 	  if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
   314 	  Node u=_g->source(e);
   315 	  if ( level[u] >= _node_num ) {
   316 	    bfs_queue.push(u);
   317 	    level.set(u, l);
   318 	    if ( excess[u] > 0 ) {
   319 	      next.set(u,first[l]);
   320 	      first[l]=u;
   321 	    }
   322 	  }
   323 	}
   324 
   325 	for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
   326 	  if ( 0 >= (*_flow)[e] ) continue;
   327 	  Node u=_g->target(e);
   328 	  if ( level[u] >= _node_num ) {
   329 	    bfs_queue.push(u);
   330 	    level.set(u, l);
   331 	    if ( excess[u] > 0 ) {
   332 	      next.set(u,first[l]);
   333 	      first[l]=u;
   334 	    }
   335 	  }
   336 	}
   337       }
   338       b=_node_num-2;
   339 
   340       while ( true ) {
   341 
   342 	if ( b == 0 ) break;
   343 	if ( first[b]==INVALID ) --b;
   344 	else {
   345 	  Node w=first[b];
   346 	  first[b]=next[w];
   347 	  int newlevel=push(w,next, first);
   348 	  
   349 	  //relabel
   350 	  if ( excess[w] > 0 ) {
   351 	    level.set(w,++newlevel);
   352 	    next.set(w,first[newlevel]);
   353 	    first[newlevel]=w;
   354 	    b=newlevel;
   355 	  }
   356 	} 
   357       } // while(true)
   358       flow_prop=GEN_FLOW;
   359       status=AFTER_PREFLOW_PHASE_2;
   360     }
   361 
   362     /// Returns the value of the maximum flow.
   363 
   364     /// Returns the value of the maximum flow by returning the excess
   365     /// of the target node \c t. This value equals to the value of
   366     /// the maximum flow already after running \ref phase1.
   367     Num flowValue() const {
   368       return excess[_target];
   369     }
   370 
   371 
   372     ///Returns a minimum value cut.
   373 
   374     ///Sets \c M to the characteristic vector of a minimum value
   375     ///cut. This method can be called both after running \ref
   376     ///phase1 and \ref phase2. It is much faster after
   377     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   378     ///If \ref minCut() is called after \ref phase2() then M should
   379     ///be initialized to false.
   380     template<typename _CutMap>
   381     void minCut(_CutMap& M) const {
   382       switch ( status ) {
   383 	case AFTER_PREFLOW_PHASE_1:
   384 	for(NodeIt v(*_g); v!=INVALID; ++v) {
   385 	  if (level[v] < _node_num) {
   386 	    M.set(v, false);
   387 	  } else {
   388 	    M.set(v, true);
   389 	  }
   390 	}
   391 	break;
   392 	case AFTER_PREFLOW_PHASE_2:
   393 	minMinCut(M);
   394 	break;
   395 	case AFTER_NOTHING:
   396 	break;
   397       }
   398     }
   399 
   400     ///Returns the inclusionwise minimum of the minimum value cuts.
   401 
   402     ///Sets \c M to the characteristic vector of the minimum value cut
   403     ///which is inclusionwise minimum. It is computed by processing a
   404     ///bfs from the source node \c s in the residual graph.  \pre M
   405     ///should be a node map of bools initialized to false.  \pre \ref
   406     ///phase2 should already be run.
   407     template<typename _CutMap>
   408     void minMinCut(_CutMap& M) const {
   409 
   410       std::queue<Node> queue;
   411       M.set(_source,true);
   412       queue.push(_source);
   413       
   414       while (!queue.empty()) {
   415 	Node w=queue.front();
   416 	queue.pop();
   417 	
   418 	for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   419 	  Node v=_g->target(e);
   420 	  if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) {
   421 	    queue.push(v);
   422 	    M.set(v, true);
   423 	  }
   424 	}
   425 	
   426 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   427 	  Node v=_g->source(e);
   428 	  if (!M[v] && (*_flow)[e] > 0 ) {
   429 	    queue.push(v);
   430 	    M.set(v, true);
   431 	  }
   432 	}
   433       }
   434     }
   435     
   436     ///Returns the inclusionwise maximum of the minimum value cuts.
   437 
   438     ///Sets \c M to the characteristic vector of the minimum value cut
   439     ///which is inclusionwise maximum. It is computed by processing a
   440     ///backward bfs from the target node \c t in the residual graph.
   441     ///\pre \ref phase2() or run() should already be run.
   442     template<typename _CutMap>
   443     void maxMinCut(_CutMap& M) const {
   444 
   445       for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
   446 
   447       std::queue<Node> queue;
   448 
   449       M.set(_target,false);
   450       queue.push(_target);
   451 
   452       while (!queue.empty()) {
   453         Node w=queue.front();
   454 	queue.pop();
   455 
   456 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   457 	  Node v=_g->source(e);
   458 	  if (M[v] && (*_flow)[e] < (*_capacity)[e] ) {
   459 	    queue.push(v);
   460 	    M.set(v, false);
   461 	  }
   462 	}
   463 
   464 	for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   465 	  Node v=_g->target(e);
   466 	  if (M[v] && (*_flow)[e] > 0 ) {
   467 	    queue.push(v);
   468 	    M.set(v, false);
   469 	  }
   470 	}
   471       }
   472     }
   473 
   474     ///Sets the source node to \c _s.
   475 
   476     ///Sets the source node to \c _s.
   477     /// 
   478     void source(Node _s) { 
   479       _source=_s; 
   480       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   481       status=AFTER_NOTHING; 
   482     }
   483 
   484     ///Returns the source node.
   485 
   486     ///Returns the source node.
   487     /// 
   488     Node source() const { 
   489       return _source;
   490     }
   491 
   492     ///Sets the target node to \c _t.
   493 
   494     ///Sets the target node to \c _t.
   495     ///
   496     void target(Node _t) { 
   497       _target=_t; 
   498       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   499       status=AFTER_NOTHING; 
   500     }
   501 
   502     ///Returns the target node.
   503 
   504     ///Returns the target node.
   505     /// 
   506     Node target() const { 
   507       return _target;
   508     }
   509 
   510     /// Sets the edge map of the capacities to _cap.
   511 
   512     /// Sets the edge map of the capacities to _cap.
   513     /// 
   514     void capacityMap(const CapacityMap& _cap) { 
   515       _capacity=&_cap; 
   516       status=AFTER_NOTHING; 
   517     }
   518     /// Returns a reference to capacity map.
   519 
   520     /// Returns a reference to capacity map.
   521     /// 
   522     const CapacityMap &capacityMap() const { 
   523       return *_capacity;
   524     }
   525 
   526     /// Sets the edge map of the flows to _flow.
   527 
   528     /// Sets the edge map of the flows to _flow.
   529     /// 
   530     void flowMap(FlowMap& _f) { 
   531       _flow=&_f; 
   532       flow_prop=NO_FLOW;
   533       status=AFTER_NOTHING; 
   534     }
   535      
   536     /// Returns a reference to flow map.
   537 
   538     /// Returns a reference to flow map.
   539     /// 
   540     const FlowMap &flowMap() const { 
   541       return *_flow;
   542     }
   543 
   544   private:
   545 
   546     int push(Node w, NNMap& next, VecNode& first) {
   547 
   548       int lev=level[w];
   549       Num exc=excess[w];
   550       int newlevel=_node_num;       //bound on the next level of w
   551 
   552       for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   553 	if ( (*_flow)[e] >= (*_capacity)[e] ) continue;
   554 	Node v=_g->target(e);
   555 
   556 	if( lev > level[v] ) { //Push is allowed now
   557 	  
   558 	  if ( excess[v]<=0 && v!=_target && v!=_source ) {
   559 	    next.set(v,first[level[v]]);
   560 	    first[level[v]]=v;
   561 	  }
   562 
   563 	  Num cap=(*_capacity)[e];
   564 	  Num flo=(*_flow)[e];
   565 	  Num remcap=cap-flo;
   566 	  
   567 	  if ( remcap >= exc ) { //A nonsaturating push.
   568 	    
   569 	    _flow->set(e, flo+exc);
   570 	    excess.set(v, excess[v]+exc);
   571 	    exc=0;
   572 	    break;
   573 
   574 	  } else { //A saturating push.
   575 	    _flow->set(e, cap);
   576 	    excess.set(v, excess[v]+remcap);
   577 	    exc-=remcap;
   578 	  }
   579 	} else if ( newlevel > level[v] ) newlevel = level[v];
   580       } //for out edges wv
   581 
   582       if ( exc > 0 ) {
   583 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   584 	  
   585 	  if( (*_flow)[e] <= 0 ) continue;
   586 	  Node v=_g->source(e);
   587 
   588 	  if( lev > level[v] ) { //Push is allowed now
   589 
   590 	    if ( excess[v]<=0 && v!=_target && v!=_source ) {
   591 	      next.set(v,first[level[v]]);
   592 	      first[level[v]]=v;
   593 	    }
   594 
   595 	    Num flo=(*_flow)[e];
   596 
   597 	    if ( flo >= exc ) { //A nonsaturating push.
   598 
   599 	      _flow->set(e, flo-exc);
   600 	      excess.set(v, excess[v]+exc);
   601 	      exc=0;
   602 	      break;
   603 	    } else {  //A saturating push.
   604 
   605 	      excess.set(v, excess[v]+flo);
   606 	      exc-=flo;
   607 	      _flow->set(e,0);
   608 	    }
   609 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   610 	} //for in edges vw
   611 
   612       } // if w still has excess after the out edge for cycle
   613 
   614       excess.set(w, exc);
   615       
   616       return newlevel;
   617     }
   618     
   619     
   620     
   621     void preflowPreproc(VecNode& first, NNMap& next, 
   622 			VecNode& level_list, NNMap& left, NNMap& right)
   623     {
   624       for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
   625       std::queue<Node> bfs_queue;
   626       
   627       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   628 	//Reverse_bfs from t in the residual graph,
   629 	//to find the starting level.
   630 	level.set(_target,0);
   631 	bfs_queue.push(_target);
   632 	
   633 	while ( !bfs_queue.empty() ) {
   634 	  
   635 	  Node v=bfs_queue.front();
   636 	  bfs_queue.pop();
   637 	  int l=level[v]+1;
   638 	  
   639 	  for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   640 	    if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
   641 	    Node w=_g->source(e);
   642 	    if ( level[w] == _node_num && w != _source ) {
   643 	      bfs_queue.push(w);
   644 	      Node z=level_list[l];
   645 	      if ( z!=INVALID ) left.set(z,w);
   646 	      right.set(w,z);
   647 	      level_list[l]=w;
   648 	      level.set(w, l);
   649 	    }
   650 	  }
   651 	  
   652 	  for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   653 	    if ( 0 >= (*_flow)[e] ) continue;
   654 	    Node w=_g->target(e);
   655 	    if ( level[w] == _node_num && w != _source ) {
   656 	      bfs_queue.push(w);
   657 	      Node z=level_list[l];
   658 	      if ( z!=INVALID ) left.set(z,w);
   659 	      right.set(w,z);
   660 	      level_list[l]=w;
   661 	      level.set(w, l);
   662 	    }
   663 	  }
   664 	} //while
   665       } //if
   666 
   667 
   668       switch (flow_prop) {
   669 	case NO_FLOW:  
   670 	for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
   671 	case ZERO_FLOW:
   672 	for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
   673 	
   674 	//Reverse_bfs from t, to find the starting level.
   675 	level.set(_target,0);
   676 	bfs_queue.push(_target);
   677 	
   678 	while ( !bfs_queue.empty() ) {
   679 	  
   680 	  Node v=bfs_queue.front();
   681 	  bfs_queue.pop();
   682 	  int l=level[v]+1;
   683 	  
   684 	  for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   685 	    Node w=_g->source(e);
   686 	    if ( level[w] == _node_num && w != _source ) {
   687 	      bfs_queue.push(w);
   688 	      Node z=level_list[l];
   689 	      if ( z!=INVALID ) left.set(z,w);
   690 	      right.set(w,z);
   691 	      level_list[l]=w;
   692 	      level.set(w, l);
   693 	    }
   694 	  }
   695 	}
   696 	
   697 	//the starting flow
   698 	for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   699 	  Num c=(*_capacity)[e];
   700 	  if ( c <= 0 ) continue;
   701 	  Node w=_g->target(e);
   702 	  if ( level[w] < _node_num ) {
   703 	    if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
   704 	      next.set(w,first[level[w]]);
   705 	      first[level[w]]=w;
   706 	    }
   707 	    _flow->set(e, c);
   708 	    excess.set(w, excess[w]+c);
   709 	  }
   710 	}
   711 	break;
   712 
   713 	case GEN_FLOW:
   714 	for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
   715 	{
   716 	  Num exc=0;
   717 	  for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
   718 	  for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
   719 	  excess.set(_target,exc);
   720 	}
   721 
   722 	//the starting flow
   723 	for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e)	{
   724 	  Num rem=(*_capacity)[e]-(*_flow)[e];
   725 	  if ( rem <= 0 ) continue;
   726 	  Node w=_g->target(e);
   727 	  if ( level[w] < _node_num ) {
   728 	    if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
   729 	      next.set(w,first[level[w]]);
   730 	      first[level[w]]=w;
   731 	    }   
   732 	    _flow->set(e, (*_capacity)[e]);
   733 	    excess.set(w, excess[w]+rem);
   734 	  }
   735 	}
   736 	
   737 	for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
   738 	  if ( (*_flow)[e] <= 0 ) continue;
   739 	  Node w=_g->source(e);
   740 	  if ( level[w] < _node_num ) {
   741 	    if ( excess[w] <= 0 && w!=_target ) {
   742 	      next.set(w,first[level[w]]);
   743 	      first[level[w]]=w;
   744 	    }  
   745 	    excess.set(w, excess[w]+(*_flow)[e]);
   746 	    _flow->set(e, 0);
   747 	  }
   748 	}
   749 	break;
   750 
   751 	case PRE_FLOW:	
   752 	//the starting flow
   753 	for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   754 	  Num rem=(*_capacity)[e]-(*_flow)[e];
   755 	  if ( rem <= 0 ) continue;
   756 	  Node w=_g->target(e);
   757 	  if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
   758 	}
   759 	
   760 	for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   761 	  if ( (*_flow)[e] <= 0 ) continue;
   762 	  Node w=_g->source(e);
   763 	  if ( level[w] < _node_num ) _flow->set(e, 0);
   764 	}
   765 	
   766 	//computing the excess
   767 	for(NodeIt w(*_g); w!=INVALID; ++w) {
   768 	  Num exc=0;
   769 	  for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
   770 	  for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
   771 	  excess.set(w,exc);
   772 	  
   773 	  //putting the active nodes into the stack
   774 	  int lev=level[w];
   775 	    if ( exc > 0 && lev < _node_num && Node(w) != _target ) {
   776 	      next.set(w,first[lev]);
   777 	      first[lev]=w;
   778 	    }
   779 	}
   780 	break;
   781       } //switch
   782     } //preflowPreproc
   783 
   784 
   785     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   786 		 VecNode& level_list, NNMap& left,
   787 		 NNMap& right, int& b, int& k, bool what_heur )
   788     {
   789 
   790       int lev=level[w];
   791 
   792       Node right_n=right[w];
   793       Node left_n=left[w];
   794 
   795       //unlacing starts
   796       if ( right_n!=INVALID ) {
   797 	if ( left_n!=INVALID ) {
   798 	  right.set(left_n, right_n);
   799 	  left.set(right_n, left_n);
   800 	} else {
   801 	  level_list[lev]=right_n;
   802 	  left.set(right_n, INVALID);
   803 	}
   804       } else {
   805 	if ( left_n!=INVALID ) {
   806 	  right.set(left_n, INVALID);
   807 	} else {
   808 	  level_list[lev]=INVALID;
   809 	}
   810       }
   811       //unlacing ends
   812 
   813       if ( level_list[lev]==INVALID ) {
   814 
   815 	//gapping starts
   816 	for (int i=lev; i!=k ; ) {
   817 	  Node v=level_list[++i];
   818 	  while ( v!=INVALID ) {
   819 	    level.set(v,_node_num);
   820 	    v=right[v];
   821 	  }
   822 	  level_list[i]=INVALID;
   823 	  if ( !what_heur ) first[i]=INVALID;
   824 	}
   825 
   826 	level.set(w,_node_num);
   827 	b=lev-1;
   828 	k=b;
   829 	//gapping ends
   830 
   831       } else {
   832 
   833 	if ( newlevel == _node_num ) level.set(w,_node_num);
   834 	else {
   835 	  level.set(w,++newlevel);
   836 	  next.set(w,first[newlevel]);
   837 	  first[newlevel]=w;
   838 	  if ( what_heur ) b=newlevel;
   839 	  if ( k < newlevel ) ++k;      //now k=newlevel
   840 	  Node z=level_list[newlevel];
   841 	  if ( z!=INVALID ) left.set(z,w);
   842 	  right.set(w,z);
   843 	  left.set(w,INVALID);
   844 	  level_list[newlevel]=w;
   845 	}
   846       }
   847     } //relabel
   848 
   849   }; 
   850 
   851   ///Function type interface for Preflow algorithm.
   852 
   853   /// \ingroup flowalgs
   854   ///Function type interface for Preflow algorithm.
   855   ///\sa Preflow
   856   template<class GR, class CM, class FM>
   857   Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
   858 			    typename GR::Node source,
   859 			    typename GR::Node target,
   860 			    const CM &cap,
   861 			    FM &flow
   862 			    )
   863   {
   864     return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
   865   }
   866 
   867 } //namespace lemon
   868 
   869 #endif //LEMON_PREFLOW_H