2 * lemon/dfs.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
22 ///\brief Dfs algorithm.
24 #include <lemon/list_graph.h>
25 #include <lemon/graph_utils.h>
26 #include <lemon/invalid.h>
27 #include <lemon/error.h>
28 #include <lemon/maps.h>
30 #include <lemon/concept_check.h>
35 ///Default traits class of Dfs class.
37 ///Default traits class of Dfs class.
38 ///\param GR Graph type.
40 struct DfsDefaultTraits
42 ///The graph type the algorithm runs on.
44 ///\brief The type of the map that stores the last
45 ///edges of the %DFS paths.
47 ///The type of the map that stores the last
48 ///edges of the %DFS paths.
49 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
51 typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
52 ///Instantiates a PredMap.
54 ///This function instantiates a \ref PredMap.
55 ///\param G is the graph, to which we would like to define the PredMap.
56 ///\todo The graph alone may be insufficient to initialize
57 static PredMap *createPredMap(const GR &G)
59 return new PredMap(G);
62 ///The type of the map that indicates which nodes are processed.
64 ///The type of the map that indicates which nodes are processed.
65 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
66 ///\todo named parameter to set this type, function to read and write.
67 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
68 ///Instantiates a ProcessedMap.
70 ///This function instantiates a \ref ProcessedMap.
71 ///\param g is the graph, to which
72 ///we would like to define the \ref ProcessedMap
74 static ProcessedMap *createProcessedMap(const GR &g)
76 static ProcessedMap *createProcessedMap(const GR &)
79 return new ProcessedMap();
81 ///The type of the map that indicates which nodes are reached.
83 ///The type of the map that indicates which nodes are reached.
84 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
85 ///\todo named parameter to set this type, function to read and write.
86 typedef typename Graph::template NodeMap<bool> ReachedMap;
87 ///Instantiates a ReachedMap.
89 ///This function instantiates a \ref ReachedMap.
90 ///\param G is the graph, to which
91 ///we would like to define the \ref ReachedMap.
92 static ReachedMap *createReachedMap(const GR &G)
94 return new ReachedMap(G);
96 ///The type of the map that stores the dists of the nodes.
98 ///The type of the map that stores the dists of the nodes.
99 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
101 typedef typename Graph::template NodeMap<int> DistMap;
102 ///Instantiates a DistMap.
104 ///This function instantiates a \ref DistMap.
105 ///\param G is the graph, to which we would like to define the \ref DistMap
106 static DistMap *createDistMap(const GR &G)
108 return new DistMap(G);
112 ///%DFS algorithm class.
115 ///This class provides an efficient implementation of the %DFS algorithm.
117 ///\param GR The graph type the algorithm runs on. The default value is
118 ///\ref ListGraph. The value of GR is not used directly by Dfs, it
119 ///is only passed to \ref DfsDefaultTraits.
120 ///\param TR Traits class to set various data types used by the algorithm.
121 ///The default traits class is
122 ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
123 ///See \ref DfsDefaultTraits for the documentation of
124 ///a Dfs traits class.
126 ///\author Jacint Szabo and Alpar Juttner
128 template <typename GR,
131 template <typename GR=ListGraph,
132 typename TR=DfsDefaultTraits<GR> >
137 * \brief \ref Exception for uninitialized parameters.
139 * This error represents problems in the initialization
140 * of the parameters of the algorithms.
142 class UninitializedParameter : public lemon::UninitializedParameter {
144 virtual const char* exceptionName() const {
145 return "lemon::Dfs::UninitializedParameter";
150 ///The type of the underlying graph.
151 typedef typename TR::Graph Graph;
153 typedef typename Graph::Node Node;
155 typedef typename Graph::NodeIt NodeIt;
157 typedef typename Graph::Edge Edge;
159 typedef typename Graph::OutEdgeIt OutEdgeIt;
161 ///\brief The type of the map that stores the last
162 ///edges of the %DFS paths.
163 typedef typename TR::PredMap PredMap;
164 ///The type of the map indicating which nodes are reached.
165 typedef typename TR::ReachedMap ReachedMap;
166 ///The type of the map indicating which nodes are processed.
167 typedef typename TR::ProcessedMap ProcessedMap;
168 ///The type of the map that stores the dists of the nodes.
169 typedef typename TR::DistMap DistMap;
171 /// Pointer to the underlying graph.
173 ///Pointer to the map of predecessors edges.
175 ///Indicates if \ref _pred is locally allocated (\c true) or not.
177 ///Pointer to the map of distances.
179 ///Indicates if \ref _dist is locally allocated (\c true) or not.
181 ///Pointer to the map of reached status of the nodes.
182 ReachedMap *_reached;
183 ///Indicates if \ref _reached is locally allocated (\c true) or not.
185 ///Pointer to the map of processed status of the nodes.
186 ProcessedMap *_processed;
187 ///Indicates if \ref _processed is locally allocated (\c true) or not.
188 bool local_processed;
190 std::vector<typename Graph::OutEdgeIt> _stack;
193 ///Creates the maps if necessary.
195 ///\todo Better memory allocation (instead of new).
200 _pred = Traits::createPredMap(*G);
204 _dist = Traits::createDistMap(*G);
207 local_reached = true;
208 _reached = Traits::createReachedMap(*G);
211 local_processed = true;
212 _processed = Traits::createProcessedMap(*G);
224 ///\name Named template parameters
229 struct DefPredMapTraits : public Traits {
231 static PredMap *createPredMap(const Graph &G)
233 throw UninitializedParameter();
236 ///\ref named-templ-param "Named parameter" for setting PredMap type
238 ///\ref named-templ-param "Named parameter" for setting PredMap type
241 struct DefPredMap : public Dfs<Graph, DefPredMapTraits<T> > {
242 typedef Dfs<Graph, DefPredMapTraits<T> > Create;
247 struct DefDistMapTraits : public Traits {
249 static DistMap *createDistMap(const Graph &G)
251 throw UninitializedParameter();
254 ///\ref named-templ-param "Named parameter" for setting DistMap type
256 ///\ref named-templ-param "Named parameter" for setting DistMap type
260 typedef Dfs<Graph, DefDistMapTraits<T> > Create;
264 struct DefReachedMapTraits : public Traits {
265 typedef T ReachedMap;
266 static ReachedMap *createReachedMap(const Graph &G)
268 throw UninitializedParameter();
271 ///\ref named-templ-param "Named parameter" for setting ReachedMap type
273 ///\ref named-templ-param "Named parameter" for setting ReachedMap type
276 struct DefReachedMap : public Dfs< Graph, DefReachedMapTraits<T> > {
277 typedef Dfs< Graph, DefReachedMapTraits<T> > Create;
281 struct DefProcessedMapTraits : public Traits {
282 typedef T ProcessedMap;
283 static ProcessedMap *createProcessedMap(const Graph &G)
285 throw UninitializedParameter();
288 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
290 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
293 struct DefProcessedMap : public Dfs< Graph, DefProcessedMapTraits<T> > {
294 typedef Dfs< Graph, DefProcessedMapTraits<T> > Create;
297 struct DefGraphProcessedMapTraits : public Traits {
298 typedef typename Graph::template NodeMap<bool> ProcessedMap;
299 static ProcessedMap *createProcessedMap(const Graph &G)
301 return new ProcessedMap(G);
304 ///\brief \ref named-templ-param "Named parameter"
305 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
307 ///\ref named-templ-param "Named parameter"
308 ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
309 ///If you don't set it explicitely, it will be automatically allocated.
311 class DefProcessedMapToBeDefaultMap :
312 public Dfs< Graph, DefGraphProcessedMapTraits> {
313 typedef Dfs< Graph, DefGraphProcessedMapTraits> Create;
322 ///\param _G the graph the algorithm will run on.
324 Dfs(const Graph& _G) :
326 _pred(NULL), local_pred(false),
327 _dist(NULL), local_dist(false),
328 _reached(NULL), local_reached(false),
329 _processed(NULL), local_processed(false)
335 if(local_pred) delete _pred;
336 if(local_dist) delete _dist;
337 if(local_reached) delete _reached;
338 if(local_processed) delete _processed;
341 ///Sets the map storing the predecessor edges.
343 ///Sets the map storing the predecessor edges.
344 ///If you don't use this function before calling \ref run(),
345 ///it will allocate one. The destuctor deallocates this
346 ///automatically allocated map, of course.
347 ///\return <tt> (*this) </tt>
348 Dfs &predMap(PredMap &m)
358 ///Sets the map storing the distances calculated by the algorithm.
360 ///Sets the map storing the distances calculated by the algorithm.
361 ///If you don't use this function before calling \ref run(),
362 ///it will allocate one. The destuctor deallocates this
363 ///automatically allocated map, of course.
364 ///\return <tt> (*this) </tt>
365 Dfs &distMap(DistMap &m)
375 ///Sets the map indicating if a node is reached.
377 ///Sets the map indicating if a node is reached.
378 ///If you don't use this function before calling \ref run(),
379 ///it will allocate one. The destuctor deallocates this
380 ///automatically allocated map, of course.
381 ///\return <tt> (*this) </tt>
382 Dfs &reachedMap(ReachedMap &m)
392 ///Sets the map indicating if a node is processed.
394 ///Sets the map indicating if a node is processed.
395 ///If you don't use this function before calling \ref run(),
396 ///it will allocate one. The destuctor deallocates this
397 ///automatically allocated map, of course.
398 ///\return <tt> (*this) </tt>
399 Dfs &processedMap(ProcessedMap &m)
401 if(local_processed) {
403 local_processed=false;
410 ///\name Execution control
411 ///The simplest way to execute the algorithm is to use
412 ///one of the member functions called \c run(...).
414 ///If you need more control on the execution,
415 ///first you must call \ref init(), then you can add a source node
416 ///with \ref addSource().
417 ///Finally \ref start() will perform the actual path
422 ///Initializes the internal data structures.
424 ///Initializes the internal data structures.
429 _stack.resize(countNodes(*G));
431 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
432 _pred->set(u,INVALID);
433 // _predNode->set(u,INVALID);
434 _reached->set(u,false);
435 _processed->set(u,false);
439 ///Adds a new source node.
441 ///Adds a new source node to the set of nodes to be processed.
443 ///\bug dists are wrong (or at least strange) in case of multiple sources.
444 void addSource(Node s)
448 _reached->set(s,true);
449 _pred->set(s,INVALID);
452 _stack[++_stack_head]=e;
453 _dist->set(s,_stack_head);
456 _processed->set(s,true);
462 ///Processes the next edge.
464 ///Processes the next edge.
466 ///\return The processed edge.
468 ///\pre The stack must not be empty!
469 Edge processNextEdge()
472 Edge e=_stack[_stack_head];
473 if(!(*_reached)[m=G->target(e)]) {
475 _reached->set(m,true);
477 _stack[_stack_head] = OutEdgeIt(*G, m);
478 _dist->set(m,_stack_head);
482 ++_stack[_stack_head];
484 while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
485 _processed->set(m,true);
488 m=G->source(_stack[_stack_head]);
489 ++_stack[_stack_head];
494 ///Next edge to be processed.
496 ///Next edge to be processed.
498 ///\return The next edge to be processed or INVALID if the stack is
502 return _stack_head>=0?_stack[_stack_head]:INVALID;
505 ///\brief Returns \c false if there are nodes
506 ///to be processed in the queue
508 ///Returns \c false if there are nodes
509 ///to be processed in the queue
510 bool emptyQueue() { return _stack_head<0; }
511 ///Returns the number of the nodes to be processed.
513 ///Returns the number of the nodes to be processed in the queue.
514 int queueSize() { return _stack_head+1; }
516 ///Executes the algorithm.
518 ///Executes the algorithm.
520 ///\pre init() must be called and at least one node should be added
521 ///with addSource() before using this function.
523 ///This method runs the %DFS algorithm from the root node(s)
526 ///%DFS path to each node. The algorithm computes
528 ///- The distance of each node from the root(s) in the %DFS tree.
532 while ( !emptyQueue() ) processNextEdge();
535 ///Executes the algorithm until \c dest is reached.
537 ///Executes the algorithm until \c dest is reached.
539 ///\pre init() must be called and at least one node should be added
540 ///with addSource() before using this function.
542 ///This method runs the %DFS algorithm from the root node(s)
545 ///%DFS path to \c dest. The algorithm computes
546 ///- The %DFS path to \c dest.
547 ///- The distance of \c dest from the root(s) in the %DFS tree.
549 void start(Node dest)
551 while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest )
555 ///Executes the algorithm until a condition is met.
557 ///Executes the algorithm until a condition is met.
559 ///\pre init() must be called and at least one node should be added
560 ///with addSource() before using this function.
562 ///\param em must be a bool (or convertible) edge map. The algorithm
563 ///will stop when it reaches an edge \c e with \code em[e]==true \endcode.
565 ///\warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
568 void start(const EM &em)
570 while ( !emptyQueue() && !em[_stack[_stack_head]] ) processNextEdge();
573 ///Runs %DFS algorithm from node \c s.
575 ///This method runs the %DFS algorithm from a root node \c s
578 ///%DFS path to each node. The algorithm computes
580 ///- The distance of each node from the root in the %DFS tree.
582 ///\note d.run(s) is just a shortcut of the following code.
594 ///Finds the %DFS path between \c s and \c t.
596 ///Finds the %DFS path between \c s and \c t.
598 ///\return The length of the %DFS s---t path if there exists one,
600 ///\note Apart from the return value, d.run(s,t) is
601 ///just a shortcut of the following code.
607 int run(Node s,Node t) {
611 return reached(t)?_stack_head+1:0;
616 ///\name Query Functions
617 ///The result of the %DFS algorithm can be obtained using these
619 ///Before the use of these functions,
620 ///either run() or start() must be called.
624 ///Copies the path to \c t on the DFS tree into \c p
626 ///This function copies the path to \c t on the DFS tree into \c p.
627 ///If \c t is a source itself or unreachable, then it does not
630 ///\return Returns \c true if a path to \c t was actually copied to \c p,
631 ///\c false otherwise.
634 bool getPath(P &p,Node t)
638 typename P::Builder b(p);
639 for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
640 b.pushFront(predEdge(t));
647 ///The distance of a node from the root(s).
649 ///Returns the distance of a node from the root(s).
650 ///\pre \ref run() must be called before using this function.
651 ///\warning If node \c v is unreachable from the root(s) then the return value
652 ///of this funcion is undefined.
653 int dist(Node v) const { return (*_dist)[v]; }
655 ///Returns the 'previous edge' of the %DFS tree.
657 ///For a node \c v it returns the 'previous edge'
659 ///i.e. it returns the last edge of a %DFS path from the root(s) to \c
660 ///v. It is \ref INVALID
661 ///if \c v is unreachable from the root(s) or \c v is a root. The
662 ///%DFS tree used here is equal to the %DFS tree used in
664 ///\pre Either \ref run() or \ref start() must be called before using
666 Edge predEdge(Node v) const { return (*_pred)[v];}
668 ///Returns the 'previous node' of the %DFS tree.
670 ///For a node \c v it returns the 'previous node'
672 ///i.e. it returns the last but one node from a %DFS path from the
674 ///It is INVALID if \c v is unreachable from the root(s) or
675 ///if \c v itself a root.
676 ///The %DFS tree used here is equal to the %DFS
677 ///tree used in \ref predEdge().
678 ///\pre Either \ref run() or \ref start() must be called before
679 ///using this function.
680 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
681 G->source((*_pred)[v]); }
683 ///Returns a reference to the NodeMap of distances.
685 ///Returns a reference to the NodeMap of distances.
686 ///\pre Either \ref run() or \ref init() must
687 ///be called before using this function.
688 const DistMap &distMap() const { return *_dist;}
690 ///Returns a reference to the %DFS edge-tree map.
692 ///Returns a reference to the NodeMap of the edges of the
694 ///\pre Either \ref run() or \ref init()
695 ///must be called before using this function.
696 const PredMap &predMap() const { return *_pred;}
698 ///Checks if a node is reachable from the root.
700 ///Returns \c true if \c v is reachable from the root(s).
701 ///\warning The source nodes are inditated as unreachable.
702 ///\pre Either \ref run() or \ref start()
703 ///must be called before using this function.
705 bool reached(Node v) { return (*_reached)[v]; }
710 ///Default traits class of Dfs function.
712 ///Default traits class of Dfs function.
713 ///\param GR Graph type.
715 struct DfsWizardDefaultTraits
717 ///The graph type the algorithm runs on.
719 ///\brief The type of the map that stores the last
720 ///edges of the %DFS paths.
722 ///The type of the map that stores the last
723 ///edges of the %DFS paths.
724 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
726 typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
727 ///Instantiates a PredMap.
729 ///This function instantiates a \ref PredMap.
730 ///\param g is the graph, to which we would like to define the PredMap.
731 ///\todo The graph alone may be insufficient to initialize
733 static PredMap *createPredMap(const GR &g)
735 static PredMap *createPredMap(const GR &)
738 return new PredMap();
741 ///The type of the map that indicates which nodes are processed.
743 ///The type of the map that indicates which nodes are processed.
744 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
745 ///\todo named parameter to set this type, function to read and write.
746 typedef NullMap<typename Graph::Node,bool> ProcessedMap;
747 ///Instantiates a ProcessedMap.
749 ///This function instantiates a \ref ProcessedMap.
750 ///\param g is the graph, to which
751 ///we would like to define the \ref ProcessedMap
753 static ProcessedMap *createProcessedMap(const GR &g)
755 static ProcessedMap *createProcessedMap(const GR &)
758 return new ProcessedMap();
760 ///The type of the map that indicates which nodes are reached.
762 ///The type of the map that indicates which nodes are reached.
763 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
764 ///\todo named parameter to set this type, function to read and write.
765 typedef typename Graph::template NodeMap<bool> ReachedMap;
766 ///Instantiates a ReachedMap.
768 ///This function instantiates a \ref ReachedMap.
769 ///\param G is the graph, to which
770 ///we would like to define the \ref ReachedMap.
771 static ReachedMap *createReachedMap(const GR &G)
773 return new ReachedMap(G);
775 ///The type of the map that stores the dists of the nodes.
777 ///The type of the map that stores the dists of the nodes.
778 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
780 typedef NullMap<typename Graph::Node,int> DistMap;
781 ///Instantiates a DistMap.
783 ///This function instantiates a \ref DistMap.
784 ///\param g is the graph, to which we would like to define the \ref DistMap
786 static DistMap *createDistMap(const GR &g)
788 static DistMap *createDistMap(const GR &)
791 return new DistMap();
795 /// Default traits used by \ref DfsWizard
797 /// To make it easier to use Dfs algorithm
798 ///we have created a wizard class.
799 /// This \ref DfsWizard class needs default traits,
800 ///as well as the \ref Dfs class.
801 /// The \ref DfsWizardBase is a class to be the default traits of the
802 /// \ref DfsWizard class.
804 class DfsWizardBase : public DfsWizardDefaultTraits<GR>
807 typedef DfsWizardDefaultTraits<GR> Base;
809 /// Type of the nodes in the graph.
810 typedef typename Base::Graph::Node Node;
812 /// Pointer to the underlying graph.
814 ///Pointer to the map of reached nodes.
816 ///Pointer to the map of processed nodes.
818 ///Pointer to the map of predecessors edges.
820 ///Pointer to the map of distances.
822 ///Pointer to the source node.
828 /// This constructor does not require parameters, therefore it initiates
829 /// all of the attributes to default values (0, INVALID).
830 DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
831 _dist(0), _source(INVALID) {}
835 /// This constructor requires some parameters,
836 /// listed in the parameters list.
837 /// Others are initiated to 0.
838 /// \param g is the initial value of \ref _g
839 /// \param s is the initial value of \ref _source
840 DfsWizardBase(const GR &g, Node s=INVALID) :
841 _g((void *)&g), _reached(0), _processed(0), _pred(0),
842 _dist(0), _source(s) {}
846 /// A class to make the usage of the Dfs algorithm easier
848 /// This class is created to make it easier to use the Dfs algorithm.
849 /// It uses the functions and features of the plain \ref Dfs,
850 /// but it is much simpler to use it.
852 /// Simplicity means that the way to change the types defined
853 /// in the traits class is based on functions that returns the new class
854 /// and not on templatable built-in classes.
855 /// When using the plain \ref Dfs
856 /// the new class with the modified type comes from
857 /// the original class by using the ::
858 /// operator. In the case of \ref DfsWizard only
859 /// a function have to be called and it will
860 /// return the needed class.
862 /// It does not have own \ref run method. When its \ref run method is called
863 /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run
866 class DfsWizard : public TR
870 ///The type of the underlying graph.
871 typedef typename TR::Graph Graph;
873 typedef typename Graph::Node Node;
875 typedef typename Graph::NodeIt NodeIt;
877 typedef typename Graph::Edge Edge;
879 typedef typename Graph::OutEdgeIt OutEdgeIt;
881 ///\brief The type of the map that stores
883 typedef typename TR::ReachedMap ReachedMap;
884 ///\brief The type of the map that stores
885 ///the processed nodes
886 typedef typename TR::ProcessedMap ProcessedMap;
887 ///\brief The type of the map that stores the last
888 ///edges of the %DFS paths.
889 typedef typename TR::PredMap PredMap;
890 ///The type of the map that stores the distances of the nodes.
891 typedef typename TR::DistMap DistMap;
895 DfsWizard() : TR() {}
897 /// Constructor that requires parameters.
899 /// Constructor that requires parameters.
900 /// These parameters will be the default values for the traits class.
901 DfsWizard(const Graph &g, Node s=INVALID) :
905 DfsWizard(const TR &b) : TR(b) {}
909 ///Runs Dfs algorithm from a given node.
911 ///Runs Dfs algorithm from a given node.
912 ///The node can be given by the \ref source function.
915 if(Base::_source==INVALID) throw UninitializedParameter();
916 Dfs<Graph,TR> alg(*(Graph*)Base::_g);
917 if(Base::_reached) alg.reachedMap(*(ReachedMap*)Base::_reached);
918 if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed);
919 if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred);
920 if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist);
921 alg.run(Base::_source);
924 ///Runs Dfs algorithm from the given node.
926 ///Runs Dfs algorithm from the given node.
927 ///\param s is the given source.
935 struct DefPredMapBase : public Base {
937 static PredMap *createPredMap(const Graph &) { return 0; };
938 DefPredMapBase(const TR &b) : TR(b) {}
941 ///\brief \ref named-templ-param "Named parameter"
942 ///function for setting PredMap type
944 /// \ref named-templ-param "Named parameter"
945 ///function for setting PredMap type
948 DfsWizard<DefPredMapBase<T> > predMap(const T &t)
950 Base::_pred=(void *)&t;
951 return DfsWizard<DefPredMapBase<T> >(*this);
956 struct DefReachedMapBase : public Base {
957 typedef T ReachedMap;
958 static ReachedMap *createReachedMap(const Graph &) { return 0; };
959 DefReachedMapBase(const TR &b) : TR(b) {}
962 ///\brief \ref named-templ-param "Named parameter"
963 ///function for setting ReachedMap
965 /// \ref named-templ-param "Named parameter"
966 ///function for setting ReachedMap
969 DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t)
971 Base::_pred=(void *)&t;
972 return DfsWizard<DefReachedMapBase<T> >(*this);
977 struct DefProcessedMapBase : public Base {
978 typedef T ProcessedMap;
979 static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
980 DefProcessedMapBase(const TR &b) : TR(b) {}
983 ///\brief \ref named-templ-param "Named parameter"
984 ///function for setting ProcessedMap
986 /// \ref named-templ-param "Named parameter"
987 ///function for setting ProcessedMap
990 DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t)
992 Base::_pred=(void *)&t;
993 return DfsWizard<DefProcessedMapBase<T> >(*this);
997 struct DefDistMapBase : public Base {
999 static DistMap *createDistMap(const Graph &) { return 0; };
1000 DefDistMapBase(const TR &b) : TR(b) {}
1003 ///\brief \ref named-templ-param "Named parameter"
1004 ///function for setting DistMap type
1006 /// \ref named-templ-param "Named parameter"
1007 ///function for setting DistMap type
1010 DfsWizard<DefDistMapBase<T> > distMap(const T &t)
1012 Base::_dist=(void *)&t;
1013 return DfsWizard<DefDistMapBase<T> >(*this);
1016 /// Sets the source node, from which the Dfs algorithm runs.
1018 /// Sets the source node, from which the Dfs algorithm runs.
1019 /// \param s is the source node.
1020 DfsWizard<TR> &source(Node s)
1028 ///Function type interface for Dfs algorithm.
1030 /// \ingroup flowalgs
1031 ///Function type interface for Dfs algorithm.
1033 ///This function also has several
1034 ///\ref named-templ-func-param "named parameters",
1035 ///they are declared as the members of class \ref DfsWizard.
1037 ///example shows how to use these parameters.
1039 /// dfs(g,source).predMap(preds).run();
1041 ///\warning Don't forget to put the \ref DfsWizard::run() "run()"
1042 ///to the end of the parameter list.
1046 DfsWizard<DfsWizardBase<GR> >
1047 dfs(const GR &g,typename GR::Node s=INVALID)
1049 return DfsWizard<DfsWizardBase<GR> >(g,s);
1053 /// \brief Visitor class for dfs.
1055 /// It gives a simple interface for a functional interface for dfs
1056 /// traversal. The traversal on a linear data structure.
1057 template <typename _Graph>
1059 typedef _Graph Graph;
1060 typedef typename Graph::Edge Edge;
1061 typedef typename Graph::Node Node;
1062 /// \brief Called when the edge reach a node.
1064 /// It is called when the dfs find an edge which target is not
1066 void discover(const Edge& edge) {}
1067 /// \brief Called when the node reached first time.
1069 /// It is Called when the node reached first time.
1070 void reach(const Node& node) {}
1071 /// \brief Called when we step back on an edge.
1073 /// It is called when the dfs should step back on the edge.
1074 void backtrack(const Edge& edge) {}
1075 /// \brief Called when we step back from the node.
1077 /// It is called when we step back from the node.
1078 void leave(const Node& node) {}
1079 /// \brief Called when the edge examined but target of the edge
1080 /// already discovered.
1082 /// It called when the edge examined but the target of the edge
1083 /// already discovered.
1084 void examine(const Edge& edge) {}
1085 /// \brief Called for the source node of the dfs.
1087 /// It is called for the source node of the dfs.
1088 void start(const Node& node) {}
1089 /// \brief Called when we leave the source node of the dfs.
1091 /// It is called when we leave the source node of the dfs.
1092 void stop(const Node& node) {}
1096 template <typename _Graph>
1098 typedef _Graph Graph;
1099 typedef typename Graph::Edge Edge;
1100 typedef typename Graph::Node Node;
1101 void discover(const Edge&) {}
1102 void reach(const Node&) {}
1103 void backtrack(const Edge&) {}
1104 void leave(const Node&) {}
1105 void examine(const Edge&) {}
1106 void start(const Node&) {}
1107 void stop(const Node&) {}
1109 template <typename _Visitor>
1110 struct Constraints {
1111 void constraints() {
1114 visitor.discover(edge);
1115 visitor.reach(node);
1116 visitor.backtrack(edge);
1117 visitor.leave(node);
1118 visitor.examine(edge);
1119 visitor.start(node);
1127 /// \brief Default traits class of DfsVisit class.
1129 /// Default traits class of DfsVisit class.
1130 /// \param _Graph Graph type.
1131 template<class _Graph>
1132 struct DfsVisitDefaultTraits {
1134 /// \brief The graph type the algorithm runs on.
1135 typedef _Graph Graph;
1137 /// \brief The type of the map that indicates which nodes are reached.
1139 /// The type of the map that indicates which nodes are reached.
1140 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
1141 /// \todo named parameter to set this type, function to read and write.
1142 typedef typename Graph::template NodeMap<bool> ReachedMap;
1144 /// \brief Instantiates a ReachedMap.
1146 /// This function instantiates a \ref ReachedMap.
1147 /// \param graph is the graph, to which
1148 /// we would like to define the \ref ReachedMap.
1149 static ReachedMap *createReachedMap(const Graph &graph) {
1150 return new ReachedMap(graph);
1155 /// %DFS Visit algorithm class.
1157 /// \ingroup flowalgs
1158 /// This class provides an efficient implementation of the %DFS algorithm
1159 /// with visitor interface.
1161 /// The %DfsVisit class provides an alternative interface to the Dfs
1162 /// class. It works with callback mechanism, the DfsVisit object calls
1163 /// on every dfs event the \c Visitor class member functions.
1165 /// \param _Graph The graph type the algorithm runs on. The default value is
1166 /// \ref ListGraph. The value of _Graph is not used directly by Dfs, it
1167 /// is only passed to \ref DfsDefaultTraits.
1168 /// \param _Visitor The Visitor object for the algorithm. The
1169 /// \ref DfsVisitor "DfsVisitor<_Graph>" is an empty Visitor which
1170 /// does not observe the Dfs events. If you want to observe the dfs
1171 /// events you should implement your own Visitor class.
1172 /// \param _Traits Traits class to set various data types used by the
1173 /// algorithm. The default traits class is
1174 /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Graph>".
1175 /// See \ref DfsVisitDefaultTraits for the documentation of
1176 /// a Dfs visit traits class.
1178 /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
1180 template <typename _Graph, typename _Visitor, typename _Traits>
1182 template <typename _Graph = ListGraph,
1183 typename _Visitor = DfsVisitor<_Graph>,
1184 typename _Traits = DfsDefaultTraits<_Graph> >
1189 /// \brief \ref Exception for uninitialized parameters.
1191 /// This error represents problems in the initialization
1192 /// of the parameters of the algorithms.
1193 class UninitializedParameter : public lemon::UninitializedParameter {
1195 virtual const char* exceptionName() const {
1196 return "lemon::DfsVisit::UninitializedParameter";
1200 typedef _Traits Traits;
1202 typedef typename Traits::Graph Graph;
1204 typedef _Visitor Visitor;
1206 ///The type of the map indicating which nodes are reached.
1207 typedef typename Traits::ReachedMap ReachedMap;
1211 typedef typename Graph::Node Node;
1212 typedef typename Graph::NodeIt NodeIt;
1213 typedef typename Graph::Edge Edge;
1214 typedef typename Graph::OutEdgeIt OutEdgeIt;
1216 /// Pointer to the underlying graph.
1217 const Graph *_graph;
1218 /// Pointer to the visitor object.
1220 ///Pointer to the map of reached status of the nodes.
1221 ReachedMap *_reached;
1222 ///Indicates if \ref _reached is locally allocated (\c true) or not.
1225 std::vector<typename Graph::Edge> _stack;
1228 /// \brief Creates the maps if necessary.
1230 /// Creates the maps if necessary.
1231 void create_maps() {
1233 local_reached = true;
1234 _reached = Traits::createReachedMap(*_graph);
1244 typedef DfsVisit Create;
1246 /// \name Named template parameters
1250 struct DefReachedMapTraits : public Traits {
1251 typedef T ReachedMap;
1252 static ReachedMap *createReachedMap(const Graph &graph) {
1253 throw UninitializedParameter();
1256 /// \brief \ref named-templ-param "Named parameter" for setting
1259 /// \ref named-templ-param "Named parameter" for setting ReachedMap type
1261 struct DefReachedMap : public DfsVisit< Graph, Visitor,
1262 DefReachedMapTraits<T> > {
1263 typedef DfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
1269 /// \brief Constructor.
1273 /// \param graph the graph the algorithm will run on.
1274 /// \param visitor The visitor of the algorithm.
1276 DfsVisit(const Graph& graph, Visitor& visitor)
1277 : _graph(&graph), _visitor(&visitor),
1278 _reached(0), local_reached(false) {}
1280 /// \brief Destructor.
1284 if(local_reached) delete _reached;
1287 /// \brief Sets the map indicating if a node is reached.
1289 /// Sets the map indicating if a node is reached.
1290 /// If you don't use this function before calling \ref run(),
1291 /// it will allocate one. The destuctor deallocates this
1292 /// automatically allocated map, of course.
1293 /// \return <tt> (*this) </tt>
1294 DfsVisit &reachedMap(ReachedMap &m) {
1297 local_reached=false;
1304 /// \name Execution control
1305 /// The simplest way to execute the algorithm is to use
1306 /// one of the member functions called \c run(...).
1308 /// If you need more control on the execution,
1309 /// first you must call \ref init(), then you can adda source node
1310 /// with \ref addSource().
1311 /// Finally \ref start() will perform the actual path
1315 /// \brief Initializes the internal data structures.
1317 /// Initializes the internal data structures.
1321 _stack.resize(countNodes(*_graph));
1323 for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
1324 _reached->set(u, false);
1328 /// \brief Adds a new source node.
1330 /// Adds a new source node to the set of nodes to be processed.
1331 void addSource(Node s) {
1332 if(!(*_reached)[s]) {
1333 _reached->set(s,true);
1337 _graph->firstOut(e, s);
1339 _stack[++_stack_head] = e;
1346 /// \brief Processes the next edge.
1348 /// Processes the next edge.
1350 /// \return The processed edge.
1352 /// \pre The stack must not be empty!
1353 Edge processNextEdge() {
1354 Edge e = _stack[_stack_head];
1355 Node m = _graph->target(e);
1356 if(!(*_reached)[m]) {
1357 _visitor->discover(e);
1359 _reached->set(m, true);
1360 _graph->firstOut(_stack[++_stack_head], m);
1362 _visitor->examine(e);
1363 m = _graph->source(e);
1364 _graph->nextOut(_stack[_stack_head]);
1366 while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
1369 if (_stack_head >= 0) {
1370 _visitor->backtrack(_stack[_stack_head]);
1371 m = _graph->source(_stack[_stack_head]);
1372 _graph->nextOut(_stack[_stack_head]);
1380 /// \brief Next edge to be processed.
1382 /// Next edge to be processed.
1384 /// \return The next edge to be processed or INVALID if the stack is
1387 return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
1390 /// \brief Returns \c false if there are nodes
1391 /// to be processed in the queue
1393 /// Returns \c false if there are nodes
1394 /// to be processed in the queue
1395 bool emptyQueue() { return _stack_head < 0; }
1397 /// \brief Returns the number of the nodes to be processed.
1399 /// Returns the number of the nodes to be processed in the queue.
1400 int queueSize() { return _stack_head + 1; }
1402 /// \brief Executes the algorithm.
1404 /// Executes the algorithm.
1406 /// \pre init() must be called and at least one node should be added
1407 /// with addSource() before using this function.
1409 while ( !emptyQueue() ) processNextEdge();
1412 /// \brief Executes the algorithm until \c dest is reached.
1414 /// Executes the algorithm until \c dest is reached.
1416 /// \pre init() must be called and at least one node should be added
1417 /// with addSource() before using this function.
1418 void start(Node dest) {
1419 while ( !emptyQueue() && _graph->target(_stack[_stack_head]) != dest)
1423 /// \brief Executes the algorithm until a condition is met.
1425 /// Executes the algorithm until a condition is met.
1427 /// \pre init() must be called and at least one node should be added
1428 /// with addSource() before using this function.
1430 /// \param em must be a bool (or convertible) edge map. The algorithm
1431 /// will stop when it reaches an edge \c e with \code nm[e]==true \endcode.
1433 /// \warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
1435 template <typename EM>
1436 void start(const EM &em) {
1437 while (!emptyQueue() && !em[_stack[_stack_head]]) processNextEdge();
1440 /// \brief Runs %DFS algorithm from node \c s.
1442 /// This method runs the %DFS algorithm from a root node \c s.
1443 /// \note d.run(s) is just a shortcut of the following code.
1456 /// \name Query Functions
1457 /// The result of the %DFS algorithm can be obtained using these
1459 /// Before the use of these functions,
1460 /// either run() or start() must be called.
1462 /// \brief Checks if a node is reachable from the root.
1464 /// Returns \c true if \c v is reachable from the root(s).
1465 /// \warning The source nodes are inditated as unreachable.
1466 /// \pre Either \ref run() or \ref start()
1467 /// must be called before using this function.
1469 bool reached(Node v) { return (*_reached)[v]; }
1474 } //END OF NAMESPACE LEMON