lemon/dijkstra.h
author hegyi
Thu, 28 Jul 2005 15:54:00 +0000
changeset 1599 c2f95eac652b
parent 1516 4aeda8d11d5e
child 1631 e15162d8eca1
permissions -rw-r--r--
cout->cerr, node radius and edge width is now scaled, maps are editable by clicking on texts.
     1 /* -*- C++ -*-
     2  * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 ///
    24 ///\todo getPath() should be implemented! (also for BFS and DFS)
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/bin_heap.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 
    32 namespace lemon {
    33 
    34 
    35   
    36   ///Default traits class of Dijkstra class.
    37 
    38   ///Default traits class of Dijkstra class.
    39   ///\param GR Graph type.
    40   ///\param LM Type of length map.
    41   template<class GR, class LM>
    42   struct DijkstraDefaultTraits
    43   {
    44     ///The graph type the algorithm runs on. 
    45     typedef GR Graph;
    46     ///The type of the map that stores the edge lengths.
    47 
    48     ///The type of the map that stores the edge lengths.
    49     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    50     typedef LM LengthMap;
    51     //The type of the length of the edges.
    52     typedef typename LM::Value Value;
    53     ///The heap type used by Dijkstra algorithm.
    54 
    55     ///The heap type used by Dijkstra algorithm.
    56     ///
    57     ///\sa BinHeap
    58     ///\sa Dijkstra
    59     typedef BinHeap<typename Graph::Node,
    60 		    typename LM::Value,
    61 		    typename GR::template NodeMap<int>,
    62 		    std::less<Value> > Heap;
    63 
    64     ///\brief The type of the map that stores the last
    65     ///edges of the shortest paths.
    66     /// 
    67     ///The type of the map that stores the last
    68     ///edges of the shortest paths.
    69     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    70     ///
    71     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    72     ///Instantiates a PredMap.
    73  
    74     ///This function instantiates a \ref PredMap. 
    75     ///\param G is the graph, to which we would like to define the PredMap.
    76     ///\todo The graph alone may be insufficient for the initialization
    77     static PredMap *createPredMap(const GR &G) 
    78     {
    79       return new PredMap(G);
    80     }
    81 //     ///\brief The type of the map that stores the last but one
    82 //     ///nodes of the shortest paths.
    83 //     ///
    84 //     ///The type of the map that stores the last but one
    85 //     ///nodes of the shortest paths.
    86 //     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    87 //     ///
    88 //     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    89 //     ///Instantiates a PredNodeMap.
    90     
    91 //     ///This function instantiates a \ref PredNodeMap. 
    92 //     ///\param G is the graph, to which
    93 //     ///we would like to define the \ref PredNodeMap
    94 //     static PredNodeMap *createPredNodeMap(const GR &G)
    95 //     {
    96 //       return new PredNodeMap();
    97 //     }
    98 
    99     ///The type of the map that stores whether a nodes is processed.
   100  
   101     ///The type of the map that stores whether a nodes is processed.
   102     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   103     ///By default it is a NullMap.
   104     ///\todo If it is set to a real map,
   105     ///Dijkstra::processed() should read this.
   106     ///\todo named parameter to set this type, function to read and write.
   107     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   108     ///Instantiates a ProcessedMap.
   109  
   110     ///This function instantiates a \ref ProcessedMap. 
   111     ///\param g is the graph, to which
   112     ///we would like to define the \ref ProcessedMap
   113 #ifdef DOXYGEN
   114     static ProcessedMap *createProcessedMap(const GR &g)
   115 #else
   116     static ProcessedMap *createProcessedMap(const GR &)
   117 #endif
   118     {
   119       return new ProcessedMap();
   120     }
   121     ///The type of the map that stores the dists of the nodes.
   122  
   123     ///The type of the map that stores the dists of the nodes.
   124     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   125     ///
   126     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   127     ///Instantiates a DistMap.
   128  
   129     ///This function instantiates a \ref DistMap. 
   130     ///\param G is the graph, to which we would like to define the \ref DistMap
   131     static DistMap *createDistMap(const GR &G)
   132     {
   133       return new DistMap(G);
   134     }
   135   };
   136   
   137   ///%Dijkstra algorithm class.
   138   
   139   /// \ingroup flowalgs
   140   ///This class provides an efficient implementation of %Dijkstra algorithm.
   141   ///The edge lengths are passed to the algorithm using a
   142   ///\ref concept::ReadMap "ReadMap",
   143   ///so it is easy to change it to any kind of length.
   144   ///
   145   ///The type of the length is determined by the
   146   ///\ref concept::ReadMap::Value "Value" of the length map.
   147   ///
   148   ///It is also possible to change the underlying priority heap.
   149   ///
   150   ///\param GR The graph type the algorithm runs on. The default value
   151   ///is \ref ListGraph. The value of GR is not used directly by
   152   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   153   ///\param LM This read-only EdgeMap determines the lengths of the
   154   ///edges. It is read once for each edge, so the map may involve in
   155   ///relatively time consuming process to compute the edge length if
   156   ///it is necessary. The default map type is \ref
   157   ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   158   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   159   ///DijkstraDefaultTraits.  \param TR Traits class to set
   160   ///various data types used by the algorithm.  The default traits
   161   ///class is \ref DijkstraDefaultTraits
   162   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   163   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   164   ///class.
   165   ///
   166   ///\author Jacint Szabo and Alpar Juttner
   167   ///\todo A compare object would be nice.
   168 
   169 #ifdef DOXYGEN
   170   template <typename GR,
   171 	    typename LM,
   172 	    typename TR>
   173 #else
   174   template <typename GR=ListGraph,
   175 	    typename LM=typename GR::template EdgeMap<int>,
   176 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   177 #endif
   178   class Dijkstra {
   179   public:
   180     /**
   181      * \brief \ref Exception for uninitialized parameters.
   182      *
   183      * This error represents problems in the initialization
   184      * of the parameters of the algorithms.
   185      */
   186     class UninitializedParameter : public lemon::UninitializedParameter {
   187     public:
   188       virtual const char* exceptionName() const {
   189 	return "lemon::Dijkstra::UninitializedParameter";
   190       }
   191     };
   192 
   193     typedef TR Traits;
   194     ///The type of the underlying graph.
   195     typedef typename TR::Graph Graph;
   196     ///\e
   197     typedef typename Graph::Node Node;
   198     ///\e
   199     typedef typename Graph::NodeIt NodeIt;
   200     ///\e
   201     typedef typename Graph::Edge Edge;
   202     ///\e
   203     typedef typename Graph::OutEdgeIt OutEdgeIt;
   204     
   205     ///The type of the length of the edges.
   206     typedef typename TR::LengthMap::Value Value;
   207     ///The type of the map that stores the edge lengths.
   208     typedef typename TR::LengthMap LengthMap;
   209     ///\brief The type of the map that stores the last
   210     ///edges of the shortest paths.
   211     typedef typename TR::PredMap PredMap;
   212 //     ///\brief The type of the map that stores the last but one
   213 //     ///nodes of the shortest paths.
   214 //     typedef typename TR::PredNodeMap PredNodeMap;
   215     ///The type of the map indicating if a node is processed.
   216     typedef typename TR::ProcessedMap ProcessedMap;
   217     ///The type of the map that stores the dists of the nodes.
   218     typedef typename TR::DistMap DistMap;
   219     ///The heap type used by the dijkstra algorithm.
   220     typedef typename TR::Heap Heap;
   221   private:
   222     /// Pointer to the underlying graph.
   223     const Graph *G;
   224     /// Pointer to the length map
   225     const LengthMap *length;
   226     ///Pointer to the map of predecessors edges.
   227     PredMap *_pred;
   228     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   229     bool local_pred;
   230 //     ///Pointer to the map of predecessors nodes.
   231 //     PredNodeMap *_predNode;
   232 //     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   233 //     bool local_predNode;
   234     ///Pointer to the map of distances.
   235     DistMap *_dist;
   236     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   237     bool local_dist;
   238     ///Pointer to the map of processed status of the nodes.
   239     ProcessedMap *_processed;
   240     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   241     bool local_processed;
   242 
   243 //     ///The source node of the last execution.
   244 //     Node source;
   245 
   246     ///Creates the maps if necessary.
   247     
   248     ///\todo Error if \c G or are \c NULL. What about \c length?
   249     ///\todo Better memory allocation (instead of new).
   250     void create_maps() 
   251     {
   252       if(!_pred) {
   253 	local_pred = true;
   254 	_pred = Traits::createPredMap(*G);
   255       }
   256 //       if(!_predNode) {
   257 // 	local_predNode = true;
   258 // 	_predNode = Traits::createPredNodeMap(*G);
   259 //       }
   260       if(!_dist) {
   261 	local_dist = true;
   262 	_dist = Traits::createDistMap(*G);
   263       }
   264       if(!_processed) {
   265 	local_processed = true;
   266 	_processed = Traits::createProcessedMap(*G);
   267       }
   268     }
   269     
   270   public :
   271  
   272     ///\name Named template parameters
   273 
   274     ///@{
   275 
   276     template <class T>
   277     struct DefPredMapTraits : public Traits {
   278       typedef T PredMap;
   279       static PredMap *createPredMap(const Graph &G) 
   280       {
   281 	throw UninitializedParameter();
   282       }
   283     };
   284     ///\ref named-templ-param "Named parameter" for setting PredMap type
   285 
   286     ///\ref named-templ-param "Named parameter" for setting PredMap type
   287     ///
   288     template <class T>
   289     class DefPredMap : public Dijkstra< Graph,
   290 					LengthMap,
   291 					DefPredMapTraits<T> > { };
   292     
   293 //     template <class T>
   294 //     struct DefPredNodeMapTraits : public Traits {
   295 //       typedef T PredNodeMap;
   296 //       static PredNodeMap *createPredNodeMap(const Graph &G) 
   297 //       {
   298 // 	throw UninitializedParameter();
   299 //       }
   300 //     };
   301 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   302 
   303 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   304 //     ///
   305 //     template <class T>
   306 //     class DefPredNodeMap : public Dijkstra< Graph,
   307 // 					    LengthMap,
   308 // 					    DefPredNodeMapTraits<T> > { };
   309     
   310     template <class T>
   311     struct DefDistMapTraits : public Traits {
   312       typedef T DistMap;
   313       static DistMap *createDistMap(const Graph &G) 
   314       {
   315 	throw UninitializedParameter();
   316       }
   317     };
   318     ///\ref named-templ-param "Named parameter" for setting DistMap type
   319 
   320     ///\ref named-templ-param "Named parameter" for setting DistMap type
   321     ///
   322     template <class T>
   323     class DefDistMap : public Dijkstra< Graph,
   324 					LengthMap,
   325 					DefDistMapTraits<T> > { };
   326     
   327     template <class T>
   328     struct DefProcessedMapTraits : public Traits {
   329       typedef T ProcessedMap;
   330       static ProcessedMap *createProcessedMap(const Graph &G) 
   331       {
   332 	throw UninitializedParameter();
   333       }
   334     };
   335     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   336 
   337     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   338     ///
   339     template <class T>
   340     class DefProcessedMap : public Dijkstra< Graph,
   341 					LengthMap,
   342 					DefProcessedMapTraits<T> > { };
   343     
   344     struct DefGraphProcessedMapTraits : public Traits {
   345       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   346       static ProcessedMap *createProcessedMap(const Graph &G) 
   347       {
   348 	return new ProcessedMap(G);
   349       }
   350     };
   351     ///\brief \ref named-templ-param "Named parameter"
   352     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   353     ///
   354     ///\ref named-templ-param "Named parameter"
   355     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   356     ///If you don't set it explicitely, it will be automatically allocated.
   357     template <class T>
   358     class DefProcessedMapToBeDefaultMap :
   359       public Dijkstra< Graph,
   360 		       LengthMap,
   361 		       DefGraphProcessedMapTraits> { };
   362     
   363     ///@}
   364 
   365 
   366   private:
   367     typename Graph::template NodeMap<int> _heap_map;
   368     Heap _heap;
   369   public:      
   370     
   371     ///Constructor.
   372     
   373     ///\param _G the graph the algorithm will run on.
   374     ///\param _length the length map used by the algorithm.
   375     Dijkstra(const Graph& _G, const LengthMap& _length) :
   376       G(&_G), length(&_length),
   377       _pred(NULL), local_pred(false),
   378 //       _predNode(NULL), local_predNode(false),
   379       _dist(NULL), local_dist(false),
   380       _processed(NULL), local_processed(false),
   381       _heap_map(*G,-1),_heap(_heap_map)
   382     { }
   383     
   384     ///Destructor.
   385     ~Dijkstra() 
   386     {
   387       if(local_pred) delete _pred;
   388 //       if(local_predNode) delete _predNode;
   389       if(local_dist) delete _dist;
   390       if(local_processed) delete _processed;
   391     }
   392 
   393     ///Sets the length map.
   394 
   395     ///Sets the length map.
   396     ///\return <tt> (*this) </tt>
   397     Dijkstra &lengthMap(const LengthMap &m) 
   398     {
   399       length = &m;
   400       return *this;
   401     }
   402 
   403     ///Sets the map storing the predecessor edges.
   404 
   405     ///Sets the map storing the predecessor edges.
   406     ///If you don't use this function before calling \ref run(),
   407     ///it will allocate one. The destuctor deallocates this
   408     ///automatically allocated map, of course.
   409     ///\return <tt> (*this) </tt>
   410     Dijkstra &predMap(PredMap &m) 
   411     {
   412       if(local_pred) {
   413 	delete _pred;
   414 	local_pred=false;
   415       }
   416       _pred = &m;
   417       return *this;
   418     }
   419 
   420 //     ///Sets the map storing the predecessor nodes.
   421 
   422 //     ///Sets the map storing the predecessor nodes.
   423 //     ///If you don't use this function before calling \ref run(),
   424 //     ///it will allocate one. The destuctor deallocates this
   425 //     ///automatically allocated map, of course.
   426 //     ///\return <tt> (*this) </tt>
   427 //     Dijkstra &predNodeMap(PredNodeMap &m) 
   428 //     {
   429 //       if(local_predNode) {
   430 // 	delete _predNode;
   431 // 	local_predNode=false;
   432 //       }
   433 //       _predNode = &m;
   434 //       return *this;
   435 //     }
   436 
   437     ///Sets the map storing the distances calculated by the algorithm.
   438 
   439     ///Sets the map storing the distances calculated by the algorithm.
   440     ///If you don't use this function before calling \ref run(),
   441     ///it will allocate one. The destuctor deallocates this
   442     ///automatically allocated map, of course.
   443     ///\return <tt> (*this) </tt>
   444     Dijkstra &distMap(DistMap &m) 
   445     {
   446       if(local_dist) {
   447 	delete _dist;
   448 	local_dist=false;
   449       }
   450       _dist = &m;
   451       return *this;
   452     }
   453 
   454   private:
   455     void finalizeNodeData(Node v,Value dst)
   456     {
   457       _processed->set(v,true);
   458       _dist->set(v, dst);
   459 //       if((*_pred)[v]!=INVALID)
   460 //       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
   461     }
   462 
   463   public:
   464     ///\name Execution control
   465     ///The simplest way to execute the algorithm is to use
   466     ///one of the member functions called \c run(...).
   467     ///\n
   468     ///If you need more control on the execution,
   469     ///first you must call \ref init(), then you can add several source nodes
   470     ///with \ref addSource().
   471     ///Finally \ref start() will perform the actual path
   472     ///computation.
   473 
   474     ///@{
   475 
   476     ///Initializes the internal data structures.
   477 
   478     ///Initializes the internal data structures.
   479     ///
   480     ///\todo _heap_map's type could also be in the traits class.
   481     ///\todo The heaps should be able to make themselves empty directly.
   482     void init()
   483     {
   484       create_maps();
   485       while(!_heap.empty()) _heap.pop();
   486       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   487 	_pred->set(u,INVALID);
   488 // 	_predNode->set(u,INVALID);
   489 	_processed->set(u,false);
   490 	_heap_map.set(u,Heap::PRE_HEAP);
   491       }
   492     }
   493     
   494     ///Adds a new source node.
   495 
   496     ///Adds a new source node to the priority heap.
   497     ///
   498     ///The optional second parameter is the initial distance of the node.
   499     ///
   500     ///It checks if the node has already been added to the heap and
   501     ///It is pushed to the heap only if either it was not in the heap
   502     ///or the shortest path found till then is longer then \c dst.
   503     void addSource(Node s,Value dst=0)
   504     {
   505 //       source = s;
   506       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   507       else if(_heap[s]<dst) {
   508 	_heap.push(s,dst);
   509 	_pred->set(s,INVALID);
   510       }
   511     }
   512     
   513     ///Processes the next node in the priority heap
   514 
   515     ///Processes the next node in the priority heap.
   516     ///
   517     ///\return The processed node.
   518     ///
   519     ///\warning The priority heap must not be empty!
   520     Node processNextNode()
   521     {
   522       Node v=_heap.top(); 
   523       Value oldvalue=_heap[v];
   524       _heap.pop();
   525       finalizeNodeData(v,oldvalue);
   526       
   527       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   528 	Node w=G->target(e); 
   529 	switch(_heap.state(w)) {
   530 	case Heap::PRE_HEAP:
   531 	  _heap.push(w,oldvalue+(*length)[e]); 
   532 	  _pred->set(w,e);
   533 //  	  _predNode->set(w,v);
   534 	  break;
   535 	case Heap::IN_HEAP:
   536 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   537 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   538 	    _pred->set(w,e);
   539 // 	    _predNode->set(w,v);
   540 	  }
   541 	  break;
   542 	case Heap::POST_HEAP:
   543 	  break;
   544 	}
   545       }
   546       return v;
   547     }
   548 
   549     ///\brief Returns \c false if there are nodes
   550     ///to be processed in the priority heap
   551     ///
   552     ///Returns \c false if there are nodes
   553     ///to be processed in the priority heap
   554     bool emptyQueue() { return _heap.empty(); }
   555     ///Returns the number of the nodes to be processed in the priority heap
   556 
   557     ///Returns the number of the nodes to be processed in the priority heap
   558     ///
   559     int queueSize() { return _heap.size(); }
   560     
   561     ///Executes the algorithm.
   562 
   563     ///Executes the algorithm.
   564     ///
   565     ///\pre init() must be called and at least one node should be added
   566     ///with addSource() before using this function.
   567     ///
   568     ///This method runs the %Dijkstra algorithm from the root node(s)
   569     ///in order to
   570     ///compute the
   571     ///shortest path to each node. The algorithm computes
   572     ///- The shortest path tree.
   573     ///- The distance of each node from the root(s).
   574     ///
   575     void start()
   576     {
   577       while ( !_heap.empty() ) processNextNode();
   578     }
   579     
   580     ///Executes the algorithm until \c dest is reached.
   581 
   582     ///Executes the algorithm until \c dest is reached.
   583     ///
   584     ///\pre init() must be called and at least one node should be added
   585     ///with addSource() before using this function.
   586     ///
   587     ///This method runs the %Dijkstra algorithm from the root node(s)
   588     ///in order to
   589     ///compute the
   590     ///shortest path to \c dest. The algorithm computes
   591     ///- The shortest path to \c  dest.
   592     ///- The distance of \c dest from the root(s).
   593     ///
   594     void start(Node dest)
   595     {
   596       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   597       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   598     }
   599     
   600     ///Executes the algorithm until a condition is met.
   601 
   602     ///Executes the algorithm until a condition is met.
   603     ///
   604     ///\pre init() must be called and at least one node should be added
   605     ///with addSource() before using this function.
   606     ///
   607     ///\param nm must be a bool (or convertible) node map. The algorithm
   608     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   609     template<class NodeBoolMap>
   610     void start(const NodeBoolMap &nm)
   611     {
   612       while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   613       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   614     }
   615     
   616     ///Runs %Dijkstra algorithm from node \c s.
   617     
   618     ///This method runs the %Dijkstra algorithm from a root node \c s
   619     ///in order to
   620     ///compute the
   621     ///shortest path to each node. The algorithm computes
   622     ///- The shortest path tree.
   623     ///- The distance of each node from the root.
   624     ///
   625     ///\note d.run(s) is just a shortcut of the following code.
   626     ///\code
   627     ///  d.init();
   628     ///  d.addSource(s);
   629     ///  d.start();
   630     ///\endcode
   631     void run(Node s) {
   632       init();
   633       addSource(s);
   634       start();
   635     }
   636     
   637     ///Finds the shortest path between \c s and \c t.
   638     
   639     ///Finds the shortest path between \c s and \c t.
   640     ///
   641     ///\return The length of the shortest s---t path if there exists one,
   642     ///0 otherwise.
   643     ///\note Apart from the return value, d.run(s) is
   644     ///just a shortcut of the following code.
   645     ///\code
   646     ///  d.init();
   647     ///  d.addSource(s);
   648     ///  d.start(t);
   649     ///\endcode
   650     Value run(Node s,Node t) {
   651       init();
   652       addSource(s);
   653       start(t);
   654       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   655     }
   656     
   657     ///@}
   658 
   659     ///\name Query Functions
   660     ///The result of the %Dijkstra algorithm can be obtained using these
   661     ///functions.\n
   662     ///Before the use of these functions,
   663     ///either run() or start() must be called.
   664     
   665     ///@{
   666 
   667     ///Copies the shortest path to \c t into \c p
   668     
   669     ///This function copies the shortest path to \c t into \c p.
   670     ///If it \c t is a source itself or unreachable, then it does not
   671     ///alter \c p.
   672     ///\todo Is it the right way to handle unreachable nodes?
   673     ///\return Returns \c true if a path to \c t was actually copied to \c p,
   674     ///\c false otherwise.
   675     ///\sa DirPath
   676     template<class P>
   677     bool getPath(P &p,Node t) 
   678     {
   679       if(reached(t)) {
   680 	p.clear();
   681 	typename P::Builder b(p);
   682 	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
   683 	  b.pushFront(pred(t));
   684 	b.commit();
   685 	return true;
   686       }
   687       return false;
   688     }
   689 	  
   690     ///The distance of a node from the root.
   691 
   692     ///Returns the distance of a node from the root.
   693     ///\pre \ref run() must be called before using this function.
   694     ///\warning If node \c v in unreachable from the root the return value
   695     ///of this funcion is undefined.
   696     Value dist(Node v) const { return (*_dist)[v]; }
   697 
   698     ///Returns the 'previous edge' of the shortest path tree.
   699 
   700     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   701     ///i.e. it returns the last edge of a shortest path from the root to \c
   702     ///v. It is \ref INVALID
   703     ///if \c v is unreachable from the root or if \c v=s. The
   704     ///shortest path tree used here is equal to the shortest path tree used in
   705     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   706     ///this function.
   707     ///\todo predEdge could be a better name.
   708     Edge pred(Node v) const { return (*_pred)[v]; }
   709 
   710     ///Returns the 'previous node' of the shortest path tree.
   711 
   712     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   713     ///i.e. it returns the last but one node from a shortest path from the
   714     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   715     ///\c v=s. The shortest path tree used here is equal to the shortest path
   716     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   717     ///using this function.
   718     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   719 				  G->source((*_pred)[v]); }
   720     
   721     ///Returns a reference to the NodeMap of distances.
   722 
   723     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   724     ///be called before using this function.
   725     const DistMap &distMap() const { return *_dist;}
   726  
   727     ///Returns a reference to the shortest path tree map.
   728 
   729     ///Returns a reference to the NodeMap of the edges of the
   730     ///shortest path tree.
   731     ///\pre \ref run() must be called before using this function.
   732     const PredMap &predMap() const { return *_pred;}
   733  
   734 //     ///Returns a reference to the map of nodes of shortest paths.
   735 
   736 //     ///Returns a reference to the NodeMap of the last but one nodes of the
   737 //     ///shortest path tree.
   738 //     ///\pre \ref run() must be called before using this function.
   739 //     const PredNodeMap &predNodeMap() const { return *_predNode;}
   740 
   741     ///Checks if a node is reachable from the root.
   742 
   743     ///Returns \c true if \c v is reachable from the root.
   744     ///\warning The source nodes are inditated as unreached.
   745     ///\pre \ref run() must be called before using this function.
   746     ///
   747     bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
   748     
   749     ///@}
   750   };
   751 
   752 
   753 
   754 
   755  
   756   ///Default traits class of Dijkstra function.
   757 
   758   ///Default traits class of Dijkstra function.
   759   ///\param GR Graph type.
   760   ///\param LM Type of length map.
   761   template<class GR, class LM>
   762   struct DijkstraWizardDefaultTraits
   763   {
   764     ///The graph type the algorithm runs on. 
   765     typedef GR Graph;
   766     ///The type of the map that stores the edge lengths.
   767 
   768     ///The type of the map that stores the edge lengths.
   769     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   770     typedef LM LengthMap;
   771     //The type of the length of the edges.
   772     typedef typename LM::Value Value;
   773     ///The heap type used by Dijkstra algorithm.
   774 
   775     ///The heap type used by Dijkstra algorithm.
   776     ///
   777     ///\sa BinHeap
   778     ///\sa Dijkstra
   779     typedef BinHeap<typename Graph::Node,
   780 		    typename LM::Value,
   781 		    typename GR::template NodeMap<int>,
   782 		    std::less<Value> > Heap;
   783 
   784     ///\brief The type of the map that stores the last
   785     ///edges of the shortest paths.
   786     /// 
   787     ///The type of the map that stores the last
   788     ///edges of the shortest paths.
   789     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   790     ///
   791     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   792     ///Instantiates a PredMap.
   793  
   794     ///This function instantiates a \ref PredMap. 
   795     ///\param g is the graph, to which we would like to define the PredMap.
   796     ///\todo The graph alone may be insufficient for the initialization
   797 #ifdef DOXYGEN
   798     static PredMap *createPredMap(const GR &g) 
   799 #else
   800     static PredMap *createPredMap(const GR &) 
   801 #endif
   802     {
   803       return new PredMap();
   804     }
   805     ///The type of the map that stores whether a nodes is processed.
   806  
   807     ///The type of the map that stores whether a nodes is processed.
   808     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   809     ///By default it is a NullMap.
   810     ///\todo If it is set to a real map,
   811     ///Dijkstra::processed() should read this.
   812     ///\todo named parameter to set this type, function to read and write.
   813     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   814     ///Instantiates a ProcessedMap.
   815  
   816     ///This function instantiates a \ref ProcessedMap. 
   817     ///\param g is the graph, to which
   818     ///we would like to define the \ref ProcessedMap
   819 #ifdef DOXYGEN
   820     static ProcessedMap *createProcessedMap(const GR &g)
   821 #else
   822     static ProcessedMap *createProcessedMap(const GR &)
   823 #endif
   824     {
   825       return new ProcessedMap();
   826     }
   827     ///The type of the map that stores the dists of the nodes.
   828  
   829     ///The type of the map that stores the dists of the nodes.
   830     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   831     ///
   832     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   833     ///Instantiates a DistMap.
   834  
   835     ///This function instantiates a \ref DistMap. 
   836     ///\param g is the graph, to which we would like to define the \ref DistMap
   837 #ifdef DOXYGEN
   838     static DistMap *createDistMap(const GR &g)
   839 #else
   840     static DistMap *createDistMap(const GR &)
   841 #endif
   842     {
   843       return new DistMap();
   844     }
   845   };
   846   
   847   /// Default traits used by \ref DijkstraWizard
   848 
   849   /// To make it easier to use Dijkstra algorithm
   850   ///we have created a wizard class.
   851   /// This \ref DijkstraWizard class needs default traits,
   852   ///as well as the \ref Dijkstra class.
   853   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   854   /// \ref DijkstraWizard class.
   855   /// \todo More named parameters are required...
   856   template<class GR,class LM>
   857   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   858   {
   859 
   860     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   861   protected:
   862     /// Type of the nodes in the graph.
   863     typedef typename Base::Graph::Node Node;
   864 
   865     /// Pointer to the underlying graph.
   866     void *_g;
   867     /// Pointer to the length map
   868     void *_length;
   869     ///Pointer to the map of predecessors edges.
   870     void *_pred;
   871 //     ///Pointer to the map of predecessors nodes.
   872 //     void *_predNode;
   873     ///Pointer to the map of distances.
   874     void *_dist;
   875     ///Pointer to the source node.
   876     Node _source;
   877 
   878     public:
   879     /// Constructor.
   880     
   881     /// This constructor does not require parameters, therefore it initiates
   882     /// all of the attributes to default values (0, INVALID).
   883     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   884 // 			   _predNode(0),
   885 			   _dist(0), _source(INVALID) {}
   886 
   887     /// Constructor.
   888     
   889     /// This constructor requires some parameters,
   890     /// listed in the parameters list.
   891     /// Others are initiated to 0.
   892     /// \param g is the initial value of  \ref _g
   893     /// \param l is the initial value of  \ref _length
   894     /// \param s is the initial value of  \ref _source
   895     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   896       _g((void *)&g), _length((void *)&l), _pred(0),
   897 //       _predNode(0),
   898       _dist(0), _source(s) {}
   899 
   900   };
   901   
   902   /// A class to make the usage of Dijkstra algorithm easier
   903 
   904   /// This class is created to make it easier to use Dijkstra algorithm.
   905   /// It uses the functions and features of the plain \ref Dijkstra,
   906   /// but it is much simpler to use it.
   907   ///
   908   /// Simplicity means that the way to change the types defined
   909   /// in the traits class is based on functions that returns the new class
   910   /// and not on templatable built-in classes.
   911   /// When using the plain \ref Dijkstra
   912   /// the new class with the modified type comes from
   913   /// the original class by using the ::
   914   /// operator. In the case of \ref DijkstraWizard only
   915   /// a function have to be called and it will
   916   /// return the needed class.
   917   ///
   918   /// It does not have own \ref run method. When its \ref run method is called
   919   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   920   /// method of it.
   921   template<class TR>
   922   class DijkstraWizard : public TR
   923   {
   924     typedef TR Base;
   925 
   926     ///The type of the underlying graph.
   927     typedef typename TR::Graph Graph;
   928     //\e
   929     typedef typename Graph::Node Node;
   930     //\e
   931     typedef typename Graph::NodeIt NodeIt;
   932     //\e
   933     typedef typename Graph::Edge Edge;
   934     //\e
   935     typedef typename Graph::OutEdgeIt OutEdgeIt;
   936     
   937     ///The type of the map that stores the edge lengths.
   938     typedef typename TR::LengthMap LengthMap;
   939     ///The type of the length of the edges.
   940     typedef typename LengthMap::Value Value;
   941     ///\brief The type of the map that stores the last
   942     ///edges of the shortest paths.
   943     typedef typename TR::PredMap PredMap;
   944 //     ///\brief The type of the map that stores the last but one
   945 //     ///nodes of the shortest paths.
   946 //     typedef typename TR::PredNodeMap PredNodeMap;
   947     ///The type of the map that stores the dists of the nodes.
   948     typedef typename TR::DistMap DistMap;
   949 
   950     ///The heap type used by the dijkstra algorithm.
   951     typedef typename TR::Heap Heap;
   952 public:
   953     /// Constructor.
   954     DijkstraWizard() : TR() {}
   955 
   956     /// Constructor that requires parameters.
   957 
   958     /// Constructor that requires parameters.
   959     /// These parameters will be the default values for the traits class.
   960     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   961       TR(g,l,s) {}
   962 
   963     ///Copy constructor
   964     DijkstraWizard(const TR &b) : TR(b) {}
   965 
   966     ~DijkstraWizard() {}
   967 
   968     ///Runs Dijkstra algorithm from a given node.
   969     
   970     ///Runs Dijkstra algorithm from a given node.
   971     ///The node can be given by the \ref source function.
   972     void run()
   973     {
   974       if(Base::_source==INVALID) throw UninitializedParameter();
   975       Dijkstra<Graph,LengthMap,TR> 
   976 	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   977       if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
   978 //       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   979       if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
   980       dij.run(Base::_source);
   981     }
   982 
   983     ///Runs Dijkstra algorithm from the given node.
   984 
   985     ///Runs Dijkstra algorithm from the given node.
   986     ///\param s is the given source.
   987     void run(Node s)
   988     {
   989       Base::_source=s;
   990       run();
   991     }
   992 
   993     template<class T>
   994     struct DefPredMapBase : public Base {
   995       typedef T PredMap;
   996       static PredMap *createPredMap(const Graph &) { return 0; };
   997       DefPredMapBase(const TR &b) : TR(b) {}
   998     };
   999     
  1000     ///\brief \ref named-templ-param "Named parameter"
  1001     ///function for setting PredMap type
  1002     ///
  1003     /// \ref named-templ-param "Named parameter"
  1004     ///function for setting PredMap type
  1005     ///
  1006     template<class T>
  1007     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
  1008     {
  1009       Base::_pred=(void *)&t;
  1010       return DijkstraWizard<DefPredMapBase<T> >(*this);
  1011     }
  1012     
  1013 
  1014 //     template<class T>
  1015 //     struct DefPredNodeMapBase : public Base {
  1016 //       typedef T PredNodeMap;
  1017 //       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
  1018 //       DefPredNodeMapBase(const TR &b) : TR(b) {}
  1019 //     };
  1020     
  1021 //     ///\brief \ref named-templ-param "Named parameter"
  1022 //     ///function for setting PredNodeMap type
  1023 //     ///
  1024 //     /// \ref named-templ-param "Named parameter"
  1025 //     ///function for setting PredNodeMap type
  1026 //     ///
  1027 //     template<class T>
  1028 //     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
  1029 //     {
  1030 //       Base::_predNode=(void *)&t;
  1031 //       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
  1032 //     }
  1033    
  1034     template<class T>
  1035     struct DefDistMapBase : public Base {
  1036       typedef T DistMap;
  1037       static DistMap *createDistMap(const Graph &) { return 0; };
  1038       DefDistMapBase(const TR &b) : TR(b) {}
  1039     };
  1040     
  1041     ///\brief \ref named-templ-param "Named parameter"
  1042     ///function for setting DistMap type
  1043     ///
  1044     /// \ref named-templ-param "Named parameter"
  1045     ///function for setting DistMap type
  1046     ///
  1047     template<class T>
  1048     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1049     {
  1050       Base::_dist=(void *)&t;
  1051       return DijkstraWizard<DefDistMapBase<T> >(*this);
  1052     }
  1053     
  1054     /// Sets the source node, from which the Dijkstra algorithm runs.
  1055 
  1056     /// Sets the source node, from which the Dijkstra algorithm runs.
  1057     /// \param s is the source node.
  1058     DijkstraWizard<TR> &source(Node s) 
  1059     {
  1060       Base::_source=s;
  1061       return *this;
  1062     }
  1063     
  1064   };
  1065   
  1066   ///Function type interface for Dijkstra algorithm.
  1067 
  1068   /// \ingroup flowalgs
  1069   ///Function type interface for Dijkstra algorithm.
  1070   ///
  1071   ///This function also has several
  1072   ///\ref named-templ-func-param "named parameters",
  1073   ///they are declared as the members of class \ref DijkstraWizard.
  1074   ///The following
  1075   ///example shows how to use these parameters.
  1076   ///\code
  1077   ///  dijkstra(g,length,source).predMap(preds).run();
  1078   ///\endcode
  1079   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1080   ///to the end of the parameter list.
  1081   ///\sa DijkstraWizard
  1082   ///\sa Dijkstra
  1083   template<class GR, class LM>
  1084   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1085   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1086   {
  1087     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1088   }
  1089 
  1090 } //END OF NAMESPACE LEMON
  1091 
  1092 #endif
  1093