lemon/kruskal.h
author deba
Wed, 21 Feb 2007 13:51:45 +0000
changeset 2378 c479eab00a18
parent 2308 cddae1c4fee6
child 2386 81b47fc5c444
permissions -rw-r--r--
Once again minor doc changes
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    22 #include <algorithm>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    27 
    28 ///\ingroup spantree
    29 ///\file
    30 ///\brief Kruskal's algorithm to compute a minimum cost tree
    31 ///
    32 ///Kruskal's algorithm to compute a minimum cost tree.
    33 ///
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup spantree
    38   /// @{
    39 
    40   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    41 
    42   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    43   /// Due to hard C++ hacking, it accepts various input and output types.
    44   ///
    45   /// \param g The graph the algorithm runs on.
    46   /// It can be either \ref concepts::Graph "directed" or 
    47   /// \ref concepts::UGraph "undirected".
    48   /// If the graph is directed, the algorithm consider it to be 
    49   /// undirected by disregarding the direction of the edges.
    50   ///
    51   /// \param in This object is used to describe the edge costs. It can be one
    52   /// of the following choices.
    53   /// - An STL compatible 'Forward Container'
    54   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    55   /// where \c X is the type of the costs. The pairs indicates the edges along
    56   /// with the assigned cost. <em>They must be in a
    57   /// cost-ascending order.</em>
    58   /// - Any readable Edge map. The values of the map indicate the edge costs.
    59   ///
    60   /// \retval out Here we also have a choise.
    61   /// - It can be a writable \c bool edge map. 
    62   /// After running the algorithm
    63   /// this will contain the found minimum cost spanning tree: the value of an
    64   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    65   /// be set to \c false. The value of each edge will be set exactly once.
    66   /// - It can also be an iteraror of an STL Container with
    67   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    68   /// The algorithm copies the elements of the found tree into this sequence.
    69   /// For example, if we know that the spanning tree of the graph \c g has
    70   /// say 53 edges, then
    71   /// we can put its edges into an STL vector \c tree with a code like this.
    72   ///\code
    73   /// std::vector<Edge> tree(53);
    74   /// kruskal(g,cost,tree.begin());
    75   ///\endcode
    76   /// Or if we don't know in advance the size of the tree, we can write this.
    77   ///\code
    78   /// std::vector<Edge> tree;
    79   /// kruskal(g,cost,std::back_inserter(tree));
    80   ///\endcode
    81   ///
    82   /// \return The cost of the found tree.
    83   ///
    84   /// \warning If kruskal runs on an
    85   /// \ref lemon::concepts::UGraph "undirected graph", be sure that the
    86   /// map storing the tree is also undirected
    87   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
    88   /// half of the edges will not be set.
    89   ///
    90 
    91 #ifdef DOXYGEN
    92   template <class GR, class IN, class OUT>
    93   CostType
    94   kruskal(GR const& g, IN const& in, 
    95 	  OUT& out)
    96 #else
    97   template <class GR, class IN, class OUT>
    98   typename IN::value_type::second_type
    99   kruskal(GR const& g, IN const& in, 
   100 	  OUT& out,
   101 // 	  typename IN::value_type::first_type = typename GR::Edge()
   102 // 	  ,typename OUT::Key = OUT::Key()
   103 // 	  //,typename OUT::Key = typename GR::Edge()
   104 	  const typename IN::value_type::first_type * = 
   105 	  (const typename IN::value_type::first_type *)(0),
   106 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   107 	  )
   108 #endif
   109   {
   110     typedef typename IN::value_type::second_type EdgeCost;
   111     typedef typename GR::template NodeMap<int> NodeIntMap;
   112     typedef typename GR::Node Node;
   113 
   114     NodeIntMap comp(g);
   115     UnionFind<NodeIntMap> uf(comp);
   116     for (typename GR::NodeIt it(g); it != INVALID; ++it) {
   117       uf.insert(it);
   118     }
   119       
   120     EdgeCost tot_cost = 0;
   121     for (typename IN::const_iterator p = in.begin(); 
   122 	 p!=in.end(); ++p ) {
   123       if ( uf.join(g.target((*p).first),
   124 		   g.source((*p).first)) ) {
   125 	out.set((*p).first, true);
   126 	tot_cost += (*p).second;
   127       }
   128       else {
   129 	out.set((*p).first, false);
   130       }
   131     }
   132     return tot_cost;
   133   }
   134 
   135  
   136   /// @}
   137 
   138   
   139   /* A work-around for running Kruskal with const-reference bool maps... */
   140 
   141   /// Helper class for calling kruskal with "constant" output map.
   142 
   143   /// Helper class for calling kruskal with output maps constructed
   144   /// on-the-fly.
   145   ///
   146   /// A typical examle is the following call:
   147   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   148   /// Here, the third argument is a temporary object (which wraps around an
   149   /// iterator with a writable bool map interface), and thus by rules of C++
   150   /// is a \c const object. To enable call like this exist this class and
   151   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   152   /// third argument.
   153   template<class Map>
   154   class NonConstMapWr {
   155     const Map &m;
   156   public:
   157     typedef typename Map::Key Key;
   158     typedef typename Map::Value Value;
   159 
   160     NonConstMapWr(const Map &_m) : m(_m) {}
   161 
   162     template<class Key>
   163     void set(Key const& k, Value const &v) const { m.set(k,v); }
   164   };
   165 
   166   template <class GR, class IN, class OUT>
   167   inline
   168   typename IN::value_type::second_type
   169   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   170 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   171 // 	  typename OUT::Key = GR::Edge()
   172 	  const typename IN::value_type::first_type * = 
   173 	  (const typename IN::value_type::first_type *)(0),
   174 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   175 	  )
   176   {
   177     NonConstMapWr<OUT> map_wr(out_map);
   178     return kruskal(g, edges, map_wr);
   179   }  
   180 
   181   /* ** ** Input-objects ** ** */
   182 
   183   /// Kruskal's input source.
   184  
   185   /// Kruskal's input source.
   186   ///
   187   /// In most cases you possibly want to use the \ref kruskal() instead.
   188   ///
   189   /// \sa makeKruskalMapInput()
   190   ///
   191   ///\param GR The type of the graph the algorithm runs on.
   192   ///\param Map An edge map containing the cost of the edges.
   193   ///\par
   194   ///The cost type can be any type satisfying
   195   ///the STL 'LessThan comparable'
   196   ///concept if it also has an operator+() implemented. (It is necessary for
   197   ///computing the total cost of the tree).
   198   ///
   199   template<class GR, class Map>
   200   class KruskalMapInput
   201     : public std::vector< std::pair<typename GR::Edge,
   202 				    typename Map::Value> > {
   203     
   204   public:
   205     typedef std::vector< std::pair<typename GR::Edge,
   206 				   typename Map::Value> > Parent;
   207     typedef typename Parent::value_type value_type;
   208 
   209   private:
   210     class comparePair {
   211     public:
   212       bool operator()(const value_type& a,
   213 		      const value_type& b) {
   214 	return a.second < b.second;
   215       }
   216     };
   217 
   218     template<class _GR>
   219     typename enable_if<UndirectedTagIndicator<_GR>,void>::type
   220     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   221     {
   222       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
   223 	push_back(value_type(g.direct(e, true), m[e]));
   224     }
   225 
   226     template<class _GR>
   227     typename disable_if<UndirectedTagIndicator<_GR>,void>::type
   228     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   229     {
   230       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   231 	push_back(value_type(e, m[e]));
   232     }
   233     
   234     
   235   public:
   236 
   237     void sort() {
   238       std::sort(this->begin(), this->end(), comparePair());
   239     }
   240 
   241     KruskalMapInput(GR const& g, Map const& m) {
   242       fillWithEdges(g,m); 
   243       sort();
   244     }
   245   };
   246 
   247   /// Creates a KruskalMapInput object for \ref kruskal()
   248 
   249   /// It makes easier to use 
   250   /// \ref KruskalMapInput by making it unnecessary 
   251   /// to explicitly give the type of the parameters.
   252   ///
   253   /// In most cases you possibly
   254   /// want to use \ref kruskal() instead.
   255   ///
   256   ///\param g The type of the graph the algorithm runs on.
   257   ///\param m An edge map containing the cost of the edges.
   258   ///\par
   259   ///The cost type can be any type satisfying the
   260   ///STL 'LessThan Comparable'
   261   ///concept if it also has an operator+() implemented. (It is necessary for
   262   ///computing the total cost of the tree).
   263   ///
   264   ///\return An appropriate input source for \ref kruskal().
   265   ///
   266   template<class GR, class Map>
   267   inline
   268   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   269   {
   270     return KruskalMapInput<GR,Map>(g,m);
   271   }
   272   
   273   
   274 
   275   /* ** ** Output-objects: simple writable bool maps ** ** */
   276   
   277 
   278 
   279   /// A writable bool-map that makes a sequence of "true" keys
   280 
   281   /// A writable bool-map that creates a sequence out of keys that receives
   282   /// the value "true".
   283   ///
   284   /// \sa makeKruskalSequenceOutput()
   285   ///
   286   /// Very often, when looking for a min cost spanning tree, we want as
   287   /// output a container containing the edges of the found tree. For this
   288   /// purpose exist this class that wraps around an STL iterator with a
   289   /// writable bool map interface. When a key gets value "true" this key
   290   /// is added to sequence pointed by the iterator.
   291   ///
   292   /// A typical usage:
   293   ///\code
   294   /// std::vector<Graph::Edge> v;
   295   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   296   ///\endcode
   297   /// 
   298   /// For the most common case, when the input is given by a simple edge
   299   /// map and the output is a sequence of the tree edges, a special
   300   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   301   ///
   302   /// \warning Not a regular property map, as it doesn't know its Key
   303 
   304   template<class Iterator>
   305   class KruskalSequenceOutput {
   306     mutable Iterator it;
   307 
   308   public:
   309     typedef typename std::iterator_traits<Iterator>::value_type Key;
   310     typedef bool Value;
   311 
   312     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   313 
   314     template<typename Key>
   315     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   316   };
   317 
   318   template<class Iterator>
   319   inline
   320   KruskalSequenceOutput<Iterator>
   321   makeKruskalSequenceOutput(Iterator it) {
   322     return KruskalSequenceOutput<Iterator>(it);
   323   }
   324 
   325 
   326 
   327   /* ** ** Wrapper funtions ** ** */
   328 
   329 //   \brief Wrapper function to kruskal().
   330 //   Input is from an edge map, output is a plain bool map.
   331 //  
   332 //   Wrapper function to kruskal().
   333 //   Input is from an edge map, output is a plain bool map.
   334 //  
   335 //   \param g The type of the graph the algorithm runs on.
   336 //   \param in An edge map containing the cost of the edges.
   337 //   \par
   338 //   The cost type can be any type satisfying the
   339 //   STL 'LessThan Comparable'
   340 //   concept if it also has an operator+() implemented. (It is necessary for
   341 //   computing the total cost of the tree).
   342 //  
   343 //   \retval out This must be a writable \c bool edge map.
   344 //   After running the algorithm
   345 //   this will contain the found minimum cost spanning tree: the value of an
   346 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   347 //   be set to \c false. The value of each edge will be set exactly once.
   348 //  
   349 //   \return The cost of the found tree.
   350 
   351   template <class GR, class IN, class RET>
   352   inline
   353   typename IN::Value
   354   kruskal(GR const& g,
   355 	  IN const& in,
   356 	  RET &out,
   357 	  //	  typename IN::Key = typename GR::Edge(),
   358 	  //typename IN::Key = typename IN::Key (),
   359 	  //	  typename RET::Key = typename GR::Edge()
   360 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   361 	  const typename RET::Key * = (const typename RET::Key *)(0)
   362 	  )
   363   {
   364     return kruskal(g,
   365 		   KruskalMapInput<GR,IN>(g,in),
   366 		   out);
   367   }
   368 
   369 //   \brief Wrapper function to kruskal().
   370 //   Input is from an edge map, output is an STL Sequence.
   371 //  
   372 //   Wrapper function to kruskal().
   373 //   Input is from an edge map, output is an STL Sequence.
   374 //  
   375 //   \param g The type of the graph the algorithm runs on.
   376 //   \param in An edge map containing the cost of the edges.
   377 //   \par
   378 //   The cost type can be any type satisfying the
   379 //   STL 'LessThan Comparable'
   380 //   concept if it also has an operator+() implemented. (It is necessary for
   381 //   computing the total cost of the tree).
   382 //  
   383 //   \retval out This must be an iteraror of an STL Container with
   384 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   385 //   The algorithm copies the elements of the found tree into this sequence.
   386 //   For example, if we know that the spanning tree of the graph \c g has
   387 //   say 53 edges, then
   388 //   we can put its edges into an STL vector \c tree with a code like this.
   389 //\code
   390 //   std::vector<Edge> tree(53);
   391 //   kruskal(g,cost,tree.begin());
   392 //\endcode
   393 //   Or if we don't know in advance the size of the tree, we can write this.
   394 //\code
   395 //   std::vector<Edge> tree;
   396 //   kruskal(g,cost,std::back_inserter(tree));
   397 //\endcode
   398 //  
   399 //   \return The cost of the found tree.
   400 //  
   401 //   \bug its name does not follow the coding style.
   402 
   403   template <class GR, class IN, class RET>
   404   inline
   405   typename IN::Value
   406   kruskal(const GR& g,
   407 	  const IN& in,
   408 	  RET out,
   409 	  const typename RET::value_type * = 
   410 	  (const typename RET::value_type *)(0)
   411 	  )
   412   {
   413     KruskalSequenceOutput<RET> _out(out);
   414     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   415   }
   416  
   417   template <class GR, class IN, class RET>
   418   inline
   419   typename IN::Value
   420   kruskal(const GR& g,
   421 	  const IN& in,
   422 	  RET *out
   423 	  )
   424   {
   425     KruskalSequenceOutput<RET*> _out(out);
   426     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   427   }
   428  
   429   /// @}
   430 
   431 } //namespace lemon
   432 
   433 #endif //LEMON_KRUSKAL_H