src/work/athos/mincostflow.h
author athos
Tue, 25 May 2004 12:31:18 +0000
changeset 659 c5984e925384
parent 657 531fc5f575ef
child 661 d306e777117e
permissions -rw-r--r--
Almost ready.
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOW_H
     3 #define HUGO_MINCOSTFLOW_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
     8 
     9 #include <hugo/dijkstra.h>
    10 #include <hugo/graph_wrapper.h>
    11 #include <hugo/maps.h>
    12 #include <vector>
    13 #include <list>
    14 #include <for_each_macros.h>
    15 #include <hugo/union_find.h>
    16 
    17 namespace hugo {
    18 
    19 /// \addtogroup galgs
    20 /// @{
    21 
    22   ///\brief Implementation of an algorithm for finding the minimum cost flow 
    23   /// of given value in an uncapacitated network
    24   /// 
    25   ///
    26   /// The class \ref hugo::MinCostFlow "MinCostFlow" implements
    27   /// an algorithm for solving the following general minimum cost flow problem>
    28   /// 
    29   ///
    30   ///
    31   /// \warning It is assumed here that the problem has a feasible solution
    32   ///
    33   /// The range of the length (weight) function is nonnegative reals but 
    34   /// the range of capacity function is the set of nonnegative integers. 
    35   /// It is not a polinomial time algorithm for counting the minimum cost
    36   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    37   /// where \c M is the value of the maximal flow.
    38   ///
    39   ///\author Attila Bernath
    40   template <typename Graph, typename LengthMap, typename SupplyDemandMap>
    41   class MinCostFlow {
    42 
    43     typedef typename LengthMap::ValueType Length;
    44 
    45 
    46     typedef typename SupplyDemandMap::ValueType SupplyDemand;
    47     
    48     typedef typename Graph::Node Node;
    49     typedef typename Graph::NodeIt NodeIt;
    50     typedef typename Graph::Edge Edge;
    51     typedef typename Graph::OutEdgeIt OutEdgeIt;
    52     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    53 
    54     //    typedef ConstMap<Edge,int> ConstMap;
    55 
    56     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    57     typedef typename ResGraphType::Edge ResGraphEdge;
    58 
    59     class ModLengthMap {   
    60       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    61       typedef typename Graph::template NodeMap<Length> NodeMap;
    62       const ResGraphType& res_graph;
    63       //      const EdgeIntMap& rev;
    64       const LengthMap &ol;
    65       const NodeMap &pot;
    66     public :
    67       typedef typename LengthMap::KeyType KeyType;
    68       typedef typename LengthMap::ValueType ValueType;
    69 	
    70       ValueType operator[](typename ResGraphType::Edge e) const {     
    71 	if (res_graph.forward(e))
    72 	  return  ol[e]-(pot[res_graph.head(e)]-pot[res_graph.tail(e)]);   
    73 	else
    74 	  return -ol[e]-(pot[res_graph.head(e)]-pot[res_graph.tail(e)]);   
    75       }     
    76 	
    77       ModLengthMap(const ResGraphType& _res_graph,
    78 		   const LengthMap &o,  const NodeMap &p) : 
    79 	res_graph(_res_graph), /*rev(_rev),*/ ol(o), pot(p){}; 
    80     };//ModLengthMap
    81 
    82 
    83   protected:
    84     
    85     //Input
    86     const Graph& graph;
    87     const LengthMap& length;
    88     const SupplyDemandMap& supply_demand;//supply or demand of nodes
    89 
    90 
    91     //auxiliary variables
    92 
    93     //To store the flow
    94     EdgeIntMap flow; 
    95     //To store the potentila (dual variables)
    96     typename Graph::template NodeMap<Length> potential;
    97     //To store excess-deficit values
    98     SupplyDemandMap excess_deficit;
    99     
   100 
   101     Length total_length;
   102 
   103 
   104   public :
   105 
   106 
   107     MinCostFlow(Graph& _graph, LengthMap& _length, SupplyDemandMap& _supply_demand) : graph(_graph), 
   108       length(_length), supply_demand(_supply_demand), flow(_graph), potential(_graph){ }
   109 
   110     
   111     ///Runs the algorithm.
   112 
   113     ///Runs the algorithm.
   114 
   115     ///\todo May be it does make sense to be able to start with a nonzero 
   116     /// feasible primal-dual solution pair as well.
   117     void run() {
   118 
   119       //Resetting variables from previous runs
   120       //total_length = 0;
   121 
   122       typedef typename Graph::template NodeMap<int> HeapMap;
   123       typedef Heap< Node, SupplyDemand, typename Graph::template NodeMap<int>,
   124 	std::greater<SupplyDemand> > 	HeapType;
   125 
   126       //A heap for the excess nodes
   127       HeapMap excess_nodes_map(graph,-1);
   128       HeapType excess_nodes(excess_nodes_map);
   129 
   130       //A heap for the deficit nodes
   131       HeapMap deficit_nodes_map(graph,-1);
   132       HeapType deficit_nodes(deficit_nodes_map);
   133 
   134       //A container to store nonabundant arcs
   135       list<Edge> nonabundant_arcs;
   136 
   137 	
   138       FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
   139 	flow.set(e,0);
   140 	nonabundant_arcs.push_back(e);
   141       }
   142 
   143       //Initial value for delta
   144       SupplyDemand delta = 0;
   145 
   146       typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
   147 
   148       //A union-find structure to store the abundant components
   149       UFE::MapType abund_comp_map(graph);
   150       UFE abundant_components(abund_comp_map);
   151 
   152 
   153 
   154       FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
   155        	excess_deficit.set(n,supply_demand[n]);
   156 	//A supply node
   157 	if (excess_deficit[n] > 0){
   158 	  excess_nodes.push(n,excess_deficit[n]);
   159 	}
   160 	//A demand node
   161 	if (excess_deficit[n] < 0){
   162 	  deficit_nodes.push(n, - excess_deficit[n]);
   163 	}
   164 	//Finding out starting value of delta
   165 	if (delta < abs(excess_deficit[n])){
   166 	  delta = abs(excess_deficit[n]);
   167 	}
   168 	//Initialize the copy of the Dijkstra potential to zero
   169 	potential.set(n,0);
   170 	//Every single point is an abundant component initially 
   171 	abundant_components.insert(n);
   172       }
   173 
   174       //It'll be allright as an initial value, though this value 
   175       //can be the maximum deficit here
   176       SupplyDemand max_excess = delta;
   177       
   178       //ConstMap<Edge,SupplyDemand> ConstEdgeMap;
   179 
   180       //We need a residual graph which is uncapacitated
   181       ResGraphType res_graph(graph, flow);
   182       
   183       //An EdgeMap to tell which arcs are abundant
   184       template typename Graph::EdgeMap<bool> abundant_arcs(graph);
   185 
   186       //Let's construct the sugraph consisting only of the abundant edges
   187       typedef ConstMap< typename Graph::Node, bool > ConstNodeMap;
   188       ConstNodeMap const_true_map(true);
   189       typedef SubGraphWrapper< Graph, ConstNodeMap, 
   190 	 template typename Graph::EdgeMap<bool> > 
   191 	AbundantGraph;
   192       AbundantGraph abundant_graph(graph, const_true_map, abundant_arcs );
   193       
   194       //Let's construct the residual graph for the abundant graph
   195       typedef ResGraphWrapper<const AbundantGraph,int,CapacityMap,EdgeIntMap> 
   196 	ResAbGraph;
   197       //Again uncapacitated
   198       ResAbGraph res_ab_graph(abundant_graph, flow);
   199       
   200       //We need things for the bfs
   201       typename ResAbGraph::NodeMap<bool> bfs_reached(res_ab_graph);
   202       typename ResAbGraph::NodeMap<typename ResAbGraph::Edge> 
   203 	bfs_pred(res_ab_graph); 
   204       NullMap<typename ResAbGraph::Node, int> bfs_dist_dummy(res_ab_graph);
   205       //We want to run bfs-es (more) on this graph 'res_ab_graph'
   206       Bfs < ResAbGraph , 
   207 	typename ResAbGraph::NodeMap<bool>, 
   208 	typename ResAbGraph::NodeMap<typename ResAbGraph::Edge>,
   209 	NullMap<typename ResAbGraph::Node, int> > 
   210 	bfs(res_ab_graph, bfs_reached, bfs_pred, bfs_dist_dummy);
   211       
   212       ModLengthMap mod_length(res_graph, length, potential);
   213 
   214       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   215 
   216 
   217       while (max_excess > 0){
   218 
   219 	//Reset delta if still too big
   220 	if (8*number_of_nodes*max_excess <= delta){
   221 	  delta = max_excess;
   222 	  
   223 	}
   224 
   225 	/*
   226 	 * Beginning of the delta scaling phase 
   227 	*/
   228 	//Merge and stuff
   229 	{
   230 	  SupplyDemand buf=8*number_of_nodes*delta;
   231 	  list<Edge>::iterator i = nonabundant_arcs.begin();
   232 	  while ( i != nonabundant_arcs.end() ){
   233 	    if (flow[i]>=buf){
   234 	      Node a = abundant_components.find(res_graph.head(i));
   235 	      Node b = abundant_components.find(res_graph.tail(i));
   236 	      //Merge
   237 	      if (a != b){
   238 		abundant_components.join(a,b);
   239 		//We want to push the smaller
   240 		//Which has greater absolut value excess/deficit
   241 		Node root=(abs(excess_deficit[a])>abs(excess_deficit[b]))?a:b;
   242 		//Which is the other
   243 		Node non_root = ( a == root ) ? b : a ;
   244 		abundant_components.makeRep(root);
   245 		SupplyDemand qty_to_augment = abs(excess_deficit[non_root]); 
   246 		//Push the positive value
   247 		if (excess_deficit[non_root] < 0)
   248 		  swap(root, non_root);
   249 		//If the non_root node has excess/deficit at all
   250 		if (qty_to_augment>0){
   251 		  //Find path and augment
   252 		  bfs.run(non_root);
   253 		  //root should be reached
   254 		  
   255 		  //Augmenting on the found path
   256 		  Node n=root;
   257 		  ResGraphEdge e;
   258 		  while (n!=non_root){
   259 		    e = bfs_pred(n);
   260 		    n = res_graph.tail(e);
   261 		    res_graph.augment(e,qty_to_augment);
   262 		  }
   263 	  
   264 		  //We know that non_root had positive excess
   265 		  excess_nodes[non_root] -= qty_to_augment;
   266 		  //But what about root node
   267 		  //It might have been positive and so became larger
   268 		  if (excess_deficit[root]>0){
   269 		    excess_nodes[root] += qty_to_augment;
   270 		  }
   271 		  else{
   272 		    //Or negative but not turned into positive
   273 		    deficit_nodes[root] -= qty_to_augment;
   274 		  }
   275 
   276 		  //Update the excess_deficit map
   277 		  excess_deficit[non_root] -= qty_to_augment;
   278 		  excess_deficit[root] += qty_to_augment;
   279 
   280 		  
   281 		}
   282 	      }
   283 	      //What happens to i?
   284 	      //Marci and Zsolt says I shouldn't do such things
   285 	      nonabundant_arcs.erase(i++);
   286 	      abundant_arcs[i] = true;
   287 	    }
   288 	    else
   289 	      ++i;
   290 	  }
   291 	}
   292 
   293 
   294 	Node s = excess_nodes.top(); 
   295 	SupplyDemand max_excess = excess_nodes[s];
   296 	Node t = deficit_nodes.top(); 
   297 	if (max_excess < deficit_nodes[t]){
   298 	  max_excess = deficit_nodes[t];
   299 	}
   300 
   301 
   302 	while(max_excess > (n-1)*delta/n){
   303 	  
   304 	  
   305 	  //s es t valasztasa
   306 	  
   307 	  //Dijkstra part	
   308 	  dijkstra.run(s);
   309 	  
   310 	  /*We know from theory that t can be reached
   311 	  if (!dijkstra.reached(t)){
   312 	    //There are no k paths from s to t
   313 	    break;
   314 	  };
   315 	  */
   316 	  
   317 	  //We have to change the potential
   318 	  FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){
   319 	    potential[n] += dijkstra.distMap()[n];
   320 	  }
   321 
   322 
   323 	  //Augmenting on the sortest path
   324 	  Node n=t;
   325 	  ResGraphEdge e;
   326 	  while (n!=s){
   327 	    e = dijkstra.pred(n);
   328 	    n = dijkstra.predNode(n);
   329 	    res_graph.augment(e,delta);
   330 	    /*
   331 	    //Let's update the total length
   332 	    if (res_graph.forward(e))
   333 	      total_length += length[e];
   334 	    else 
   335 	      total_length -= length[e];	    
   336 	    */
   337 	  }
   338 	  
   339 	  //Update the excess_deficit map
   340 	  excess_deficit[s] -= delta;
   341 	  excess_deficit[t] += delta;
   342 	  
   343 
   344 	  //Update the excess_nodes heap
   345 	  if (delta >= excess_nodes[s]){
   346 	    if (delta > excess_nodes[s])
   347 	      deficit_nodes.push(s,delta - excess_nodes[s]);
   348 	    excess_nodes.pop();
   349 	    
   350 	  } 
   351 	  else{
   352 	    excess_nodes[s] -= delta;
   353 	  }
   354 	  //Update the deficit_nodes heap
   355 	  if (delta >= deficit_nodes[t]){
   356 	    if (delta > deficit_nodes[t])
   357 	      excess_nodes.push(t,delta - deficit_nodes[t]);
   358 	    deficit_nodes.pop();
   359 	    
   360 	  } 
   361 	  else{
   362 	    deficit_nodes[t] -= delta;
   363 	  }
   364 	  //Dijkstra part ends here
   365 	  
   366 	  //Choose s and t again
   367 	  s = excess_nodes.top(); 
   368 	  max_excess = excess_nodes[s];
   369 	  t = deficit_nodes.top(); 
   370 	  if (max_excess < deficit_nodes[t]){
   371 	    max_excess = deficit_nodes[t];
   372 	  }
   373 
   374 	}
   375 
   376 	/*
   377 	 * End of the delta scaling phase 
   378 	*/
   379 
   380 	//Whatever this means
   381 	delta = delta / 2;
   382 
   383 	/*This is not necessary here
   384 	//Update the max_excess
   385 	max_excess = 0;
   386 	FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
   387 	  if (max_excess < excess_deficit[n]){
   388 	    max_excess = excess_deficit[n];
   389 	  }
   390 	}
   391 	*/
   392 
   393 	  
   394       }//while(max_excess > 0)
   395       
   396 
   397       return i;
   398     }
   399 
   400 
   401 
   402 
   403     ///This function gives back the total length of the found paths.
   404     ///Assumes that \c run() has been run and nothing changed since then.
   405     Length totalLength(){
   406       return total_length;
   407     }
   408 
   409     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   410     ///be called before using this function.
   411     const EdgeIntMap &getFlow() const { return flow;}
   412 
   413   ///Returns a const reference to the NodeMap \c potential (the dual solution).
   414     /// \pre \ref run() must be called before using this function.
   415     const EdgeIntMap &getPotential() const { return potential;}
   416 
   417     ///This function checks, whether the given solution is optimal
   418     ///Running after a \c run() should return with true
   419     ///In this "state of the art" this only check optimality, doesn't bother with feasibility
   420     ///
   421     ///\todo Is this OK here?
   422     bool checkComplementarySlackness(){
   423       Length mod_pot;
   424       Length fl_e;
   425       FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
   426 	//C^{\Pi}_{i,j}
   427 	mod_pot = length[e]-potential[graph.head(e)]+potential[graph.tail(e)];
   428 	fl_e = flow[e];
   429 	//	std::cout << fl_e << std::endl;
   430 	if (0<fl_e && fl_e<capacity[e]){
   431 	  if (mod_pot != 0)
   432 	    return false;
   433 	}
   434 	else{
   435 	  if (mod_pot > 0 && fl_e != 0)
   436 	    return false;
   437 	  if (mod_pot < 0 && fl_e != capacity[e])
   438 	    return false;
   439 	}
   440       }
   441       return true;
   442     }
   443     
   444 
   445   }; //class MinCostFlow
   446 
   447   ///@}
   448 
   449 } //namespace hugo
   450 
   451 #endif //HUGO_MINCOSTFLOW_H