lemon/min_cost_flow.h
author hegyi
Wed, 15 Jun 2005 11:15:01 +0000
changeset 1496 c60369a1c987
parent 1401 9588dcef6793
child 1527 7ceab500e1f6
permissions -rw-r--r--
At last, the most simple task, the graph-item deletion is solved...
     1 /* -*- C++ -*-
     2  * lemon/min_cost_flow.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MIN_COST_FLOW_H
    18 #define LEMON_MIN_COST_FLOW_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
    23 
    24 
    25 #include <lemon/dijkstra.h>
    26 #include <lemon/graph_adaptor.h>
    27 #include <lemon/maps.h>
    28 #include <vector>
    29 
    30 namespace lemon {
    31 
    32 /// \addtogroup flowalgs
    33 /// @{
    34 
    35   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    36   ///(for small values of \c k) having minimal total cost between 2 nodes 
    37   /// 
    38   ///
    39   /// The class \ref lemon::MinCostFlow "MinCostFlow" implements an
    40   /// algorithm for finding a flow of value \c k having minimal total
    41   /// cost from a given source node to a given target node in an
    42   /// edge-weighted directed graph. To this end, the edge-capacities
    43   /// and edge-weights have to be nonnegative.  The edge-capacities
    44   /// should be integers, but the edge-weights can be integers, reals
    45   /// or of other comparable numeric type.  This algorithm is intended
    46   /// to be used only for small values of \c k, since it is only
    47   /// polynomial in k, not in the length of k (which is log k):  in
    48   /// order to find the minimum cost flow of value \c k it finds the
    49   /// minimum cost flow of value \c i for every \c i between 0 and \c
    50   /// k.
    51   ///
    52   ///\param Graph The directed graph type the algorithm runs on.
    53   ///\param LengthMap The type of the length map.
    54   ///\param CapacityMap The capacity map type.
    55   ///
    56   ///\author Attila Bernath
    57   template <typename Graph, typename LengthMap, typename CapacityMap>
    58   class MinCostFlow {
    59 
    60     typedef typename LengthMap::Value Length;
    61 
    62     //Warning: this should be integer type
    63     typedef typename CapacityMap::Value Capacity;
    64     
    65     typedef typename Graph::Node Node;
    66     typedef typename Graph::NodeIt NodeIt;
    67     typedef typename Graph::Edge Edge;
    68     typedef typename Graph::OutEdgeIt OutEdgeIt;
    69     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    70 
    71     typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
    72     typedef typename ResGW::Edge ResGraphEdge;
    73 
    74   protected:
    75 
    76     const Graph& g;
    77     const LengthMap& length;
    78     const CapacityMap& capacity;
    79 
    80     EdgeIntMap flow; 
    81     typedef typename Graph::template NodeMap<Length> PotentialMap;
    82     PotentialMap potential;
    83 
    84     Node s;
    85     Node t;
    86     
    87     Length total_length;
    88 
    89     class ModLengthMap {   
    90       typedef typename Graph::template NodeMap<Length> NodeMap;
    91       const ResGW& g;
    92       const LengthMap &length;
    93       const NodeMap &pot;
    94     public :
    95       typedef typename LengthMap::Key Key;
    96       typedef typename LengthMap::Value Value;
    97 
    98       ModLengthMap(const ResGW& _g, 
    99 		   const LengthMap &_length, const NodeMap &_pot) : 
   100 	g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
   101 	
   102       Value operator[](typename ResGW::Edge e) const {     
   103 	if (g.forward(e))
   104 	  return  length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
   105 	else
   106 	  return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
   107       }     
   108 	
   109     }; //ModLengthMap
   110 
   111     ResGW res_graph;
   112     ModLengthMap mod_length;
   113     Dijkstra<ResGW, ModLengthMap> dijkstra;
   114 
   115   public :
   116 
   117     /*! \brief The constructor of the class.
   118     
   119     \param _g The directed graph the algorithm runs on. 
   120     \param _length The length (weight or cost) of the edges. 
   121     \param _cap The capacity of the edges. 
   122     \param _s Source node.
   123     \param _t Target node.
   124     */
   125     MinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap, 
   126 		Node _s, Node _t) : 
   127       g(_g), length(_length), capacity(_cap), flow(_g), potential(_g), 
   128       s(_s), t(_t), 
   129       res_graph(g, capacity, flow), 
   130       mod_length(res_graph, length, potential),
   131       dijkstra(res_graph, mod_length) { 
   132       reset();
   133       }
   134 
   135     /*! Tries to augment the flow between s and t by 1.
   136       The return value shows if the augmentation is successful.
   137      */
   138     bool augment() {
   139       dijkstra.run(s);
   140       if (!dijkstra.reached(t)) {
   141 
   142 	//Unsuccessful augmentation.
   143 	return false;
   144       } else {
   145 
   146 	//We have to change the potential
   147 	for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
   148 	  potential.set(n, potential[n]+dijkstra.distMap()[n]);
   149 	
   150 	//Augmenting on the shortest path
   151 	Node n=t;
   152 	ResGraphEdge e;
   153 	while (n!=s){
   154 	  e = dijkstra.pred(n);
   155 	  n = dijkstra.predNode(n);
   156 	  res_graph.augment(e,1);
   157 	  //Let's update the total length
   158 	  if (res_graph.forward(e))
   159 	    total_length += length[e];
   160 	  else 
   161 	    total_length -= length[e];	    
   162 	}
   163 
   164 	return true;
   165       }
   166     }
   167     
   168     /*! \brief Runs the algorithm.
   169     
   170     Runs the algorithm.
   171     Returns k if there is a flow of value at least k from s to t.
   172     Otherwise it returns the maximum value of a flow from s to t.
   173     
   174     \param k The value of the flow we are looking for.
   175     
   176     \todo May be it does make sense to be able to start with a nonzero 
   177     feasible primal-dual solution pair as well.
   178     
   179     \todo If the actual flow value is bigger than k, then everything is 
   180     cleared and the algorithm starts from zero flow. Is it a good approach?
   181     */
   182     int run(int k) {
   183       if (flowValue()>k) reset();
   184       while (flowValue()<k && augment()) { }
   185       return flowValue();
   186     }
   187 
   188     /*! \brief The class is reset to zero flow and potential.
   189       The class is reset to zero flow and potential.
   190      */
   191     void reset() {
   192       total_length=0;
   193       for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
   194       for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);  
   195     }
   196 
   197     /*! Returns the value of the actual flow. 
   198      */
   199     int flowValue() const {
   200       int i=0;
   201       for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
   202       for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
   203       return i;
   204     }
   205 
   206     /// Total weight of the found flow.
   207 
   208     /// This function gives back the total weight of the found flow.
   209     Length totalLength(){
   210       return total_length;
   211     }
   212 
   213     ///Returns a const reference to the EdgeMap \c flow. 
   214 
   215     ///Returns a const reference to the EdgeMap \c flow. 
   216     const EdgeIntMap &getFlow() const { return flow;}
   217 
   218     /*! \brief Returns a const reference to the NodeMap \c potential (the dual solution).
   219 
   220     Returns a const reference to the NodeMap \c potential (the dual solution).
   221     */
   222     const PotentialMap &getPotential() const { return potential;}
   223 
   224     /*! \brief Checking the complementary slackness optimality criteria.
   225 
   226     This function checks, whether the given flow and potential 
   227     satisfy the complementary slackness conditions (i.e. these are optimal).
   228     This function only checks optimality, doesn't bother with feasibility.
   229     For testing purpose.
   230     */
   231     bool checkComplementarySlackness(){
   232       Length mod_pot;
   233       Length fl_e;
   234         for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
   235 	//C^{\Pi}_{i,j}
   236 	mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
   237 	fl_e = flow[e];
   238 	if (0<fl_e && fl_e<capacity[e]) {
   239 	  /// \todo better comparison is needed for real types, moreover, 
   240 	  /// this comparison here is superfluous.
   241 	  if (mod_pot != 0)
   242 	    return false;
   243 	} 
   244 	else {
   245 	  if (mod_pot > 0 && fl_e != 0)
   246 	    return false;
   247 	  if (mod_pot < 0 && fl_e != capacity[e])
   248 	    return false;
   249 	}
   250       }
   251       return true;
   252     }
   253     
   254   }; //class MinCostFlow
   255 
   256   ///@}
   257 
   258 } //namespace lemon
   259 
   260 #endif //LEMON_MIN_COST_FLOW_H