.
8 list 'level_list' on the nodes on level i implemented by hand
9 stack 'active' on the active nodes on level i implemented by hand
10 runs heuristic 'highest label' for H1*n relabels
11 runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
13 Parameters H0 and H1 are initialized to 20 and 10.
15 The best preflow I could ever write.
17 The constructor runs the algorithm.
21 T maxFlow() : returns the value of a maximum flow
23 T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e)
25 FlowMap Flow() : returns the fixed maximum flow x
27 void minMinCut(CutMap& M) : sets M to the characteristic vector of the
28 minimum min cut. M should be a map of bools initialized to false.
30 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the
31 maximum min cut. M should be a map of bools initialized to false.
33 void minCut(CutMap& M) : sets M to the characteristic vector of
34 a min cut. M should be a map of bools initialized to false.
47 #include <time_measure.h>
51 template <typename Graph, typename T,
52 typename FlowMap=typename Graph::EdgeMap<T>,
53 typename CapMap=typename Graph::EdgeMap<T> >
56 typedef typename Graph::NodeIt NodeIt;
57 typedef typename Graph::EdgeIt EdgeIt;
58 typedef typename Graph::EachNodeIt EachNodeIt;
59 typedef typename Graph::OutEdgeIt OutEdgeIt;
60 typedef typename Graph::InEdgeIt InEdgeIt;
71 preflow(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity ) :
72 G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity)
75 bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd
77 int heur0=(int)(H0*n); //time while running 'bound decrease'
78 int heur1=(int)(H1*n); //time while running 'highest label'
79 int heur=heur1; //starting time interval (#of relabels)
82 what_heur is 0 in case 'bound decrease'
83 and 1 in case 'highest label'
87 Needed for 'bound decrease', 'true'
88 means no active nodes are above bound b.
91 int k=n-2; //bound on the highest level under n containing a node
92 int b=k; //bound on the highest level under n of an active node
94 typename Graph::NodeMap<int> level(G,n);
95 typename Graph::NodeMap<T> excess(G);
97 std::vector<NodeIt> active(n);
98 typename Graph::NodeMap<NodeIt> next(G);
99 //Stack of the active nodes in level i < n.
100 //We use it in both phases.
102 typename Graph::NodeMap<NodeIt> left(G);
103 typename Graph::NodeMap<NodeIt> right(G);
104 std::vector<NodeIt> level_list(n);
106 List of the nodes in level i<n.
109 /*Reverse_bfs from t, to find the starting level.*/
111 std::queue<NodeIt> bfs_queue;
114 while (!bfs_queue.empty()) {
116 NodeIt v=bfs_queue.front();
118 int l=level.get(v)+1;
120 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
122 if ( level.get(w) == n && w != s ) {
124 NodeIt first=level_list[l];
125 if ( first != 0 ) left.set(first,w);
136 /* Starting flow. It is everywhere 0 at the moment. */
137 for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e)
140 if ( c == 0 ) continue;
142 if ( level.get(w) < n ) {
143 if ( excess.get(w) == 0 && w!=t ) {
144 next.set(w,active[level.get(w)]);
145 active[level.get(w)]=w;
148 excess.set(w, excess.get(w)+c);
159 Push/relabel on the highest level active nodes.
166 if ( !what_heur && !end && k > 0 ) {
173 std::queue<NodeIt> bfs_queue;
176 while (!bfs_queue.empty()) {
178 NodeIt v=bfs_queue.front();
180 int l=level.get(v)+1;
182 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
183 if ( capacity.get(e) == flow.get(e) ) continue;
185 if ( level.get(u) >= n ) {
188 if ( excess.get(u) > 0 ) {
189 next.set(u,active[l]);
195 for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
196 if ( 0 == flow.get(e) ) continue;
198 if ( level.get(u) >= n ) {
201 if ( excess.get(u) > 0 ) {
202 next.set(u,active[l]);
214 if ( active[b] == 0 ) --b;
219 active[b]=next.get(w);
220 int lev=level.get(w);
222 int newlevel=n; //bound on the next level of w
224 for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
226 if ( flow.get(e) == capacity.get(e) ) continue;
230 if( lev > level.get(v) ) {
231 /*Push is allowed now*/
233 if ( excess.get(v)==0 && v!=t && v!=s ) {
234 int lev_v=level.get(v);
235 next.set(v,active[lev_v]);
239 T cap=capacity.get(e);
243 if ( remcap >= exc ) {
244 /*A nonsaturating push.*/
246 flow.set(e, flo+exc);
247 excess.set(v, excess.get(v)+exc);
252 /*A saturating push.*/
255 excess.set(v, excess.get(v)+remcap);
258 } else if ( newlevel > level.get(v) ){
259 newlevel = level.get(v);
266 for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
268 if( flow.get(e) == 0 ) continue;
272 if( lev > level.get(v) ) {
273 /*Push is allowed now*/
275 if ( excess.get(v)==0 && v!=t && v!=s ) {
276 int lev_v=level.get(v);
277 next.set(v,active[lev_v]);
284 /*A nonsaturating push.*/
286 flow.set(e, flo-exc);
287 excess.set(v, excess.get(v)+exc);
291 /*A saturating push.*/
293 excess.set(v, excess.get(v)+flo);
297 } else if ( newlevel > level.get(v) ) {
298 newlevel = level.get(v);
302 } // if w still has excess after the out edge for cycle
312 //now 'lev' is the old level of w
315 level.set(w,++newlevel);
316 next.set(w,active[newlevel]);
321 NodeIt right_n=right.get(w);
322 NodeIt left_n=left.get(w);
324 if ( right_n != 0 ) {
326 right.set(left_n, right_n);
327 left.set(right_n, left_n);
329 level_list[lev]=right_n;
330 left.set(right_n, 0);
334 right.set(left_n, 0);
343 if ( level_list[lev]==0 ) {
345 for (int i=lev; i!=k ; ) {
346 NodeIt v=level_list[++i];
352 if ( !what_heur ) active[i]=0;
361 if ( newlevel == n ) level.set(w,n);
363 level.set(w,++newlevel);
364 next.set(w,active[newlevel]);
366 if ( what_heur ) b=newlevel;
367 if ( k < newlevel ) ++k;
368 NodeIt first=level_list[newlevel];
369 if ( first != 0 ) left.set(first,w);
372 level_list[newlevel]=w;
378 if ( relabel >= heur ) {
396 } // if stack[b] is nonempty
401 value = excess.get(t);
411 Returns the maximum value of a flow.
421 For the maximum flow x found by the algorithm,
422 it returns the flow value on edge e, i.e. x(e).
425 T flowOnEdge(EdgeIt e) {
437 void Flow(FlowMap& _flow ) {
438 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
439 _flow.set(v,flow.get(v));
445 Returns the minimum min cut, by a bfs from s in the residual graph.
448 template<typename _CutMap>
449 void minMinCut(_CutMap& M) {
451 std::queue<NodeIt> queue;
456 while (!queue.empty()) {
457 NodeIt w=queue.front();
460 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
462 if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
468 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
470 if (!M.get(v) && flow.get(e) > 0 ) {
481 Returns the maximum min cut, by a reverse bfs
482 from t in the residual graph.
485 template<typename _CutMap>
486 void maxMinCut(_CutMap& M) {
488 std::queue<NodeIt> queue;
493 while (!queue.empty()) {
494 NodeIt w=queue.front();
497 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
499 if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
505 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
507 if (!M.get(v) && flow.get(e) > 0 ) {
514 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
522 template<typename CutMap>
523 void minCut(CutMap& M) {