src/work/jacint/preflow_push_hl.h
author jacint
Mon, 16 Feb 2004 16:21:22 +0000
changeset 79 c7d834680e9b
parent 72 e560867cbe79
child 83 efafe79a88d3
permissions -rw-r--r--
delete
     1 // -*- C++ -*-
     2 /*
     3 preflow_push_hl.hh
     4 by jacint. 
     5 Runs the highest label variant of the preflow push algorithm with 
     6 running time O(n^2\sqrt(m)). 
     7 
     8 Member functions:
     9 
    10 void run() : runs the algorithm
    11 
    12  The following functions should be used after run() was already run.
    13 
    14 T maxflow() : returns the value of a maximum flow
    15 
    16 T flowonEdge(Edge_iterator e) : for a fixed maximum flow x it returns x(e) 
    17 
    18 EdgeMap<graph_type, T> allflow() : returns the fixed maximum flow x
    19 
    20 NodeMap<graph_type, bool> mincut() : returns a 
    21      characteristic vector of a minimum cut. (An empty level 
    22      in the algorithm gives a minimum cut.)
    23 */
    24 
    25 #ifndef PREFLOW_PUSH_HL_H
    26 #define PREFLOW_PUSH_HL_H
    27 
    28 #include <algorithm>
    29 #include <vector>
    30 #include <stack>
    31 
    32 #include <reverse_bfs.h>
    33 
    34 namespace marci {
    35 
    36   template <typename Graph, typename T>
    37   class preflow_push_hl {
    38     
    39     typedef typename Graph::NodeIt NodeIt;
    40     typedef typename Graph::EdgeIt EdgeIt;
    41     typedef typename Graph::EachNodeIt EachNodeIt;
    42     typedef typename Graph::OutEdgeIt OutEdgeIt;
    43     typedef typename Graph::InEdgeIt InEdgeIt;
    44     typedef typename Graph::EachEdgeIt EachEdgeIt;
    45     
    46 
    47     Graph& G;
    48     NodeIt s;
    49     NodeIt t;
    50     typename Graph::EdgeMap<T> flow;
    51     typename Graph::EdgeMap<T> capacity; 
    52     T value;
    53     typename Graph::NodeMap<bool> mincutvector;
    54 
    55    
    56   public:
    57 
    58     preflow_push_hl(Graph& _G, NodeIt _s, NodeIt _t, 
    59 		    typename Graph::EdgeMap<T>& _capacity) :
    60       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { }
    61 
    62 
    63 
    64 
    65     /*
    66       The run() function runs the highest label preflow-push, 
    67       running time: O(n^2\sqrt(m))
    68     */
    69     void run() {
    70  
    71       typename Graph::NodeMap<int> level(G);         //level of Node
    72       typename Graph::NodeMap<T> excess(G);          //excess of Node
    73             
    74       int n=G.nodeNum();                        //number of Nodes 
    75       int b=n; 
    76       /*b is a bound on the highest level of an active Node. In the beginning it is at most n-2.*/
    77 
    78       std::vector<std::stack<NodeIt> > stack(2*n-1);    //Stack of the active Nodes in level i.
    79 
    80 
    81 
    82 
    83       /*Reverse_bfs from t, to find the starting level.*/
    84 
    85       reverse_bfs<Graph> bfs(G, t);
    86       bfs.run();
    87       for(EachNodeIt v=G.template first<EachNodeIt>(); v.valid(); ++v) {
    88 	level.set(v, bfs.dist(v)); 
    89 	//std::cout << "the level of " << v << " is " << bfs.dist(v);
    90       }
    91 
    92       /*The level of s is fixed to n*/ 
    93       level.set(s,n);
    94 
    95 
    96 
    97 
    98 
    99       /* Starting flow. It is everywhere 0 at the moment. */
   100      
   101       for(OutEdgeIt i=G.template first<OutEdgeIt>(s); i.valid(); ++i) 
   102 	{
   103 	  NodeIt w=G.head(i);
   104 	  flow.set(i, capacity.get(i)); 
   105 	  stack[bfs.dist(w)].push(w); 
   106 	  excess.set(w, capacity.get(i));
   107 	}
   108 
   109 
   110       /* 
   111 	 End of preprocessing 
   112       */
   113 
   114 
   115 
   116       /*
   117 	Push/relabel on the highest level active Nodes.
   118       */
   119 	
   120       /*While there exists active Node.*/
   121       while (b) { 
   122 
   123 	/*We decrease the bound if there is no active Node of level b.*/
   124 	if (stack[b].empty()) {
   125 	  --b;
   126 	} else {
   127 
   128 	  NodeIt w=stack[b].top();    //w is the highest label active Node.
   129 	  stack[b].pop();                    //We delete w from the stack.
   130 	
   131 	  int newlevel=2*n-2;                   //In newlevel we maintain the next level of w.
   132 	
   133 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   134 	    NodeIt v=G.head(e);
   135 	    /*e is the Edge wv.*/
   136 
   137 	    if (flow.get(e)<capacity.get(e)) {              
   138 	      /*e is an Edge of the residual graph */
   139 
   140 	      if(level.get(w)==level.get(v)+1) {      
   141 		/*Push is allowed now*/
   142 
   143 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
   144 		  /*A nonsaturating push.*/
   145 		  
   146 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   147 		  /*v becomes active.*/
   148 		  
   149 		  flow.set(e, flow.get(e)+excess.get(w));
   150 		  excess.set(v, excess.get(v)+excess.get(w));
   151 		  excess.set(w,0);
   152 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
   153 		  break; 
   154 		} else { 
   155 		  /*A saturating push.*/
   156 
   157 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   158 		  /*v becomes active.*/
   159 
   160 		  excess.set(v, excess.get(v)+capacity.get(e)-flow.get(e));
   161 		  excess.set(w, excess.get(w)-capacity.get(e)+flow.get(e));
   162 		  flow.set(e, capacity.get(e));
   163 		  //std::cout << w<<" " <<v<<" elore elen sat pump "   << std::endl;
   164 		  if (excess.get(w)==0) break;
   165 		  /*If w is not active any more, then we go on to the next Node.*/
   166 		  
   167 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
   168 	      } // if(level.get(w)==level.get(v)+1)
   169 	    
   170 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   171 	    
   172 	    } //if (flow.get(e)<capacity.get(e))
   173 	 
   174 	  } //for(OutEdgeIt e=G.first_OutEdge(w); e.valid(); ++e) 
   175 	  
   176 
   177 
   178 	  for(InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   179 	    NodeIt v=G.tail(e);
   180 	    /*e is the Edge vw.*/
   181 
   182 	    if (excess.get(w)==0) break;
   183 	    /*It may happen, that w became inactive in the first for cycle.*/		
   184 	    if(flow.get(e)>0) {             
   185 	      /*e is an Edge of the residual graph */
   186 
   187 	      if(level.get(w)==level.get(v)+1) {  
   188 		/*Push is allowed now*/
   189 		
   190 		if (flow.get(e) > excess.get(w)) { 
   191 		  /*A nonsaturating push.*/
   192 		  
   193 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   194 		  /*v becomes active.*/
   195 
   196 		  flow.set(e, flow.get(e)-excess.get(w));
   197 		  excess.set(v, excess.get(v)+excess.get(w));
   198 		  excess.set(w,0);
   199 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
   200 		  break; 
   201 		} else {                                               
   202 		  /*A saturating push.*/
   203 		  
   204 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   205 		  /*v becomes active.*/
   206 		  
   207 		  excess.set(v, excess.get(v)+flow.get(e));
   208 		  excess.set(w, excess.get(w)-flow.get(e));
   209 		  flow.set(e,0);
   210 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
   211 		  if (excess.get(w)==0) { break;}
   212 		} //if (flow.get(e) > excess.get(v)) 
   213 	      } //if(level.get(w)==level.get(v)+1)
   214 	      
   215 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   216 	      
   217 
   218 	    } //if (flow.get(e)>0)
   219 
   220 	  } //for
   221 
   222 
   223 	  if (excess.get(w)>0) {
   224 	    level.set(w,++newlevel);
   225 	    stack[newlevel].push(w);
   226 	    b=newlevel;
   227 	    //std::cout << "The new level of " << w << " is "<< newlevel <<std::endl; 
   228 	  }
   229 
   230 
   231 	} //else
   232        
   233       } //while(b)
   234 
   235       value = excess.get(t);
   236       /*Max flow value.*/
   237 
   238 
   239 
   240 
   241     } //void run()
   242 
   243 
   244 
   245 
   246 
   247     /*
   248       Returns the maximum value of a flow.
   249      */
   250 
   251     T maxflow() {
   252       return value;
   253     }
   254 
   255 
   256 
   257     /*
   258       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
   259     */
   260 
   261     T flowonEdge(EdgeIt e) {
   262       return flow.get(e);
   263     }
   264 
   265 
   266 
   267     /*
   268       Returns the maximum flow x found by the algorithm.
   269     */
   270 
   271     typename Graph::EdgeMap<T> allflow() {
   272       return flow;
   273     }
   274 
   275 
   276 
   277     /*
   278       Returns a minimum cut by using a reverse bfs from t in the residual graph.
   279     */
   280     
   281     typename Graph::NodeMap<bool> mincut() {
   282     
   283       std::queue<NodeIt> queue;
   284       
   285       mincutvector.set(t,false);      
   286       queue.push(t);
   287 
   288       while (!queue.empty()) {
   289         NodeIt w=queue.front();
   290 	queue.pop();
   291 
   292 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   293 	  NodeIt v=G.tail(e);
   294 	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
   295 	    queue.push(v);
   296 	    mincutvector.set(v, false);
   297 	  }
   298 	} // for
   299 
   300 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   301 	  NodeIt v=G.head(e);
   302 	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
   303 	    queue.push(v);
   304 	    mincutvector.set(v, false);
   305 	  }
   306 	} // for
   307 
   308       }
   309 
   310       return mincutvector;
   311     
   312     }
   313   };
   314 }//namespace marci
   315 #endif 
   316 
   317 
   318 
   319