src/lemon/graph_wrapper.h
author klao
Mon, 06 Dec 2004 00:30:44 +0000
changeset 1030 c8a41699e613
parent 1016 18d009b23e42
child 1135 cfccb33ecf7b
permissions -rw-r--r--
Undirected graph documentation and concept refinements.

* quite a few bug fixes
* concept::UndirGraph is almost complete and looks quite good.
     1 /* -*- C++ -*-
     2  * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_WRAPPER_H
    18 #define LEMON_GRAPH_WRAPPER_H
    19 
    20 ///\ingroup gwrappers
    21 ///\file
    22 ///\brief Several graph wrappers.
    23 ///
    24 ///This file contains several useful graph wrapper functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/iterable_graph_extender.h>
    31 #include <lemon/map_defines.h>
    32 #include <iostream>
    33 
    34 namespace lemon {
    35 
    36   // Graph wrappers
    37 
    38   /*! \addtogroup gwrappers
    39     The main parts of LEMON are the different graph structures, 
    40     generic graph algorithms, graph concepts which couple these, and 
    41     graph wrappers. While the previous ones are more or less clear, the 
    42     latter notion needs further explanation.
    43     Graph wrappers are graph classes which serve for considering graph 
    44     structures in different ways. A short example makes the notion much 
    45     clearer. 
    46     Suppose that we have an instance \c g of a directed graph
    47     type say \c ListGraph and an algorithm 
    48     \code template<typename Graph> int algorithm(const Graph&); \endcode 
    49     is needed to run on the reversely oriented graph. 
    50     It may be expensive (in time or in memory usage) to copy 
    51     \c g with the reverse orientation. 
    52     Thus, a wrapper class
    53     \code template<typename Graph> class RevGraphWrapper; \endcode is used. 
    54     The code looks as follows
    55     \code
    56     ListGraph g;
    57     RevGraphWrapper<ListGraph> rgw(g);
    58     int result=algorithm(rgw);
    59     \endcode
    60     After running the algorithm, the original graph \c g 
    61     remains untouched. Thus the graph wrapper used above is to consider the 
    62     original graph with reverse orientation. 
    63     This techniques gives rise to an elegant code, and 
    64     based on stable graph wrappers, complex algorithms can be 
    65     implemented easily. 
    66     In flow, circulation and bipartite matching problems, the residual 
    67     graph is of particular importance. Combining a wrapper implementing 
    68     this, shortest path algorithms and minimum mean cycle algorithms, 
    69     a range of weighted and cardinality optimization algorithms can be 
    70     obtained. For lack of space, for other examples, 
    71     the interested user is referred to the detailed documentation of graph 
    72     wrappers. 
    73     The behavior of graph wrappers can be very different. Some of them keep 
    74     capabilities of the original graph while in other cases this would be 
    75     meaningless. This means that the concepts that they are a model of depend 
    76     on the graph wrapper, and the wrapped graph(s). 
    77     If an edge of \c rgw is deleted, this is carried out by 
    78     deleting the corresponding edge of \c g. But for a residual 
    79     graph, this operation has no sense. 
    80     Let we stand one more example here to simplify your work. 
    81     wrapper class
    82     \code template<typename Graph> class RevGraphWrapper; \endcode 
    83     has constructor 
    84     <tt> RevGraphWrapper(Graph& _g)</tt>. 
    85     This means that in a situation, 
    86     when a <tt> const ListGraph& </tt> reference to a graph is given, 
    87     then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
    88     \code
    89     int algorithm1(const ListGraph& g) {
    90     RevGraphWrapper<const ListGraph> rgw(g);
    91     return algorithm2(rgw);
    92     }
    93     \endcode
    94 
    95     \addtogroup gwrappers
    96     @{
    97 
    98     Base type for the Graph Wrappers
    99 
   100     \warning Graph wrappers are in even more experimental state than the other
   101     parts of the lib. Use them at you own risk.
   102   
   103     This is the base type for most of LEMON graph wrappers. 
   104     This class implements a trivial graph wrapper i.e. it only wraps the 
   105     functions and types of the graph. The purpose of this class is to 
   106     make easier implementing graph wrappers. E.g. if a wrapper is 
   107     considered which differs from the wrapped graph only in some of its 
   108     functions or types, then it can be derived from GraphWrapper, and only the 
   109     differences should be implemented.
   110   
   111     \author Marton Makai 
   112   */
   113   template<typename _Graph>
   114   class GraphWrapperBase {
   115   public:
   116     typedef _Graph Graph;
   117     /// \todo Is it needed?
   118     typedef Graph BaseGraph;
   119     typedef Graph ParentGraph;
   120 
   121   protected:
   122     Graph* graph;
   123     GraphWrapperBase() : graph(0) { }
   124     void setGraph(Graph& _graph) { graph=&_graph; }
   125 
   126   public:
   127     GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
   128  
   129     typedef typename Graph::Node Node;
   130     typedef typename Graph::Edge Edge;
   131    
   132     void first(Node& i) const { graph->first(i); }
   133     void first(Edge& i) const { graph->first(i); }
   134     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
   135     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
   136 
   137     void next(Node& i) const { graph->next(i); }
   138     void next(Edge& i) const { graph->next(i); }
   139     void nextIn(Edge& i) const { graph->nextIn(i); }
   140     void nextOut(Edge& i) const { graph->nextOut(i); }
   141 
   142     Node source(const Edge& e) const { return graph->source(e); }
   143     Node target(const Edge& e) const { return graph->target(e); }
   144 
   145     int nodeNum() const { return graph->nodeNum(); }
   146     int edgeNum() const { return graph->edgeNum(); }
   147   
   148     Node addNode() const { return Node(graph->addNode()); }
   149     Edge addEdge(const Node& source, const Node& target) const { 
   150       return Edge(graph->addEdge(source, target)); }
   151 
   152     void erase(const Node& i) const { graph->erase(i); }
   153     void erase(const Edge& i) const { graph->erase(i); }
   154   
   155     void clear() const { graph->clear(); }
   156     
   157     bool forward(const Edge& e) const { return graph->forward(e); }
   158     bool backward(const Edge& e) const { return graph->backward(e); }
   159 
   160     int id(const Node& v) const { return graph->id(v); }
   161     int id(const Edge& e) const { return graph->id(e); }
   162     
   163     Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
   164 
   165     template <typename _Value>
   166     class NodeMap : public _Graph::template NodeMap<_Value> {
   167     public:
   168       typedef typename _Graph::template NodeMap<_Value> Parent;
   169       NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   170       NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   171       : Parent(*gw.graph, value) { }
   172     };
   173 
   174     template <typename _Value>
   175     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   176     public:
   177       typedef typename _Graph::template EdgeMap<_Value> Parent;
   178       EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   179       EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   180       : Parent(*gw.graph, value) { }
   181     };
   182 
   183   };
   184 
   185   template <typename _Graph>
   186   class GraphWrapper :
   187     public IterableGraphExtender<GraphWrapperBase<_Graph> > { 
   188   public:
   189     typedef _Graph Graph;
   190     typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
   191   protected:
   192     GraphWrapper() : Parent() { }
   193 
   194   public:
   195     GraphWrapper(Graph& _graph) { setGraph(_graph); }
   196   };
   197 
   198   template <typename _Graph>
   199   class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
   200   public:
   201     typedef _Graph Graph;
   202     typedef GraphWrapperBase<_Graph> Parent;
   203   protected:
   204     RevGraphWrapperBase() : Parent() { }
   205   public:
   206     typedef typename Parent::Node Node;
   207     typedef typename Parent::Edge Edge;
   208 
   209     using Parent::first;
   210     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   211     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   212 
   213     using Parent::next;
   214     void nextIn(Edge& i) const { Parent::nextOut(i); }
   215     void nextOut(Edge& i) const { Parent::nextIn(i); }
   216 
   217     Node source(const Edge& e) const { return Parent::target(e); }
   218     Node target(const Edge& e) const { return Parent::source(e); }
   219   };
   220     
   221 
   222   /// A graph wrapper which reverses the orientation of the edges.
   223 
   224   ///\warning Graph wrappers are in even more experimental state than the other
   225   ///parts of the lib. Use them at you own risk.
   226   ///
   227   /// Let \f$G=(V, A)\f$ be a directed graph and 
   228   /// suppose that a graph instange \c g of type 
   229   /// \c ListGraph implements \f$G\f$.
   230   /// \code
   231   /// ListGraph g;
   232   /// \endcode
   233   /// For each directed edge 
   234   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   235   /// reversing its orientation. 
   236   /// Then RevGraphWrapper implements the graph structure with node-set 
   237   /// \f$V\f$ and edge-set 
   238   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   239   /// reversing the orientation of its edges. The following code shows how 
   240   /// such an instance can be constructed.
   241   /// \code
   242   /// RevGraphWrapper<ListGraph> gw(g);
   243   /// \endcode
   244   ///\author Marton Makai
   245   template<typename _Graph>
   246   class RevGraphWrapper : 
   247     public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
   248   public:
   249     typedef _Graph Graph;
   250     typedef IterableGraphExtender<
   251       RevGraphWrapperBase<_Graph> > Parent;
   252   protected:
   253     RevGraphWrapper() { }
   254   public:
   255     RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
   256   };
   257 
   258   
   259   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   260   class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
   261   public:
   262     typedef _Graph Graph;
   263     typedef GraphWrapperBase<_Graph> Parent;
   264   protected:
   265     NodeFilterMap* node_filter_map;
   266     EdgeFilterMap* edge_filter_map;
   267     SubGraphWrapperBase() : Parent(), 
   268 			    node_filter_map(0), edge_filter_map(0) { }
   269 
   270     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   271       node_filter_map=&_node_filter_map;
   272     }
   273     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   274       edge_filter_map=&_edge_filter_map;
   275     }
   276 
   277   public:
   278 //     SubGraphWrapperBase(Graph& _graph, 
   279 // 			NodeFilterMap& _node_filter_map, 
   280 // 			EdgeFilterMap& _edge_filter_map) : 
   281 //       Parent(&_graph), 
   282 //       node_filter_map(&node_filter_map), 
   283 //       edge_filter_map(&edge_filter_map) { }
   284 
   285     typedef typename Parent::Node Node;
   286     typedef typename Parent::Edge Edge;
   287 
   288     void first(Node& i) const { 
   289       Parent::first(i); 
   290       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   291     }
   292     void first(Edge& i) const { 
   293       Parent::first(i); 
   294       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   295     }
   296     void firstIn(Edge& i, const Node& n) const { 
   297       Parent::firstIn(i, n); 
   298       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   299     }
   300     void firstOut(Edge& i, const Node& n) const { 
   301       Parent::firstOut(i, n); 
   302       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   303     }
   304 
   305     void next(Node& i) const { 
   306       Parent::next(i); 
   307       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   308     }
   309     void next(Edge& i) const { 
   310       Parent::next(i); 
   311       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   312     }
   313     void nextIn(Edge& i) const { 
   314       Parent::nextIn(i); 
   315       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   316     }
   317     void nextOut(Edge& i) const { 
   318       Parent::nextOut(i); 
   319       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   320     }
   321 
   322     /// This function hides \c n in the graph, i.e. the iteration 
   323     /// jumps over it. This is done by simply setting the value of \c n  
   324     /// to be false in the corresponding node-map.
   325     void hide(const Node& n) const { node_filter_map->set(n, false); }
   326 
   327     /// This function hides \c e in the graph, i.e. the iteration 
   328     /// jumps over it. This is done by simply setting the value of \c e  
   329     /// to be false in the corresponding edge-map.
   330     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   331 
   332     /// The value of \c n is set to be true in the node-map which stores 
   333     /// hide information. If \c n was hidden previuosly, then it is shown 
   334     /// again
   335      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   336 
   337     /// The value of \c e is set to be true in the edge-map which stores 
   338     /// hide information. If \c e was hidden previuosly, then it is shown 
   339     /// again
   340     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   341 
   342     /// Returns true if \c n is hidden.
   343     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   344 
   345     /// Returns true if \c n is hidden.
   346     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   347 
   348     /// \warning This is a linear time operation and works only if s
   349     /// \c Graph::NodeIt is defined.
   350     /// \todo assign tags.
   351     int nodeNum() const { 
   352       int i=0;
   353       Node n;
   354       for (first(n); n!=INVALID; next(n)) ++i;
   355       return i; 
   356     }
   357 
   358     /// \warning This is a linear time operation and works only if 
   359     /// \c Graph::EdgeIt is defined.
   360     /// \todo assign tags.
   361     int edgeNum() const { 
   362       int i=0;
   363       Edge e;
   364       for (first(e); e!=INVALID; next(e)) ++i;
   365       return i; 
   366     }
   367 
   368 
   369   };
   370 
   371   /*! \brief A graph wrapper for hiding nodes and edges from a graph.
   372   
   373   \warning Graph wrappers are in even more experimental state than the other
   374   parts of the lib. Use them at you own risk.
   375   
   376   This wrapper shows a graph with filtered node-set and 
   377   edge-set. 
   378   Given a bool-valued map on the node-set and one on 
   379   the edge-set of the graph, the iterators show only the objects 
   380   having true value. We have to note that this does not mean that an 
   381   induced subgraph is obtained, the node-iterator cares only the filter 
   382   on the node-set, and the edge-iterators care only the filter on the 
   383   edge-set.
   384   \code
   385   typedef SmartGraph Graph;
   386   Graph g;
   387   typedef Graph::Node Node;
   388   typedef Graph::Edge Edge;
   389   Node u=g.addNode(); //node of id 0
   390   Node v=g.addNode(); //node of id 1
   391   Node e=g.addEdge(u, v); //edge of id 0
   392   Node f=g.addEdge(v, u); //edge of id 1
   393   Graph::NodeMap<bool> nm(g, true);
   394   nm.set(u, false);
   395   Graph::EdgeMap<bool> em(g, true);
   396   em.set(e, false);
   397   typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   398   SubGW gw(g, nm, em);
   399   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   400   std::cout << ":-)" << std::endl;
   401   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   402   \endcode
   403   The output of the above code is the following.
   404   \code
   405   1
   406   :-)
   407   1
   408   \endcode
   409   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   410   \c Graph::Node that is why \c g.id(n) can be applied.
   411 
   412   For other examples see also the documentation of NodeSubGraphWrapper and 
   413   EdgeSubGraphWrapper.
   414 
   415   \author Marton Makai
   416   */
   417   template<typename _Graph, typename NodeFilterMap, 
   418 	   typename EdgeFilterMap>
   419   class SubGraphWrapper : 
   420     public IterableGraphExtender<
   421     SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
   422   public:
   423     typedef _Graph Graph;
   424     typedef IterableGraphExtender<
   425       SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   426   protected:
   427     SubGraphWrapper() { }
   428   public:
   429     SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   430 		    EdgeFilterMap& _edge_filter_map) { 
   431       setGraph(_graph);
   432       setNodeFilterMap(_node_filter_map);
   433       setEdgeFilterMap(_edge_filter_map);
   434     }
   435   };
   436 
   437 
   438 
   439   /*! \brief A wrapper for hiding nodes from a graph.
   440 
   441   \warning Graph wrappers are in even more experimental state than the other
   442   parts of the lib. Use them at you own risk.
   443   
   444   A wrapper for hiding nodes from a graph.
   445   This wrapper specializes SubGraphWrapper in the way that only the node-set 
   446   can be filtered. Note that this does not mean of considering induced 
   447   subgraph, the edge-iterators consider the original edge-set.
   448   \author Marton Makai
   449   */
   450   template<typename Graph, typename NodeFilterMap>
   451   class NodeSubGraphWrapper : 
   452     public SubGraphWrapper<Graph, NodeFilterMap, 
   453 			   ConstMap<typename Graph::Edge,bool> > {
   454   public:
   455     typedef SubGraphWrapper<Graph, NodeFilterMap, 
   456 			    ConstMap<typename Graph::Edge,bool> > Parent;
   457   protected:
   458     ConstMap<typename Graph::Edge, bool> const_true_map;
   459   public:
   460     NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   461       Parent(), const_true_map(true) { 
   462       Parent::setGraph(_graph);
   463       Parent::setNodeFilterMap(_node_filter_map);
   464       Parent::setEdgeFilterMap(const_true_map);
   465     }
   466   };
   467 
   468 
   469   /*! \brief A wrapper for hiding edges from a graph.
   470 
   471   \warning Graph wrappers are in even more experimental state than the other
   472   parts of the lib. Use them at you own risk.
   473   
   474   A wrapper for hiding edges from a graph.
   475   This wrapper specializes SubGraphWrapper in the way that only the edge-set 
   476   can be filtered. The usefulness of this wrapper is demonstrated in the 
   477   problem of searching a maximum number of edge-disjoint shortest paths 
   478   between 
   479   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   480   non-negative edge-lengths. Note that 
   481   the comprehension of the presented solution 
   482   need's some knowledge from elementary combinatorial optimization. 
   483 
   484   If a single shortest path is to be 
   485   searched between two nodes \c s and \c t, then this can be done easily by 
   486   applying the Dijkstra algorithm class. What happens, if a maximum number of 
   487   edge-disjoint shortest paths is to be computed. It can be proved that an 
   488   edge can be in a shortest path if and only if it is tight with respect to 
   489   the potential function computed by Dijkstra. Moreover, any path containing 
   490   only such edges is a shortest one. Thus we have to compute a maximum number 
   491   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   492   all the tight edges. The computation will be demonstrated on the following 
   493   graph, which is read from a dimacs file.
   494   
   495   \dot
   496   digraph lemon_dot_example {
   497   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   498   n0 [ label="0 (s)" ];
   499   n1 [ label="1" ];
   500   n2 [ label="2" ];
   501   n3 [ label="3" ];
   502   n4 [ label="4" ];
   503   n5 [ label="5" ];
   504   n6 [ label="6 (t)" ];
   505   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   506   n5 ->  n6 [ label="9, length:4" ];
   507   n4 ->  n6 [ label="8, length:2" ];
   508   n3 ->  n5 [ label="7, length:1" ];
   509   n2 ->  n5 [ label="6, length:3" ];
   510   n2 ->  n6 [ label="5, length:5" ];
   511   n2 ->  n4 [ label="4, length:2" ];
   512   n1 ->  n4 [ label="3, length:3" ];
   513   n0 ->  n3 [ label="2, length:1" ];
   514   n0 ->  n2 [ label="1, length:2" ];
   515   n0 ->  n1 [ label="0, length:3" ];
   516   }
   517   \enddot
   518 
   519   \code
   520   Graph g;
   521   Node s, t;
   522   LengthMap length(g);
   523 
   524   readDimacs(std::cin, g, length, s, t);
   525 
   526   cout << "edges with lengths (of form id, source--length->target): " << endl;
   527   for(EdgeIt e(g); e!=INVALID; ++e) 
   528     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   529          << length[e] << "->" << g.id(g.target(e)) << endl;
   530 
   531   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   532   \endcode
   533   Next, the potential function is computed with Dijkstra.
   534   \code
   535   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   536   Dijkstra dijkstra(g, length);
   537   dijkstra.run(s);
   538   \endcode
   539   Next, we consrtruct a map which filters the edge-set to the tight edges.
   540   \code
   541   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   542     TightEdgeFilter;
   543   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   544   
   545   typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
   546   SubGW gw(g, tight_edge_filter);
   547   \endcode
   548   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   549   with a max flow algorithm Preflow.
   550   \code
   551   ConstMap<Edge, int> const_1_map(1);
   552   Graph::EdgeMap<int> flow(g, 0);
   553 
   554   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   555     preflow(gw, s, t, const_1_map, flow);
   556   preflow.run();
   557   \endcode
   558   Last, the output is:
   559   \code  
   560   cout << "maximum number of edge-disjoint shortest path: " 
   561        << preflow.flowValue() << endl;
   562   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   563        << endl;
   564   for(EdgeIt e(g); e!=INVALID; ++e) 
   565     if (flow[e])
   566       cout << " " << g.id(g.source(e)) << "--" 
   567 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   568   \endcode
   569   The program has the following (expected :-)) output:
   570   \code
   571   edges with lengths (of form id, source--length->target):
   572    9, 5--4->6
   573    8, 4--2->6
   574    7, 3--1->5
   575    6, 2--3->5
   576    5, 2--5->6
   577    4, 2--2->4
   578    3, 1--3->4
   579    2, 0--1->3
   580    1, 0--2->2
   581    0, 0--3->1
   582   s: 0 t: 6
   583   maximum number of edge-disjoint shortest path: 2
   584   edges of the maximum number of edge-disjoint shortest s-t paths:
   585    9, 5--4->6
   586    8, 4--2->6
   587    7, 3--1->5
   588    4, 2--2->4
   589    2, 0--1->3
   590    1, 0--2->2
   591   \endcode
   592 
   593   \author Marton Makai
   594   */
   595   template<typename Graph, typename EdgeFilterMap>
   596   class EdgeSubGraphWrapper : 
   597     public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   598 			   EdgeFilterMap> {
   599   public:
   600     typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   601 			    EdgeFilterMap> Parent;
   602   protected:
   603     ConstMap<typename Graph::Node, bool> const_true_map;
   604   public:
   605     EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   606       Parent(), const_true_map(true) { 
   607       Parent::setGraph(_graph);
   608       Parent::setNodeFilterMap(const_true_map);
   609       Parent::setEdgeFilterMap(_edge_filter_map);
   610     }
   611   };
   612 
   613 
   614   template<typename Graph>
   615   class UndirGraphWrapper : public GraphWrapper<Graph> {
   616   public:
   617     typedef GraphWrapper<Graph> Parent; 
   618   protected:
   619     UndirGraphWrapper() : GraphWrapper<Graph>() { }
   620     
   621   public:
   622     typedef typename GraphWrapper<Graph>::Node Node;
   623     typedef typename GraphWrapper<Graph>::NodeIt NodeIt;
   624     typedef typename GraphWrapper<Graph>::Edge Edge;
   625     typedef typename GraphWrapper<Graph>::EdgeIt EdgeIt;
   626 
   627     UndirGraphWrapper(Graph& _graph) : GraphWrapper<Graph>(_graph) { }  
   628 
   629     class OutEdgeIt {
   630       friend class UndirGraphWrapper<Graph>;
   631       bool out_or_in; //true iff out
   632       typename Graph::OutEdgeIt out;
   633       typename Graph::InEdgeIt in;
   634     public:
   635       OutEdgeIt() { }
   636       OutEdgeIt(const Invalid& i) : Edge(i) { }
   637       OutEdgeIt(const UndirGraphWrapper<Graph>& _G, const Node& _n) {
   638 	out_or_in=true; _G.graph->first(out, _n);
   639 	if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n);	}
   640       } 
   641       operator Edge() const { 
   642 	if (out_or_in) return Edge(out); else return Edge(in); 
   643       }
   644     };
   645 
   646     typedef OutEdgeIt InEdgeIt; 
   647 
   648     using GraphWrapper<Graph>::first;
   649     OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { 
   650       i=OutEdgeIt(*this, p); return i;
   651     }
   652 
   653     using GraphWrapper<Graph>::next;
   654 
   655     OutEdgeIt& next(OutEdgeIt& e) const {
   656       if (e.out_or_in) {
   657 	typename Graph::Node n=this->graph->source(e.out);
   658 	this->graph->next(e.out);
   659 	if (!this->graph->valid(e.out)) { 
   660 	  e.out_or_in=false; this->graph->first(e.in, n); }
   661       } else {
   662 	this->graph->next(e.in);
   663       }
   664       return e;
   665     }
   666 
   667     Node aNode(const OutEdgeIt& e) const { 
   668       if (e.out_or_in) return this->graph->source(e); else 
   669 	return this->graph->target(e); }
   670     Node bNode(const OutEdgeIt& e) const { 
   671       if (e.out_or_in) return this->graph->target(e); else 
   672 	return this->graph->source(e); }
   673 
   674     //    KEEP_MAPS(Parent, UndirGraphWrapper);
   675 
   676   };
   677   
   678 //   /// \brief An undirected graph template.
   679 //   ///
   680 //   ///\warning Graph wrappers are in even more experimental state than the other
   681 //   ///parts of the lib. Use them at your own risk.
   682 //   ///
   683 //   /// An undirected graph template.
   684 //   /// This class works as an undirected graph and a directed graph of 
   685 //   /// class \c Graph is used for the physical storage.
   686 //   /// \ingroup graphs
   687   template<typename Graph>
   688   class UndirGraph : public UndirGraphWrapper<Graph> {
   689     typedef UndirGraphWrapper<Graph> Parent;
   690   protected:
   691     Graph gr;
   692   public:
   693     UndirGraph() : UndirGraphWrapper<Graph>() { 
   694       Parent::setGraph(gr); 
   695     }
   696 
   697     //    KEEP_MAPS(Parent, UndirGraph);
   698   };
   699 
   700   
   701   template <typename _Graph, 
   702 	    typename ForwardFilterMap, typename BackwardFilterMap>
   703   class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
   704   public:
   705     typedef _Graph Graph;
   706     typedef GraphWrapperBase<_Graph> Parent;
   707   protected:
   708     ForwardFilterMap* forward_filter;
   709     BackwardFilterMap* backward_filter;
   710     SubBidirGraphWrapperBase() : Parent(), 
   711 				 forward_filter(0), backward_filter(0) { }
   712 
   713     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   714       forward_filter=&_forward_filter;
   715     }
   716     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   717       backward_filter=&_backward_filter;
   718     }
   719 
   720   public:
   721 //     SubGraphWrapperBase(Graph& _graph, 
   722 // 			NodeFilterMap& _node_filter_map, 
   723 // 			EdgeFilterMap& _edge_filter_map) : 
   724 //       Parent(&_graph), 
   725 //       node_filter_map(&node_filter_map), 
   726 //       edge_filter_map(&edge_filter_map) { }
   727 
   728     typedef typename Parent::Node Node;
   729     typedef typename _Graph::Edge GraphEdge;
   730     template <typename T> class EdgeMap;
   731     /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from 
   732     /// _Graph::Edge. It contains an extra bool flag which is true 
   733     /// if and only if the 
   734     /// edge is the backward version of the original edge.
   735     class Edge : public _Graph::Edge {
   736       friend class SubBidirGraphWrapperBase<
   737 	Graph, ForwardFilterMap, BackwardFilterMap>;
   738       template<typename T> friend class EdgeMap;
   739     protected:
   740       bool backward; //true, iff backward
   741     public:
   742       Edge() { }
   743       /// \todo =false is needed, or causes problems?
   744       /// If \c _backward is false, then we get an edge corresponding to the 
   745       /// original one, otherwise its oppositely directed pair is obtained.
   746       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   747 	_Graph::Edge(e), backward(_backward) { }
   748       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   749       bool operator==(const Edge& v) const { 
   750 	return (this->backward==v.backward && 
   751 		static_cast<typename _Graph::Edge>(*this)==
   752 		static_cast<typename _Graph::Edge>(v));
   753       } 
   754       bool operator!=(const Edge& v) const { 
   755 	return (this->backward!=v.backward || 
   756 		static_cast<typename _Graph::Edge>(*this)!=
   757 		static_cast<typename _Graph::Edge>(v));
   758       }
   759     };
   760 
   761     void first(Node& i) const { 
   762       Parent::first(i); 
   763     }
   764 
   765     void first(Edge& i) const { 
   766       Parent::first(i); 
   767       i.backward=false;
   768       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   769 	     !(*forward_filter)[i]) Parent::next(i);
   770       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   771 	Parent::first(i); 
   772 	i.backward=true;
   773 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   774 	       !(*backward_filter)[i]) Parent::next(i);
   775       }
   776     }
   777 
   778     void firstIn(Edge& i, const Node& n) const { 
   779       Parent::firstIn(i, n); 
   780       i.backward=false;
   781       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   782 	     !(*forward_filter)[i]) Parent::nextOut(i);
   783       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   784 	Parent::firstOut(i, n); 
   785 	i.backward=true;
   786 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   787 	       !(*backward_filter)[i]) Parent::nextOut(i);
   788       }
   789     }
   790 
   791     void firstOut(Edge& i, const Node& n) const { 
   792       Parent::firstOut(i, n); 
   793       i.backward=false;
   794       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   795 	     !(*forward_filter)[i]) Parent::nextOut(i);
   796       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   797 	Parent::firstIn(i, n); 
   798 	i.backward=true;
   799 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   800 	       !(*backward_filter)[i]) Parent::nextIn(i);
   801       }
   802     }
   803 
   804     void next(Node& i) const { 
   805       Parent::next(i); 
   806     }
   807 
   808     void next(Edge& i) const { 
   809       if (!(i.backward)) {
   810 	Parent::next(i);
   811 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   812 	       !(*forward_filter)[i]) Parent::next(i);
   813 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   814 	  Parent::first(i); 
   815 	  i.backward=true;
   816 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   817 		 !(*backward_filter)[i]) Parent::next(i);
   818 	}
   819       } else {
   820 	Parent::next(i);
   821 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   822 	       !(*backward_filter)[i]) Parent::next(i);
   823       }
   824     }
   825 
   826     void nextIn(Edge& i) const { 
   827       if (!(i.backward)) {
   828 	Node n=Parent::target(i);
   829 	Parent::nextIn(i);
   830 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   831 	       !(*forward_filter)[i]) Parent::nextIn(i);
   832 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   833 	  Parent::firstOut(i, n); 
   834 	  i.backward=true;
   835 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   836 		 !(*backward_filter)[i]) Parent::nextOut(i);
   837 	}
   838       } else {
   839 	Parent::nextOut(i);
   840 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   841 	       !(*backward_filter)[i]) Parent::nextOut(i);
   842       }
   843     }
   844 
   845     void nextOut(Edge& i) const { 
   846       if (!(i.backward)) {
   847 	Node n=Parent::source(i);
   848 	Parent::nextOut(i);
   849 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   850 	       !(*forward_filter)[i]) Parent::nextOut(i);
   851 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   852 	  Parent::firstIn(i, n); 
   853 	  i.backward=true;
   854 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   855 		 !(*backward_filter)[i]) Parent::nextIn(i);
   856 	}
   857       } else {
   858 	Parent::nextIn(i);
   859 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   860 	       !(*backward_filter)[i]) Parent::nextIn(i);
   861       }
   862     }
   863 
   864     Node source(Edge e) const { 
   865       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   866     Node target(Edge e) const { 
   867       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   868 
   869     /// Gives back the opposite edge.
   870     Edge opposite(const Edge& e) const { 
   871       Edge f=e;
   872       f.backward=!f.backward;
   873       return f;
   874     }
   875 
   876     /// \warning This is a linear time operation and works only if 
   877     /// \c Graph::EdgeIt is defined.
   878     /// \todo hmm
   879     int edgeNum() const { 
   880       int i=0;
   881       Edge e;
   882       for (first(e); e!=INVALID; next(e)) ++i;
   883       return i; 
   884     }
   885 
   886     bool forward(const Edge& e) const { return !e.backward; }
   887     bool backward(const Edge& e) const { return e.backward; }
   888 
   889     template <typename T>
   890     /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two 
   891     /// _Graph::EdgeMap one for the forward edges and 
   892     /// one for the backward edges.
   893     class EdgeMap {
   894       template <typename TT> friend class EdgeMap;
   895       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   896     public:
   897       typedef T Value;
   898       typedef Edge Key;
   899 
   900       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   901 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   902 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   903 
   904       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   905 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   906 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   907       
   908       void set(Edge e, T a) { 
   909 	if (!e.backward) 
   910 	  forward_map.set(e, a); 
   911 	else 
   912 	  backward_map.set(e, a); 
   913       }
   914 
   915 //       typename _Graph::template EdgeMap<T>::ConstReference 
   916 //       operator[](Edge e) const { 
   917 // 	if (!e.backward) 
   918 // 	  return forward_map[e]; 
   919 // 	else 
   920 // 	  return backward_map[e]; 
   921 //       }
   922 
   923 //      typename _Graph::template EdgeMap<T>::Reference 
   924       T operator[](Edge e) const { 
   925 	if (!e.backward) 
   926 	  return forward_map[e]; 
   927 	else 
   928 	  return backward_map[e]; 
   929       }
   930 
   931       void update() { 
   932 	forward_map.update(); 
   933 	backward_map.update();
   934       }
   935     };
   936 
   937   };
   938 
   939 
   940   ///\brief A wrapper for composing a subgraph of a 
   941   /// bidirected graph made from a directed one. 
   942   ///
   943   /// A wrapper for composing a subgraph of a 
   944   /// bidirected graph made from a directed one. 
   945   ///
   946   ///\warning Graph wrappers are in even more experimental state than the other
   947   ///parts of the lib. Use them at you own risk.
   948   ///
   949   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
   950   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
   951   /// reversing its orientation. We are given moreover two bool valued 
   952   /// maps on the edge-set, 
   953   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
   954   /// SubBidirGraphWrapper implements the graph structure with node-set 
   955   /// \f$V\f$ and edge-set 
   956   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
   957   /// The purpose of writing + instead of union is because parallel 
   958   /// edges can arise. (Similarly, antiparallel edges also can arise).
   959   /// In other words, a subgraph of the bidirected graph obtained, which 
   960   /// is given by orienting the edges of the original graph in both directions.
   961   /// As the oppositely directed edges are logically different, 
   962   /// the maps are able to attach different values for them. 
   963   ///
   964   /// An example for such a construction is \c RevGraphWrapper where the 
   965   /// forward_filter is everywhere false and the backward_filter is 
   966   /// everywhere true. We note that for sake of efficiency, 
   967   /// \c RevGraphWrapper is implemented in a different way. 
   968   /// But BidirGraphWrapper is obtained from 
   969   /// SubBidirGraphWrapper by considering everywhere true 
   970   /// valued maps both for forward_filter and backward_filter. 
   971   /// Finally, one of the most important applications of SubBidirGraphWrapper 
   972   /// is ResGraphWrapper, which stands for the residual graph in directed 
   973   /// flow and circulation problems. 
   974   /// As wrappers usually, the SubBidirGraphWrapper implements the 
   975   /// above mentioned graph structure without its physical storage, 
   976   /// that is the whole stuff is stored in constant memory. 
   977   template<typename _Graph, 
   978 	   typename ForwardFilterMap, typename BackwardFilterMap>
   979   class SubBidirGraphWrapper : 
   980     public IterableGraphExtender<
   981     SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
   982   public:
   983     typedef _Graph Graph;
   984     typedef IterableGraphExtender<
   985       SubBidirGraphWrapperBase<
   986       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
   987   protected:
   988     SubBidirGraphWrapper() { }
   989   public:
   990     SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter, 
   991 			 BackwardFilterMap& _backward_filter) { 
   992       setGraph(_graph);
   993       setForwardFilterMap(_forward_filter);
   994       setBackwardFilterMap(_backward_filter);
   995     }
   996   };
   997 
   998 
   999 
  1000   ///\brief A wrapper for composing bidirected graph from a directed one. 
  1001   ///
  1002   ///\warning Graph wrappers are in even more experimental state than the other
  1003   ///parts of the lib. Use them at you own risk.
  1004   ///
  1005   /// A wrapper for composing bidirected graph from a directed one. 
  1006   /// A bidirected graph is composed over the directed one without physical 
  1007   /// storage. As the oppositely directed edges are logically different ones 
  1008   /// the maps are able to attach different values for them.
  1009   template<typename Graph>
  1010   class BidirGraphWrapper : 
  1011     public SubBidirGraphWrapper<
  1012     Graph, 
  1013     ConstMap<typename Graph::Edge, bool>, 
  1014     ConstMap<typename Graph::Edge, bool> > {
  1015   public:
  1016     typedef  SubBidirGraphWrapper<
  1017       Graph, 
  1018       ConstMap<typename Graph::Edge, bool>, 
  1019       ConstMap<typename Graph::Edge, bool> > Parent; 
  1020   protected:
  1021     ConstMap<typename Graph::Edge, bool> cm;
  1022 
  1023     BidirGraphWrapper() : Parent(), cm(true) { 
  1024       Parent::setForwardFilterMap(cm);
  1025       Parent::setBackwardFilterMap(cm);
  1026     }
  1027   public:
  1028     BidirGraphWrapper(Graph& _graph) : Parent() { 
  1029       Parent::setGraph(_graph);
  1030       Parent::setForwardFilterMap(cm);
  1031       Parent::setBackwardFilterMap(cm);
  1032     }
  1033 
  1034     int edgeNum() const { 
  1035       return 2*this->graph->edgeNum();
  1036     }
  1037     //    KEEP_MAPS(Parent, BidirGraphWrapper);
  1038   };
  1039 
  1040 
  1041   /// \brief A bidirected graph template.
  1042   ///
  1043   ///\warning Graph wrappers are in even more experimental state than the other
  1044   ///parts of the lib. Use them at you own risk.
  1045   ///
  1046   /// A bidirected graph template.
  1047   /// Such a bidirected graph stores each pair of oppositely directed edges 
  1048   /// ones in the memory, i.e. a directed graph of type 
  1049   /// \c Graph is used for that.
  1050   /// As the oppositely directed edges are logically different ones 
  1051   /// the maps are able to attach different values for them.
  1052   /// \ingroup graphs
  1053   template<typename Graph>
  1054   class BidirGraph : public BidirGraphWrapper<Graph> {
  1055   public:
  1056     typedef UndirGraphWrapper<Graph> Parent;
  1057   protected:
  1058     Graph gr;
  1059   public:
  1060     BidirGraph() : BidirGraphWrapper<Graph>() { 
  1061       Parent::setGraph(gr); 
  1062     }
  1063     //    KEEP_MAPS(Parent, BidirGraph);
  1064   };
  1065 
  1066 
  1067 
  1068   template<typename Graph, typename Number,
  1069 	   typename CapacityMap, typename FlowMap>
  1070   class ResForwardFilter {
  1071     //    const Graph* graph;
  1072     const CapacityMap* capacity;
  1073     const FlowMap* flow;
  1074   public:
  1075     ResForwardFilter(/*const Graph& _graph, */
  1076 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1077       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1078     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1079     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1080     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1081     bool operator[](const typename Graph::Edge& e) const {
  1082       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1083     }
  1084   };
  1085 
  1086   template<typename Graph, typename Number,
  1087 	   typename CapacityMap, typename FlowMap>
  1088   class ResBackwardFilter {
  1089     const CapacityMap* capacity;
  1090     const FlowMap* flow;
  1091   public:
  1092     ResBackwardFilter(/*const Graph& _graph,*/ 
  1093 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1094       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1095     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1096     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1097     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1098     bool operator[](const typename Graph::Edge& e) const {
  1099       return (Number(0) < Number((*flow)[e]));
  1100     }
  1101   };
  1102 
  1103   
  1104   /// A wrapper for composing the residual graph for directed flow and circulation problems.
  1105 
  1106   ///\warning Graph wrappers are in even more experimental state than the other
  1107   ///parts of the lib. Use them at you own risk.
  1108   ///
  1109   /// A wrapper for composing the residual graph for directed flow and circulation problems.
  1110   template<typename Graph, typename Number, 
  1111 	   typename CapacityMap, typename FlowMap>
  1112   class ResGraphWrapper : 
  1113     public SubBidirGraphWrapper< 
  1114     Graph, 
  1115     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1116     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1117   public:
  1118     typedef SubBidirGraphWrapper< 
  1119       Graph, 
  1120       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1121       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1122   protected:
  1123     const CapacityMap* capacity;
  1124     FlowMap* flow;
  1125     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1126     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1127     ResGraphWrapper() : Parent(), 
  1128  			capacity(0), flow(0) { }
  1129     void setCapacityMap(const CapacityMap& _capacity) {
  1130       capacity=&_capacity;
  1131       forward_filter.setCapacity(_capacity);
  1132       backward_filter.setCapacity(_capacity);
  1133     }
  1134     void setFlowMap(FlowMap& _flow) {
  1135       flow=&_flow;
  1136       forward_filter.setFlow(_flow);
  1137       backward_filter.setFlow(_flow);
  1138     }
  1139   public:
  1140     ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, 
  1141 		       FlowMap& _flow) : 
  1142       Parent(), capacity(&_capacity), flow(&_flow), 
  1143       forward_filter(/*_graph,*/ _capacity, _flow), 
  1144       backward_filter(/*_graph,*/ _capacity, _flow) {
  1145       Parent::setGraph(_graph);
  1146       Parent::setForwardFilterMap(forward_filter);
  1147       Parent::setBackwardFilterMap(backward_filter);
  1148     }
  1149 
  1150     typedef typename Parent::Edge Edge;
  1151 
  1152     void augment(const Edge& e, Number a) const {
  1153       if (Parent::forward(e))  
  1154 	flow->set(e, (*flow)[e]+a);
  1155       else  
  1156 	flow->set(e, (*flow)[e]-a);
  1157     }
  1158 
  1159     /// \brief Residual capacity map.
  1160     ///
  1161     /// In generic residual graphs the residual capacity can be obtained 
  1162     /// as a map. 
  1163     class ResCap {
  1164     protected:
  1165       const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1166     public:
  1167       typedef Number Value;
  1168       typedef Edge Key;
  1169       ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>& 
  1170 	     _res_graph) : res_graph(&_res_graph) { }
  1171       Number operator[](const Edge& e) const { 
  1172 	if (res_graph->forward(e)) 
  1173 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1174 	else 
  1175 	  return (*(res_graph->flow))[e]; 
  1176       }
  1177     };
  1178 
  1179     //    KEEP_MAPS(Parent, ResGraphWrapper);
  1180   };
  1181 
  1182 
  1183 
  1184   template <typename _Graph, typename FirstOutEdgesMap>
  1185   class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
  1186   public:
  1187     typedef _Graph Graph;
  1188     typedef GraphWrapperBase<_Graph> Parent;
  1189   protected:
  1190     FirstOutEdgesMap* first_out_edges;
  1191     ErasingFirstGraphWrapperBase() : Parent(), 
  1192 				     first_out_edges(0) { }
  1193 
  1194     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1195       first_out_edges=&_first_out_edges;
  1196     }
  1197 
  1198   public:
  1199 
  1200     typedef typename Parent::Node Node;
  1201     typedef typename Parent::Edge Edge;
  1202 
  1203     void firstOut(Edge& i, const Node& n) const { 
  1204       i=(*first_out_edges)[n];
  1205     }
  1206 
  1207     void erase(const Edge& e) const {
  1208       Node n=source(e);
  1209       Edge f=e;
  1210       Parent::nextOut(f);
  1211       first_out_edges->set(n, f);
  1212     }    
  1213   };
  1214 
  1215 
  1216   /// For blocking flows.
  1217 
  1218   ///\warning Graph wrappers are in even more experimental state than the other
  1219   ///parts of the lib. Use them at you own risk.
  1220   ///
  1221   /// This graph wrapper is used for on-the-fly 
  1222   /// Dinits blocking flow computations.
  1223   /// For each node, an out-edge is stored which is used when the 
  1224   /// \code 
  1225   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1226   /// \endcode
  1227   /// is called. 
  1228   ///
  1229   /// \author Marton Makai
  1230   template <typename _Graph, typename FirstOutEdgesMap>
  1231   class ErasingFirstGraphWrapper : 
  1232     public IterableGraphExtender<
  1233     ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
  1234   public:
  1235     typedef _Graph Graph;
  1236     typedef IterableGraphExtender<
  1237       ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
  1238     ErasingFirstGraphWrapper(Graph& _graph, 
  1239 			     FirstOutEdgesMap& _first_out_edges) { 
  1240       setGraph(_graph);
  1241       setFirstOutEdgesMap(_first_out_edges);
  1242     } 
  1243 
  1244   };
  1245 
  1246   ///@}
  1247 
  1248 } //namespace lemon
  1249 
  1250 #endif //LEMON_GRAPH_WRAPPER_H
  1251