Undirected graph documentation and concept refinements.
* quite a few bug fixes
* concept::UndirGraph is almost complete and looks quite good.
2 * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_GRAPH_WRAPPER_H
18 #define LEMON_GRAPH_WRAPPER_H
22 ///\brief Several graph wrappers.
24 ///This file contains several useful graph wrapper functions.
26 ///\author Marton Makai
28 #include <lemon/invalid.h>
29 #include <lemon/maps.h>
30 #include <lemon/iterable_graph_extender.h>
31 #include <lemon/map_defines.h>
38 /*! \addtogroup gwrappers
39 The main parts of LEMON are the different graph structures,
40 generic graph algorithms, graph concepts which couple these, and
41 graph wrappers. While the previous ones are more or less clear, the
42 latter notion needs further explanation.
43 Graph wrappers are graph classes which serve for considering graph
44 structures in different ways. A short example makes the notion much
46 Suppose that we have an instance \c g of a directed graph
47 type say \c ListGraph and an algorithm
48 \code template<typename Graph> int algorithm(const Graph&); \endcode
49 is needed to run on the reversely oriented graph.
50 It may be expensive (in time or in memory usage) to copy
51 \c g with the reverse orientation.
53 \code template<typename Graph> class RevGraphWrapper; \endcode is used.
54 The code looks as follows
57 RevGraphWrapper<ListGraph> rgw(g);
58 int result=algorithm(rgw);
60 After running the algorithm, the original graph \c g
61 remains untouched. Thus the graph wrapper used above is to consider the
62 original graph with reverse orientation.
63 This techniques gives rise to an elegant code, and
64 based on stable graph wrappers, complex algorithms can be
66 In flow, circulation and bipartite matching problems, the residual
67 graph is of particular importance. Combining a wrapper implementing
68 this, shortest path algorithms and minimum mean cycle algorithms,
69 a range of weighted and cardinality optimization algorithms can be
70 obtained. For lack of space, for other examples,
71 the interested user is referred to the detailed documentation of graph
73 The behavior of graph wrappers can be very different. Some of them keep
74 capabilities of the original graph while in other cases this would be
75 meaningless. This means that the concepts that they are a model of depend
76 on the graph wrapper, and the wrapped graph(s).
77 If an edge of \c rgw is deleted, this is carried out by
78 deleting the corresponding edge of \c g. But for a residual
79 graph, this operation has no sense.
80 Let we stand one more example here to simplify your work.
82 \code template<typename Graph> class RevGraphWrapper; \endcode
84 <tt> RevGraphWrapper(Graph& _g)</tt>.
85 This means that in a situation,
86 when a <tt> const ListGraph& </tt> reference to a graph is given,
87 then it have to be instantiated with <tt>Graph=const ListGraph</tt>.
89 int algorithm1(const ListGraph& g) {
90 RevGraphWrapper<const ListGraph> rgw(g);
91 return algorithm2(rgw);
98 Base type for the Graph Wrappers
100 \warning Graph wrappers are in even more experimental state than the other
101 parts of the lib. Use them at you own risk.
103 This is the base type for most of LEMON graph wrappers.
104 This class implements a trivial graph wrapper i.e. it only wraps the
105 functions and types of the graph. The purpose of this class is to
106 make easier implementing graph wrappers. E.g. if a wrapper is
107 considered which differs from the wrapped graph only in some of its
108 functions or types, then it can be derived from GraphWrapper, and only the
109 differences should be implemented.
113 template<typename _Graph>
114 class GraphWrapperBase {
116 typedef _Graph Graph;
117 /// \todo Is it needed?
118 typedef Graph BaseGraph;
119 typedef Graph ParentGraph;
123 GraphWrapperBase() : graph(0) { }
124 void setGraph(Graph& _graph) { graph=&_graph; }
127 GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
129 typedef typename Graph::Node Node;
130 typedef typename Graph::Edge Edge;
132 void first(Node& i) const { graph->first(i); }
133 void first(Edge& i) const { graph->first(i); }
134 void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
135 void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
137 void next(Node& i) const { graph->next(i); }
138 void next(Edge& i) const { graph->next(i); }
139 void nextIn(Edge& i) const { graph->nextIn(i); }
140 void nextOut(Edge& i) const { graph->nextOut(i); }
142 Node source(const Edge& e) const { return graph->source(e); }
143 Node target(const Edge& e) const { return graph->target(e); }
145 int nodeNum() const { return graph->nodeNum(); }
146 int edgeNum() const { return graph->edgeNum(); }
148 Node addNode() const { return Node(graph->addNode()); }
149 Edge addEdge(const Node& source, const Node& target) const {
150 return Edge(graph->addEdge(source, target)); }
152 void erase(const Node& i) const { graph->erase(i); }
153 void erase(const Edge& i) const { graph->erase(i); }
155 void clear() const { graph->clear(); }
157 bool forward(const Edge& e) const { return graph->forward(e); }
158 bool backward(const Edge& e) const { return graph->backward(e); }
160 int id(const Node& v) const { return graph->id(v); }
161 int id(const Edge& e) const { return graph->id(e); }
163 Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
165 template <typename _Value>
166 class NodeMap : public _Graph::template NodeMap<_Value> {
168 typedef typename _Graph::template NodeMap<_Value> Parent;
169 NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
170 NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
171 : Parent(*gw.graph, value) { }
174 template <typename _Value>
175 class EdgeMap : public _Graph::template EdgeMap<_Value> {
177 typedef typename _Graph::template EdgeMap<_Value> Parent;
178 EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
179 EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
180 : Parent(*gw.graph, value) { }
185 template <typename _Graph>
187 public IterableGraphExtender<GraphWrapperBase<_Graph> > {
189 typedef _Graph Graph;
190 typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
192 GraphWrapper() : Parent() { }
195 GraphWrapper(Graph& _graph) { setGraph(_graph); }
198 template <typename _Graph>
199 class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
201 typedef _Graph Graph;
202 typedef GraphWrapperBase<_Graph> Parent;
204 RevGraphWrapperBase() : Parent() { }
206 typedef typename Parent::Node Node;
207 typedef typename Parent::Edge Edge;
210 void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
211 void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
214 void nextIn(Edge& i) const { Parent::nextOut(i); }
215 void nextOut(Edge& i) const { Parent::nextIn(i); }
217 Node source(const Edge& e) const { return Parent::target(e); }
218 Node target(const Edge& e) const { return Parent::source(e); }
222 /// A graph wrapper which reverses the orientation of the edges.
224 ///\warning Graph wrappers are in even more experimental state than the other
225 ///parts of the lib. Use them at you own risk.
227 /// Let \f$G=(V, A)\f$ be a directed graph and
228 /// suppose that a graph instange \c g of type
229 /// \c ListGraph implements \f$G\f$.
233 /// For each directed edge
234 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
235 /// reversing its orientation.
236 /// Then RevGraphWrapper implements the graph structure with node-set
237 /// \f$V\f$ and edge-set
238 /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be
239 /// reversing the orientation of its edges. The following code shows how
240 /// such an instance can be constructed.
242 /// RevGraphWrapper<ListGraph> gw(g);
244 ///\author Marton Makai
245 template<typename _Graph>
246 class RevGraphWrapper :
247 public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
249 typedef _Graph Graph;
250 typedef IterableGraphExtender<
251 RevGraphWrapperBase<_Graph> > Parent;
253 RevGraphWrapper() { }
255 RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
259 template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
260 class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
262 typedef _Graph Graph;
263 typedef GraphWrapperBase<_Graph> Parent;
265 NodeFilterMap* node_filter_map;
266 EdgeFilterMap* edge_filter_map;
267 SubGraphWrapperBase() : Parent(),
268 node_filter_map(0), edge_filter_map(0) { }
270 void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
271 node_filter_map=&_node_filter_map;
273 void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
274 edge_filter_map=&_edge_filter_map;
278 // SubGraphWrapperBase(Graph& _graph,
279 // NodeFilterMap& _node_filter_map,
280 // EdgeFilterMap& _edge_filter_map) :
282 // node_filter_map(&node_filter_map),
283 // edge_filter_map(&edge_filter_map) { }
285 typedef typename Parent::Node Node;
286 typedef typename Parent::Edge Edge;
288 void first(Node& i) const {
290 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
292 void first(Edge& i) const {
294 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
296 void firstIn(Edge& i, const Node& n) const {
297 Parent::firstIn(i, n);
298 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
300 void firstOut(Edge& i, const Node& n) const {
301 Parent::firstOut(i, n);
302 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
305 void next(Node& i) const {
307 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
309 void next(Edge& i) const {
311 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
313 void nextIn(Edge& i) const {
315 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
317 void nextOut(Edge& i) const {
319 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
322 /// This function hides \c n in the graph, i.e. the iteration
323 /// jumps over it. This is done by simply setting the value of \c n
324 /// to be false in the corresponding node-map.
325 void hide(const Node& n) const { node_filter_map->set(n, false); }
327 /// This function hides \c e in the graph, i.e. the iteration
328 /// jumps over it. This is done by simply setting the value of \c e
329 /// to be false in the corresponding edge-map.
330 void hide(const Edge& e) const { edge_filter_map->set(e, false); }
332 /// The value of \c n is set to be true in the node-map which stores
333 /// hide information. If \c n was hidden previuosly, then it is shown
335 void unHide(const Node& n) const { node_filter_map->set(n, true); }
337 /// The value of \c e is set to be true in the edge-map which stores
338 /// hide information. If \c e was hidden previuosly, then it is shown
340 void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
342 /// Returns true if \c n is hidden.
343 bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
345 /// Returns true if \c n is hidden.
346 bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
348 /// \warning This is a linear time operation and works only if s
349 /// \c Graph::NodeIt is defined.
350 /// \todo assign tags.
351 int nodeNum() const {
354 for (first(n); n!=INVALID; next(n)) ++i;
358 /// \warning This is a linear time operation and works only if
359 /// \c Graph::EdgeIt is defined.
360 /// \todo assign tags.
361 int edgeNum() const {
364 for (first(e); e!=INVALID; next(e)) ++i;
371 /*! \brief A graph wrapper for hiding nodes and edges from a graph.
373 \warning Graph wrappers are in even more experimental state than the other
374 parts of the lib. Use them at you own risk.
376 This wrapper shows a graph with filtered node-set and
378 Given a bool-valued map on the node-set and one on
379 the edge-set of the graph, the iterators show only the objects
380 having true value. We have to note that this does not mean that an
381 induced subgraph is obtained, the node-iterator cares only the filter
382 on the node-set, and the edge-iterators care only the filter on the
385 typedef SmartGraph Graph;
387 typedef Graph::Node Node;
388 typedef Graph::Edge Edge;
389 Node u=g.addNode(); //node of id 0
390 Node v=g.addNode(); //node of id 1
391 Node e=g.addEdge(u, v); //edge of id 0
392 Node f=g.addEdge(v, u); //edge of id 1
393 Graph::NodeMap<bool> nm(g, true);
395 Graph::EdgeMap<bool> em(g, true);
397 typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
399 for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
400 std::cout << ":-)" << std::endl;
401 for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
403 The output of the above code is the following.
409 Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
410 \c Graph::Node that is why \c g.id(n) can be applied.
412 For other examples see also the documentation of NodeSubGraphWrapper and
417 template<typename _Graph, typename NodeFilterMap,
418 typename EdgeFilterMap>
419 class SubGraphWrapper :
420 public IterableGraphExtender<
421 SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
423 typedef _Graph Graph;
424 typedef IterableGraphExtender<
425 SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
427 SubGraphWrapper() { }
429 SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map,
430 EdgeFilterMap& _edge_filter_map) {
432 setNodeFilterMap(_node_filter_map);
433 setEdgeFilterMap(_edge_filter_map);
439 /*! \brief A wrapper for hiding nodes from a graph.
441 \warning Graph wrappers are in even more experimental state than the other
442 parts of the lib. Use them at you own risk.
444 A wrapper for hiding nodes from a graph.
445 This wrapper specializes SubGraphWrapper in the way that only the node-set
446 can be filtered. Note that this does not mean of considering induced
447 subgraph, the edge-iterators consider the original edge-set.
450 template<typename Graph, typename NodeFilterMap>
451 class NodeSubGraphWrapper :
452 public SubGraphWrapper<Graph, NodeFilterMap,
453 ConstMap<typename Graph::Edge,bool> > {
455 typedef SubGraphWrapper<Graph, NodeFilterMap,
456 ConstMap<typename Graph::Edge,bool> > Parent;
458 ConstMap<typename Graph::Edge, bool> const_true_map;
460 NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) :
461 Parent(), const_true_map(true) {
462 Parent::setGraph(_graph);
463 Parent::setNodeFilterMap(_node_filter_map);
464 Parent::setEdgeFilterMap(const_true_map);
469 /*! \brief A wrapper for hiding edges from a graph.
471 \warning Graph wrappers are in even more experimental state than the other
472 parts of the lib. Use them at you own risk.
474 A wrapper for hiding edges from a graph.
475 This wrapper specializes SubGraphWrapper in the way that only the edge-set
476 can be filtered. The usefulness of this wrapper is demonstrated in the
477 problem of searching a maximum number of edge-disjoint shortest paths
479 two nodes \c s and \c t. Shortest here means being shortest w.r.t.
480 non-negative edge-lengths. Note that
481 the comprehension of the presented solution
482 need's some knowledge from elementary combinatorial optimization.
484 If a single shortest path is to be
485 searched between two nodes \c s and \c t, then this can be done easily by
486 applying the Dijkstra algorithm class. What happens, if a maximum number of
487 edge-disjoint shortest paths is to be computed. It can be proved that an
488 edge can be in a shortest path if and only if it is tight with respect to
489 the potential function computed by Dijkstra. Moreover, any path containing
490 only such edges is a shortest one. Thus we have to compute a maximum number
491 of edge-disjoint paths between \c s and \c t in the graph which has edge-set
492 all the tight edges. The computation will be demonstrated on the following
493 graph, which is read from a dimacs file.
496 digraph lemon_dot_example {
497 node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
498 n0 [ label="0 (s)" ];
504 n6 [ label="6 (t)" ];
505 edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
506 n5 -> n6 [ label="9, length:4" ];
507 n4 -> n6 [ label="8, length:2" ];
508 n3 -> n5 [ label="7, length:1" ];
509 n2 -> n5 [ label="6, length:3" ];
510 n2 -> n6 [ label="5, length:5" ];
511 n2 -> n4 [ label="4, length:2" ];
512 n1 -> n4 [ label="3, length:3" ];
513 n0 -> n3 [ label="2, length:1" ];
514 n0 -> n2 [ label="1, length:2" ];
515 n0 -> n1 [ label="0, length:3" ];
524 readDimacs(std::cin, g, length, s, t);
526 cout << "edges with lengths (of form id, source--length->target): " << endl;
527 for(EdgeIt e(g); e!=INVALID; ++e)
528 cout << g.id(e) << ", " << g.id(g.source(e)) << "--"
529 << length[e] << "->" << g.id(g.target(e)) << endl;
531 cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
533 Next, the potential function is computed with Dijkstra.
535 typedef Dijkstra<Graph, LengthMap> Dijkstra;
536 Dijkstra dijkstra(g, length);
539 Next, we consrtruct a map which filters the edge-set to the tight edges.
541 typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
543 TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
545 typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
546 SubGW gw(g, tight_edge_filter);
548 Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed
549 with a max flow algorithm Preflow.
551 ConstMap<Edge, int> const_1_map(1);
552 Graph::EdgeMap<int> flow(g, 0);
554 Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
555 preflow(gw, s, t, const_1_map, flow);
560 cout << "maximum number of edge-disjoint shortest path: "
561 << preflow.flowValue() << endl;
562 cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
564 for(EdgeIt e(g); e!=INVALID; ++e)
566 cout << " " << g.id(g.source(e)) << "--"
567 << length[e] << "->" << g.id(g.target(e)) << endl;
569 The program has the following (expected :-)) output:
571 edges with lengths (of form id, source--length->target):
583 maximum number of edge-disjoint shortest path: 2
584 edges of the maximum number of edge-disjoint shortest s-t paths:
595 template<typename Graph, typename EdgeFilterMap>
596 class EdgeSubGraphWrapper :
597 public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>,
600 typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>,
601 EdgeFilterMap> Parent;
603 ConstMap<typename Graph::Node, bool> const_true_map;
605 EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) :
606 Parent(), const_true_map(true) {
607 Parent::setGraph(_graph);
608 Parent::setNodeFilterMap(const_true_map);
609 Parent::setEdgeFilterMap(_edge_filter_map);
614 template<typename Graph>
615 class UndirGraphWrapper : public GraphWrapper<Graph> {
617 typedef GraphWrapper<Graph> Parent;
619 UndirGraphWrapper() : GraphWrapper<Graph>() { }
622 typedef typename GraphWrapper<Graph>::Node Node;
623 typedef typename GraphWrapper<Graph>::NodeIt NodeIt;
624 typedef typename GraphWrapper<Graph>::Edge Edge;
625 typedef typename GraphWrapper<Graph>::EdgeIt EdgeIt;
627 UndirGraphWrapper(Graph& _graph) : GraphWrapper<Graph>(_graph) { }
630 friend class UndirGraphWrapper<Graph>;
631 bool out_or_in; //true iff out
632 typename Graph::OutEdgeIt out;
633 typename Graph::InEdgeIt in;
636 OutEdgeIt(const Invalid& i) : Edge(i) { }
637 OutEdgeIt(const UndirGraphWrapper<Graph>& _G, const Node& _n) {
638 out_or_in=true; _G.graph->first(out, _n);
639 if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n); }
641 operator Edge() const {
642 if (out_or_in) return Edge(out); else return Edge(in);
646 typedef OutEdgeIt InEdgeIt;
648 using GraphWrapper<Graph>::first;
649 OutEdgeIt& first(OutEdgeIt& i, const Node& p) const {
650 i=OutEdgeIt(*this, p); return i;
653 using GraphWrapper<Graph>::next;
655 OutEdgeIt& next(OutEdgeIt& e) const {
657 typename Graph::Node n=this->graph->source(e.out);
658 this->graph->next(e.out);
659 if (!this->graph->valid(e.out)) {
660 e.out_or_in=false; this->graph->first(e.in, n); }
662 this->graph->next(e.in);
667 Node aNode(const OutEdgeIt& e) const {
668 if (e.out_or_in) return this->graph->source(e); else
669 return this->graph->target(e); }
670 Node bNode(const OutEdgeIt& e) const {
671 if (e.out_or_in) return this->graph->target(e); else
672 return this->graph->source(e); }
674 // KEEP_MAPS(Parent, UndirGraphWrapper);
678 // /// \brief An undirected graph template.
680 // ///\warning Graph wrappers are in even more experimental state than the other
681 // ///parts of the lib. Use them at your own risk.
683 // /// An undirected graph template.
684 // /// This class works as an undirected graph and a directed graph of
685 // /// class \c Graph is used for the physical storage.
686 // /// \ingroup graphs
687 template<typename Graph>
688 class UndirGraph : public UndirGraphWrapper<Graph> {
689 typedef UndirGraphWrapper<Graph> Parent;
693 UndirGraph() : UndirGraphWrapper<Graph>() {
694 Parent::setGraph(gr);
697 // KEEP_MAPS(Parent, UndirGraph);
701 template <typename _Graph,
702 typename ForwardFilterMap, typename BackwardFilterMap>
703 class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
705 typedef _Graph Graph;
706 typedef GraphWrapperBase<_Graph> Parent;
708 ForwardFilterMap* forward_filter;
709 BackwardFilterMap* backward_filter;
710 SubBidirGraphWrapperBase() : Parent(),
711 forward_filter(0), backward_filter(0) { }
713 void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
714 forward_filter=&_forward_filter;
716 void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
717 backward_filter=&_backward_filter;
721 // SubGraphWrapperBase(Graph& _graph,
722 // NodeFilterMap& _node_filter_map,
723 // EdgeFilterMap& _edge_filter_map) :
725 // node_filter_map(&node_filter_map),
726 // edge_filter_map(&edge_filter_map) { }
728 typedef typename Parent::Node Node;
729 typedef typename _Graph::Edge GraphEdge;
730 template <typename T> class EdgeMap;
731 /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from
732 /// _Graph::Edge. It contains an extra bool flag which is true
733 /// if and only if the
734 /// edge is the backward version of the original edge.
735 class Edge : public _Graph::Edge {
736 friend class SubBidirGraphWrapperBase<
737 Graph, ForwardFilterMap, BackwardFilterMap>;
738 template<typename T> friend class EdgeMap;
740 bool backward; //true, iff backward
743 /// \todo =false is needed, or causes problems?
744 /// If \c _backward is false, then we get an edge corresponding to the
745 /// original one, otherwise its oppositely directed pair is obtained.
746 Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) :
747 _Graph::Edge(e), backward(_backward) { }
748 Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
749 bool operator==(const Edge& v) const {
750 return (this->backward==v.backward &&
751 static_cast<typename _Graph::Edge>(*this)==
752 static_cast<typename _Graph::Edge>(v));
754 bool operator!=(const Edge& v) const {
755 return (this->backward!=v.backward ||
756 static_cast<typename _Graph::Edge>(*this)!=
757 static_cast<typename _Graph::Edge>(v));
761 void first(Node& i) const {
765 void first(Edge& i) const {
768 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
769 !(*forward_filter)[i]) Parent::next(i);
770 if (*static_cast<GraphEdge*>(&i)==INVALID) {
773 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
774 !(*backward_filter)[i]) Parent::next(i);
778 void firstIn(Edge& i, const Node& n) const {
779 Parent::firstIn(i, n);
781 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
782 !(*forward_filter)[i]) Parent::nextOut(i);
783 if (*static_cast<GraphEdge*>(&i)==INVALID) {
784 Parent::firstOut(i, n);
786 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
787 !(*backward_filter)[i]) Parent::nextOut(i);
791 void firstOut(Edge& i, const Node& n) const {
792 Parent::firstOut(i, n);
794 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
795 !(*forward_filter)[i]) Parent::nextOut(i);
796 if (*static_cast<GraphEdge*>(&i)==INVALID) {
797 Parent::firstIn(i, n);
799 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
800 !(*backward_filter)[i]) Parent::nextIn(i);
804 void next(Node& i) const {
808 void next(Edge& i) const {
811 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
812 !(*forward_filter)[i]) Parent::next(i);
813 if (*static_cast<GraphEdge*>(&i)==INVALID) {
816 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
817 !(*backward_filter)[i]) Parent::next(i);
821 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
822 !(*backward_filter)[i]) Parent::next(i);
826 void nextIn(Edge& i) const {
828 Node n=Parent::target(i);
830 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
831 !(*forward_filter)[i]) Parent::nextIn(i);
832 if (*static_cast<GraphEdge*>(&i)==INVALID) {
833 Parent::firstOut(i, n);
835 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
836 !(*backward_filter)[i]) Parent::nextOut(i);
840 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
841 !(*backward_filter)[i]) Parent::nextOut(i);
845 void nextOut(Edge& i) const {
847 Node n=Parent::source(i);
849 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
850 !(*forward_filter)[i]) Parent::nextOut(i);
851 if (*static_cast<GraphEdge*>(&i)==INVALID) {
852 Parent::firstIn(i, n);
854 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
855 !(*backward_filter)[i]) Parent::nextIn(i);
859 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
860 !(*backward_filter)[i]) Parent::nextIn(i);
864 Node source(Edge e) const {
865 return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
866 Node target(Edge e) const {
867 return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
869 /// Gives back the opposite edge.
870 Edge opposite(const Edge& e) const {
872 f.backward=!f.backward;
876 /// \warning This is a linear time operation and works only if
877 /// \c Graph::EdgeIt is defined.
879 int edgeNum() const {
882 for (first(e); e!=INVALID; next(e)) ++i;
886 bool forward(const Edge& e) const { return !e.backward; }
887 bool backward(const Edge& e) const { return e.backward; }
889 template <typename T>
890 /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two
891 /// _Graph::EdgeMap one for the forward edges and
892 /// one for the backward edges.
894 template <typename TT> friend class EdgeMap;
895 typename _Graph::template EdgeMap<T> forward_map, backward_map;
900 EdgeMap(const SubBidirGraphWrapperBase<_Graph,
901 ForwardFilterMap, BackwardFilterMap>& g) :
902 forward_map(*(g.graph)), backward_map(*(g.graph)) { }
904 EdgeMap(const SubBidirGraphWrapperBase<_Graph,
905 ForwardFilterMap, BackwardFilterMap>& g, T a) :
906 forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
908 void set(Edge e, T a) {
910 forward_map.set(e, a);
912 backward_map.set(e, a);
915 // typename _Graph::template EdgeMap<T>::ConstReference
916 // operator[](Edge e) const {
918 // return forward_map[e];
920 // return backward_map[e];
923 // typename _Graph::template EdgeMap<T>::Reference
924 T operator[](Edge e) const {
926 return forward_map[e];
928 return backward_map[e];
932 forward_map.update();
933 backward_map.update();
940 ///\brief A wrapper for composing a subgraph of a
941 /// bidirected graph made from a directed one.
943 /// A wrapper for composing a subgraph of a
944 /// bidirected graph made from a directed one.
946 ///\warning Graph wrappers are in even more experimental state than the other
947 ///parts of the lib. Use them at you own risk.
949 /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge
950 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
951 /// reversing its orientation. We are given moreover two bool valued
952 /// maps on the edge-set,
953 /// \f$forward\_filter\f$, and \f$backward\_filter\f$.
954 /// SubBidirGraphWrapper implements the graph structure with node-set
955 /// \f$V\f$ and edge-set
956 /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$.
957 /// The purpose of writing + instead of union is because parallel
958 /// edges can arise. (Similarly, antiparallel edges also can arise).
959 /// In other words, a subgraph of the bidirected graph obtained, which
960 /// is given by orienting the edges of the original graph in both directions.
961 /// As the oppositely directed edges are logically different,
962 /// the maps are able to attach different values for them.
964 /// An example for such a construction is \c RevGraphWrapper where the
965 /// forward_filter is everywhere false and the backward_filter is
966 /// everywhere true. We note that for sake of efficiency,
967 /// \c RevGraphWrapper is implemented in a different way.
968 /// But BidirGraphWrapper is obtained from
969 /// SubBidirGraphWrapper by considering everywhere true
970 /// valued maps both for forward_filter and backward_filter.
971 /// Finally, one of the most important applications of SubBidirGraphWrapper
972 /// is ResGraphWrapper, which stands for the residual graph in directed
973 /// flow and circulation problems.
974 /// As wrappers usually, the SubBidirGraphWrapper implements the
975 /// above mentioned graph structure without its physical storage,
976 /// that is the whole stuff is stored in constant memory.
977 template<typename _Graph,
978 typename ForwardFilterMap, typename BackwardFilterMap>
979 class SubBidirGraphWrapper :
980 public IterableGraphExtender<
981 SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
983 typedef _Graph Graph;
984 typedef IterableGraphExtender<
985 SubBidirGraphWrapperBase<
986 _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
988 SubBidirGraphWrapper() { }
990 SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter,
991 BackwardFilterMap& _backward_filter) {
993 setForwardFilterMap(_forward_filter);
994 setBackwardFilterMap(_backward_filter);
1000 ///\brief A wrapper for composing bidirected graph from a directed one.
1002 ///\warning Graph wrappers are in even more experimental state than the other
1003 ///parts of the lib. Use them at you own risk.
1005 /// A wrapper for composing bidirected graph from a directed one.
1006 /// A bidirected graph is composed over the directed one without physical
1007 /// storage. As the oppositely directed edges are logically different ones
1008 /// the maps are able to attach different values for them.
1009 template<typename Graph>
1010 class BidirGraphWrapper :
1011 public SubBidirGraphWrapper<
1013 ConstMap<typename Graph::Edge, bool>,
1014 ConstMap<typename Graph::Edge, bool> > {
1016 typedef SubBidirGraphWrapper<
1018 ConstMap<typename Graph::Edge, bool>,
1019 ConstMap<typename Graph::Edge, bool> > Parent;
1021 ConstMap<typename Graph::Edge, bool> cm;
1023 BidirGraphWrapper() : Parent(), cm(true) {
1024 Parent::setForwardFilterMap(cm);
1025 Parent::setBackwardFilterMap(cm);
1028 BidirGraphWrapper(Graph& _graph) : Parent() {
1029 Parent::setGraph(_graph);
1030 Parent::setForwardFilterMap(cm);
1031 Parent::setBackwardFilterMap(cm);
1034 int edgeNum() const {
1035 return 2*this->graph->edgeNum();
1037 // KEEP_MAPS(Parent, BidirGraphWrapper);
1041 /// \brief A bidirected graph template.
1043 ///\warning Graph wrappers are in even more experimental state than the other
1044 ///parts of the lib. Use them at you own risk.
1046 /// A bidirected graph template.
1047 /// Such a bidirected graph stores each pair of oppositely directed edges
1048 /// ones in the memory, i.e. a directed graph of type
1049 /// \c Graph is used for that.
1050 /// As the oppositely directed edges are logically different ones
1051 /// the maps are able to attach different values for them.
1053 template<typename Graph>
1054 class BidirGraph : public BidirGraphWrapper<Graph> {
1056 typedef UndirGraphWrapper<Graph> Parent;
1060 BidirGraph() : BidirGraphWrapper<Graph>() {
1061 Parent::setGraph(gr);
1063 // KEEP_MAPS(Parent, BidirGraph);
1068 template<typename Graph, typename Number,
1069 typename CapacityMap, typename FlowMap>
1070 class ResForwardFilter {
1071 // const Graph* graph;
1072 const CapacityMap* capacity;
1073 const FlowMap* flow;
1075 ResForwardFilter(/*const Graph& _graph, */
1076 const CapacityMap& _capacity, const FlowMap& _flow) :
1077 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1078 ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1079 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1080 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1081 bool operator[](const typename Graph::Edge& e) const {
1082 return (Number((*flow)[e]) < Number((*capacity)[e]));
1086 template<typename Graph, typename Number,
1087 typename CapacityMap, typename FlowMap>
1088 class ResBackwardFilter {
1089 const CapacityMap* capacity;
1090 const FlowMap* flow;
1092 ResBackwardFilter(/*const Graph& _graph,*/
1093 const CapacityMap& _capacity, const FlowMap& _flow) :
1094 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1095 ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1096 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1097 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1098 bool operator[](const typename Graph::Edge& e) const {
1099 return (Number(0) < Number((*flow)[e]));
1104 /// A wrapper for composing the residual graph for directed flow and circulation problems.
1106 ///\warning Graph wrappers are in even more experimental state than the other
1107 ///parts of the lib. Use them at you own risk.
1109 /// A wrapper for composing the residual graph for directed flow and circulation problems.
1110 template<typename Graph, typename Number,
1111 typename CapacityMap, typename FlowMap>
1112 class ResGraphWrapper :
1113 public SubBidirGraphWrapper<
1115 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1116 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
1118 typedef SubBidirGraphWrapper<
1120 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1121 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
1123 const CapacityMap* capacity;
1125 ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
1126 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
1127 ResGraphWrapper() : Parent(),
1128 capacity(0), flow(0) { }
1129 void setCapacityMap(const CapacityMap& _capacity) {
1130 capacity=&_capacity;
1131 forward_filter.setCapacity(_capacity);
1132 backward_filter.setCapacity(_capacity);
1134 void setFlowMap(FlowMap& _flow) {
1136 forward_filter.setFlow(_flow);
1137 backward_filter.setFlow(_flow);
1140 ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity,
1142 Parent(), capacity(&_capacity), flow(&_flow),
1143 forward_filter(/*_graph,*/ _capacity, _flow),
1144 backward_filter(/*_graph,*/ _capacity, _flow) {
1145 Parent::setGraph(_graph);
1146 Parent::setForwardFilterMap(forward_filter);
1147 Parent::setBackwardFilterMap(backward_filter);
1150 typedef typename Parent::Edge Edge;
1152 void augment(const Edge& e, Number a) const {
1153 if (Parent::forward(e))
1154 flow->set(e, (*flow)[e]+a);
1156 flow->set(e, (*flow)[e]-a);
1159 /// \brief Residual capacity map.
1161 /// In generic residual graphs the residual capacity can be obtained
1165 const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
1167 typedef Number Value;
1169 ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>&
1170 _res_graph) : res_graph(&_res_graph) { }
1171 Number operator[](const Edge& e) const {
1172 if (res_graph->forward(e))
1173 return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e];
1175 return (*(res_graph->flow))[e];
1179 // KEEP_MAPS(Parent, ResGraphWrapper);
1184 template <typename _Graph, typename FirstOutEdgesMap>
1185 class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
1187 typedef _Graph Graph;
1188 typedef GraphWrapperBase<_Graph> Parent;
1190 FirstOutEdgesMap* first_out_edges;
1191 ErasingFirstGraphWrapperBase() : Parent(),
1192 first_out_edges(0) { }
1194 void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
1195 first_out_edges=&_first_out_edges;
1200 typedef typename Parent::Node Node;
1201 typedef typename Parent::Edge Edge;
1203 void firstOut(Edge& i, const Node& n) const {
1204 i=(*first_out_edges)[n];
1207 void erase(const Edge& e) const {
1211 first_out_edges->set(n, f);
1216 /// For blocking flows.
1218 ///\warning Graph wrappers are in even more experimental state than the other
1219 ///parts of the lib. Use them at you own risk.
1221 /// This graph wrapper is used for on-the-fly
1222 /// Dinits blocking flow computations.
1223 /// For each node, an out-edge is stored which is used when the
1225 /// OutEdgeIt& first(OutEdgeIt&, const Node&)
1229 /// \author Marton Makai
1230 template <typename _Graph, typename FirstOutEdgesMap>
1231 class ErasingFirstGraphWrapper :
1232 public IterableGraphExtender<
1233 ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
1235 typedef _Graph Graph;
1236 typedef IterableGraphExtender<
1237 ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
1238 ErasingFirstGraphWrapper(Graph& _graph,
1239 FirstOutEdgesMap& _first_out_edges) {
1241 setFirstOutEdgesMap(_first_out_edges);
1250 #endif //LEMON_GRAPH_WRAPPER_H