src/work/marci/bfs_mm.h
author klao
Mon, 06 Dec 2004 00:30:44 +0000
changeset 1030 c8a41699e613
parent 986 e997802b855c
permissions -rw-r--r--
Undirected graph documentation and concept refinements.

* quite a few bug fixes
* concept::UndirGraph is almost complete and looks quite good.
     1 // -*- c++ -*-
     2 #ifndef LEMON_BFS_DFS_H
     3 #define LEMON_BFS_DFS_H
     4 
     5 /// \ingroup galgs
     6 /// \file
     7 /// \brief Bfs and dfs iterators.
     8 ///
     9 /// This file contains bfs and dfs iterator classes.
    10 ///
    11 // /// \author Marton Makai
    12 
    13 #include <queue>
    14 #include <stack>
    15 #include <utility>
    16 
    17 #include <lemon/invalid.h>
    18 
    19 namespace lemon {
    20   namespace marci {
    21 
    22   /// Bfs searches for the nodes wich are not marked in 
    23   /// \c reached_map
    24   /// RM have to be a read-write bool node-map.
    25   /// \ingroup galgs
    26   template <typename Graph, /*typename OutEdgeIt,*/ 
    27 	    typename RM/*=typename Graph::NodeMap<bool>*/ >
    28   class BfsIterator {
    29   public:
    30     typedef RM ReachedMap;
    31   protected:
    32     typedef typename Graph::Node Node;
    33     typedef typename Graph::Edge Edge;
    34     typedef typename Graph::OutEdgeIt OutEdgeIt;
    35     const Graph* graph;
    36     std::queue<Node> bfs_queue;
    37     ReachedMap* reached_map;
    38     bool b_node_newly_reached;
    39     //OutEdgeIt actual_edge;
    40     Edge actual_edge;
    41     /// \e
    42     BfsIterator(const Graph& _graph) : graph(&_graph), reached_map(0) { }
    43     /// RM have to be set before any bfs operation.
    44     BfsIterator<Graph, RM>& setReached(RM& _reached_map) {
    45       reached_map=&_reached_map;
    46     }
    47   public:
    48     /// In that constructor \c _reached_map have to be a reference 
    49     /// for a bool bode-map. The algorithm will search for the 
    50     /// initially \c false nodes 
    51     /// in a bfs order.
    52     BfsIterator(const Graph& _graph, ReachedMap& _reached_map) : 
    53       graph(&_graph), reached_map(&_reached_map) { }
    54     /// The same as above, but the map storing the reached nodes 
    55     /// is constructed dynamically to everywhere false.
    56     /// \deprecated
    57 //     BfsIterator(const Graph& _graph) : 
    58 //       graph(&_graph), reached_map(new ReachedMap(*graph /*, false*/)), 
    59 //       own_reached_map(true) { }
    60 //     /// The map storing the reached nodes have to be destroyed if 
    61 //     /// it was constructed dynamically
    62 //     ~BfsIterator() { if (own_reached_map) delete reached_map; }
    63     /// This method markes \c s reached.
    64     /// If the queue is empty, then \c s is pushed in the bfs queue 
    65     /// and the first out-edge is processed.
    66     /// If the queue is not empty, then \c s is simply pushed.
    67     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { 
    68       reached_map->set(s, true);
    69       if (bfs_queue.empty()) {
    70 	bfs_queue.push(s);
    71 	actual_edge=OutEdgeIt(*graph, s);
    72 	//graph->first(actual_edge, s);
    73 	if (actual_edge!=INVALID) { 
    74 	  Node w=graph->target(actual_edge);
    75 	  if (!(*reached_map)[w]) {
    76 	    bfs_queue.push(w);
    77 	    reached_map->set(w, true);
    78 	    b_node_newly_reached=true;
    79 	  } else {
    80 	    b_node_newly_reached=false;
    81 	  }
    82 	} 
    83       } else {
    84 	bfs_queue.push(s);
    85       }
    86       return *this;
    87     }
    88     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    89     /// its \c operator++() iterates on the edges in a bfs order.
    90     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    91     operator++() { 
    92       if (actual_edge!=INVALID) { 
    93 	actual_edge=++OutEdgeIt(*graph, actual_edge);
    94 	//++actual_edge;
    95 	if (actual_edge!=INVALID) {
    96 	  Node w=graph->target(actual_edge);
    97 	  if (!(*reached_map)[w]) {
    98 	    bfs_queue.push(w);
    99 	    reached_map->set(w, true);
   100 	    b_node_newly_reached=true;
   101 	  } else {
   102 	    b_node_newly_reached=false;
   103 	  }
   104 	}
   105       } else {
   106 	bfs_queue.pop(); 
   107 	if (!bfs_queue.empty()) {
   108 	  actual_edge=OutEdgeIt(*graph, bfs_queue.front());
   109 	  //graph->first(actual_edge, bfs_queue.front());
   110 	  if (actual_edge!=INVALID) {
   111 	    Node w=graph->target(actual_edge);
   112 	    if (!(*reached_map)[w]) {
   113 	      bfs_queue.push(w);
   114 	      reached_map->set(w, true);
   115 	      b_node_newly_reached=true;
   116 	    } else {
   117 	      b_node_newly_reached=false;
   118 	    }
   119 	  }
   120 	}
   121       }
   122       return *this;
   123     }
   124     /// Returns true iff the algorithm is finished.
   125     bool finished() const { return bfs_queue.empty(); }
   126     /// The conversion operator makes for converting the bfs-iterator 
   127     /// to an \c out-edge-iterator.
   128     ///\bug Edge have to be in LEMON 0.2
   129     operator Edge() const { return actual_edge; }
   130     /// Returns if b-node has been reached just now.
   131     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   132     /// Returns if a-node is examined.
   133     bool isANodeExamined() const { return actual_edge==INVALID; }
   134     /// Returns a-node of the actual edge, so does if the edge is invalid.
   135     Node source() const { return bfs_queue.front(); }
   136     /// \pre The actual edge have to be valid.
   137     Node target() const { return graph->target(actual_edge); }
   138     /// Guess what?
   139     /// \deprecated 
   140     const ReachedMap& reachedMap() const { return *reached_map; }
   141     /// Guess what?
   142     /// \deprecated 
   143     typename ReachedMap::Value reached(const Node& n) const { 
   144       return (*reached_map)[n]; 
   145     }
   146     /// Guess what?
   147     /// \deprecated
   148     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
   149   };
   150 
   151   /// Bfs searches for the nodes wich are not marked in 
   152   /// \c reached_map
   153   /// RM have to work as a read-write bool Node-map, 
   154   /// PM is a write edge node-map and
   155   /// PNM is a write node node-map and
   156   /// DM is a read-write node-map of integral value, have to be. 
   157   /// \ingroup galgs
   158   template <typename Graph, 
   159 	    typename RM=typename Graph::template NodeMap<bool>, 
   160 	    typename PM
   161 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   162 	    typename PNM
   163 	    =typename Graph::template NodeMap<typename Graph::Node>, 
   164 	    typename DM=typename Graph::template NodeMap<int> > 
   165   class Bfs : public BfsIterator<Graph, RM> {
   166     typedef BfsIterator<Graph, RM> Parent;
   167   public:
   168     typedef RM ReachedMap;
   169     typedef PM PredMap;
   170     typedef PNM PredNodeMap;
   171     typedef DM DistMap;
   172   protected:
   173     typedef typename Parent::Node Node;
   174     PredMap* pred_map;
   175     PredNodeMap* pred_node_map;
   176     DistMap* dist_map;
   177     /// \e
   178     Bfs<Graph, RM, PM, PNM, DM>
   179     (const Graph& _graph) : BfsIterator<Graph, RM>(_graph) { }
   180     /// PM have to be set before any bfs operation.
   181     Bfs<Graph, RM, PM, PNM, DM>& 
   182     setPredMap(PredMap& _pred_map) {
   183       pred_map=&_pred_map;
   184     }
   185     /// PredNodeMap have to be set before any bfs operation.
   186     Bfs<Graph, RM, PM, PNM, DM>& 
   187     setPredNodeMap(PredNodeMap& _pred_node_map) {
   188       pred_node_map=&_pred_node_map;
   189     }
   190     /// DistMap have to be set before any bfs operation.
   191     Bfs<Graph, RM, PM, PNM, DM>& 
   192     setDistMap(DistMap& _dist_map) {
   193       dist_map=&_dist_map;
   194     }
   195   public:
   196     /// The algorithm will search in a bfs order for 
   197     /// the nodes which are \c false initially. 
   198     /// The constructor makes no initial changes on the maps.
   199     Bfs<Graph, RM, PM, PNM, DM>
   200     (const Graph& _graph, ReachedMap& _reached_map, 
   201      PredMap& _pred_map, PredNodeMap& _pred_node_map, 
   202      DistMap& _dist_map) : BfsIterator<Graph, RM>(_graph, _reached_map), 
   203       pred_map(&_pred_map), pred_node_map(&_pred_node_map), 
   204 			   dist_map(&_dist_map) { }
   205     /// \c s is marked to be reached and pushed in the bfs queue.
   206     /// If the queue is empty, then the first out-edge is processed.
   207     /// If \c s was not marked previously, then 
   208     /// in addition its pred_map is set to be \c INVALID, 
   209     /// and dist_map to \c 0. 
   210     /// if \c s was marked previuosly, then it is simply pushed.
   211     Bfs<Graph, RM, PM, PNM, DM>& push(Node s) { 
   212       if ((*(this->reached_map))[s]) {
   213 	Parent::pushAndSetReached(s);
   214       } else {
   215 	Parent::pushAndSetReached(s);
   216 	pred_map->set(s, INVALID);
   217 	pred_node_map->set(s, INVALID);
   218 	dist_map->set(s, 0);
   219       }
   220       return *this;
   221     }
   222     /// A bfs is processed from \c s.
   223     Bfs<Graph, RM, PM, PNM, DM>& run(Node s) {
   224       push(s);
   225       while (!this->finished()) this->operator++();
   226       return *this;
   227     }
   228     /// Beside the bfs iteration, \c pred_map and \dist_map are saved in a 
   229     /// newly reached node. 
   230     Bfs<Graph, RM, PM, PNM, DM>& operator++() {
   231       Parent::operator++();
   232       if ((this->actual_edge)!=INVALID && this->b_node_newly_reached) 
   233       {
   234 	pred_map->set(this->target(), this->actual_edge);
   235 	pred_node_map->set(this->target(), this->source());
   236 	dist_map->set(this->target(), (*dist_map)[this->source()]);
   237       }
   238       return *this;
   239     }
   240     /// Guess what?
   241     /// \deprecated 
   242     const PredMap& predMap() const { return *pred_map; }
   243     /// Guess what?
   244     /// \deprecated 
   245     typename PredMap::Value pred(const Node& n) const { 
   246       return (*pred_map)[n]; 
   247     }
   248     /// Guess what?
   249     /// \deprecated 
   250     const PredNodeMap& predNodeMap() const { return *pred_node_map; }
   251     /// Guess what?
   252     /// \deprecated 
   253     typename PredNodeMap::Value predNode(const Node& n) const { 
   254       return (*pred_node_map)[n]; 
   255     }
   256     /// Guess what?
   257     /// \deprecated
   258     const DistMap& distMap() const { return *dist_map; }
   259     /// Guess what?
   260     /// \deprecated 
   261     typename DistMap::Value dist(const Node& n) const { 
   262       return (*dist_map)[n]; 
   263     }
   264   };
   265 
   266 //   template <typename Graph, 
   267 // 	    typename RM=typename Graph::template NodeMap<bool>, 
   268 // 	    typename PM
   269 // 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   270 // 	    typename PredNodeMap
   271 // 	    =typename Graph::template NodeMap<typename Graph::Node>, 
   272 // 	    typename DistMap=typename Graph::template NodeMap<int> > 
   273 //     class BfsWizard : public Bfs<Graph> {
   274 //     public:
   275 //       typedef Bfs<Graph, PM, PredNodeMap, DistMap> Parent;
   276 //     protected:
   277 //       typedef typename Parent::Node Node;
   278 //       bool own_reached_map;
   279 //       bool own_pred_map;
   280 //       bool own_pred_node_map;
   281 //       bool own_dist_map;
   282 
   283 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   284 //       makeRreached() { 
   285 // 	own_reached_map=true;
   286 // 	reached=new ReachedMap(*graph, false);
   287 //       }
   288 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   289 //       deleteReachedMap() { 
   290 // 	own_reached_map=false;
   291 // 	delete reached;
   292 //       }
   293 
   294 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   295 //       makePM() { 
   296 // 	own_pred_map=true;
   297 // 	pred_map=new PM(*graph, INVALID);
   298 //       }
   299 //       BfsWizard<Graph, ReachedMap, PM, PredNodeMap, DistMap>& 
   300 //       deletePM() { 
   301 // 	own_pred_map=false;
   302 // 	delete pred_map;
   303 //       }
   304 
   305 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   306 //       makePredNodeMap() { 
   307 // 	own_pred_node_map=true;
   308 // 	pred_node_map=new PredNodeMap(*graph, INVALID);
   309 //       }
   310 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   311 //       deletePredNodeMap() { 
   312 // 	own_pred_node_map=false;
   313 // 	delete pred_node_map;
   314 //       }
   315 
   316 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   317 //       makeDistMap() { 
   318 // 	own_dist_map=true;
   319 // 	dist_map=new DistMap(*graph, 0);
   320 //       }
   321 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   322 //       deleteDistMap() { 
   323 // 	own_dist_map=false;
   324 // 	delete dist_map;
   325 //       }
   326 
   327 //     public:
   328 //       /// User friendly Bfs class.
   329 //       /// The maps which are not explicitly given by the user are 
   330 //       /// constructed with false, INVALID, INVALID and 0 values.
   331 //       /// For the user defined maps, the values are not modified, and 
   332 //       /// the bfs is processed without any preset on maps. Therefore, 
   333 //       /// the bfs will search only the nodes which are set false previously 
   334 //       /// in reached, and in the nodes wich are not newly reached by the 
   335 //       /// search, the map values are not modified.
   336 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>
   337 //       (const Graph& _graph) : 
   338 // 	own_reached_map(false), 
   339 // 	own_pred_map(false), 
   340 // 	own_pred_node_map(false), 
   341 // 	own_dist_map(false) { 
   342 //       }
   343 
   344 //       /// \e
   345 //       ~BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>() { 
   346 // 	if (own_reached_map) deleteReachedMap();
   347 // 	if (own_pred_map) deletePM();
   348 // 	if (own_pred_node_map) deletePredNodeMap();
   349 // 	if (own_dist_map) deleteDistMap();
   350 //       }
   351 
   352 //       /// \e
   353 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   354 //       setReachedMap(ReachedMap& _reached) {
   355 // 	if (own_reached_map) deleteReachedMap();
   356 // 	Parent::setReachedMap(_reached);
   357 //       }
   358 //       /// \e
   359 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   360 //       setPM(PM& _pred) {
   361 // 	if (own_pred_map) deletePM();
   362 // 	Parent::setPM(_pred);
   363 //       }
   364 //       /// \e
   365 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   366 //       setPredNodeMap(PredNodeMap& _pred_node) {
   367 // 	if (own_pred_node_map) deletePredNodeMap();
   368 // 	Parent::setPredNodeMap(_pred_node);
   369 //       }
   370 //       /// \e
   371 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   372 //       setDistMap(DistMap& _dist) {
   373 // 	if (own_dist_map) deleteDistMap();
   374 // 	Parent::setDistMap(_dist);
   375 //       }
   376 
   377 //       /// \e
   378 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   379 //       push(Node s) { 
   380 // 	if (!reached) makeReachedMap();
   381 // 	if (!pred_map) makePMMap();
   382 // 	if (!pred_node_map) makePredNodeMap();
   383 // 	if (!dist_map) makeDistMap();
   384 // 	push(s);
   385 // 	return *this;
   386 //       }
   387 
   388 //       /// \e
   389 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   390 //       operator++() { 
   391 // 	if (!reached) makeRM();
   392 // 	if (!pred_map) makePMMap();
   393 // 	if (!pred_node_map) makePredNodeMap();
   394 // 	if (!dist_map) makeDistMap();
   395 // 	++(*this);
   396 // 	return *this;
   397 //       }
   398 
   399 //       /// \e
   400 //       BfsWizard<Graph, RM, PM, PredNodeMap, DistMap>& 
   401 //       run(Node s) { 
   402 // 	if (!reached) makeRM();
   403 // 	if (!pred_map) makePMMap();
   404 // 	if (!pred_node_map) makePredNodeMap();
   405 // 	if (!dist_map) makeDistMap();
   406 // 	run(s);
   407 // 	return *this;
   408 //       }
   409       
   410 //     };
   411 
   412 
   413   /// Dfs searches for the nodes wich are not marked in 
   414   /// \c reached_map
   415   /// Reached have to be a read-write bool Node-map.
   416   /// \ingroup galgs
   417   template <typename Graph, /*typename OutEdgeIt,*/ 
   418 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   419   class DfsIterator {
   420   protected:
   421     typedef typename Graph::Node Node;
   422     typedef typename Graph::Edge Edge;
   423     typedef typename Graph::OutEdgeIt OutEdgeIt;
   424     const Graph* graph;
   425     std::stack<OutEdgeIt> dfs_stack;
   426     bool b_node_newly_reached;
   427     Edge actual_edge;
   428     Node actual_node;
   429     ReachedMap& reached;
   430     bool own_reached_map;
   431   public:
   432     /// In that constructor \c _reached have to be a reference 
   433     /// for a bool node-map. The algorithm will search in a dfs order for 
   434     /// the nodes which are \c false initially
   435     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   436       graph(&_graph), reached(_reached), 
   437       own_reached_map(false) { }
   438     /// The same as above, but the map of reached nodes is 
   439     /// constructed dynamically 
   440     /// to everywhere false.
   441     DfsIterator(const Graph& _graph) : 
   442       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   443       own_reached_map(true) { }
   444     ~DfsIterator() { if (own_reached_map) delete &reached; }
   445     /// This method markes s reached and first out-edge is processed.
   446     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& pushAndSetReached(Node s) { 
   447       actual_node=s;
   448       reached.set(s, true);
   449       OutEdgeIt e(*graph, s);
   450       //graph->first(e, s);
   451       dfs_stack.push(e); 
   452       return *this;
   453     }
   454     /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, 
   455     /// its \c operator++() iterates on the edges in a dfs order.
   456     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   457     operator++() { 
   458       actual_edge=dfs_stack.top();
   459       if (actual_edge!=INVALID/*.valid()*/) { 
   460 	Node w=graph->target(actual_edge);
   461 	actual_node=w;
   462 	if (!reached[w]) {
   463 	  OutEdgeIt e(*graph, w);
   464 	  //graph->first(e, w);
   465 	  dfs_stack.push(e);
   466 	  reached.set(w, true);
   467 	  b_node_newly_reached=true;
   468 	} else {
   469 	  actual_node=graph->source(actual_edge);
   470 	  ++dfs_stack.top();
   471 	  b_node_newly_reached=false;
   472 	}
   473       } else {
   474 	//actual_node=G.aNode(dfs_stack.top());
   475 	dfs_stack.pop();
   476       }
   477       return *this;
   478     }
   479     /// Returns true iff the algorithm is finished.
   480     bool finished() const { return dfs_stack.empty(); }
   481     /// The conversion operator makes for converting the bfs-iterator 
   482     /// to an \c out-edge-iterator.
   483     ///\bug Edge have to be in LEMON 0.2
   484     operator Edge() const { return actual_edge; }
   485     /// Returns if b-node has been reached just now.
   486     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   487     /// Returns if a-node is examined.
   488     bool isANodeExamined() const { return actual_edge==INVALID; }
   489     /// Returns a-node of the actual edge, so does if the edge is invalid.
   490     Node source() const { return actual_node; /*FIXME*/}
   491     /// Returns b-node of the actual edge. 
   492     /// \pre The actual edge have to be valid.
   493     Node target() const { return graph->target(actual_edge); }
   494     /// Guess what?
   495     /// \deprecated
   496     const ReachedMap& getReachedMap() const { return reached; }
   497     /// Guess what?
   498     /// \deprecated
   499     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   500   };
   501 
   502   /// Dfs searches for the nodes wich are not marked in 
   503   /// \c reached_map
   504   /// Reached is a read-write bool node-map, 
   505   /// Pred is a write node-map, have to be.
   506   /// \ingroup galgs
   507   template <typename Graph, 
   508 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   509 	    typename PredMap
   510 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   511   class Dfs : public DfsIterator<Graph, ReachedMap> {
   512     typedef DfsIterator<Graph, ReachedMap> Parent;
   513   protected:
   514     typedef typename Parent::Node Node;
   515     PredMap& pred;
   516   public:
   517     /// The algorithm will search in a dfs order for 
   518     /// the nodes which are \c false initially. 
   519     /// The constructor makes no initial changes on the maps.
   520     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { }
   521     /// \c s is marked to be reached and pushed in the bfs queue.
   522     /// If the queue is empty, then the first out-edge is processed.
   523     /// If \c s was not marked previously, then 
   524     /// in addition its pred is set to be \c INVALID. 
   525     /// if \c s was marked previuosly, then it is simply pushed.
   526     Dfs<Graph, ReachedMap, PredMap>& push(Node s) { 
   527       if (this->reached[s]) {
   528 	Parent::pushAndSetReached(s);
   529       } else {
   530 	Parent::pushAndSetReached(s);
   531 	pred.set(s, INVALID);
   532       }
   533       return *this;
   534     }
   535     /// A bfs is processed from \c s.
   536     Dfs<Graph, ReachedMap, PredMap>& run(Node s) {
   537       push(s);
   538       while (!this->finished()) this->operator++();
   539       return *this;
   540     }
   541     /// Beside the dfs iteration, \c pred is saved in a 
   542     /// newly reached node. 
   543     Dfs<Graph, ReachedMap, PredMap>& operator++() {
   544       Parent::operator++();
   545       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   546       {
   547 	pred.set(this->target(), this->actual_edge);
   548       }
   549       return *this;
   550     }
   551     /// Guess what?
   552     /// \deprecated
   553     const PredMap& getPredMap() const { return pred; }
   554   };
   555 
   556   } // namespace marci
   557 } // namespace lemon
   558 
   559 #endif //LEMON_BFS_DFS_H