src/work/jacint/preflow.h
author alpar
Wed, 14 Apr 2004 16:16:40 +0000
changeset 324 c8b0ad782bda
parent 211 9222a9b8b323
child 330 7ac0d4e8a31c
permissions -rw-r--r--
Naming conventions...
     1 // -*- C++ -*-
     2 /*
     3 Heuristics: 
     4  2 phase
     5  gap
     6  list 'level_list' on the nodes on level i implemented by hand
     7  stack 'active' on the active nodes on level i implemented by hand
     8  runs heuristic 'highest label' for H1*n relabels
     9  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    10  
    11 Parameters H0 and H1 are initialized to 20 and 10.
    12 
    13 Constructors:
    14 
    15 Preflow(Graph, Node, Node, CapMap, FlowMap)
    16 
    17 Members:
    18 
    19 void run()
    20 
    21 T flowValue() : returns the value of a maximum flow
    22 
    23 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    24      minimum min cut. M should be a map of bools initialized to false.
    25 
    26 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    27      maximum min cut. M should be a map of bools initialized to false.
    28 
    29 void minCut(CutMap& M) : sets M to the characteristic vector of 
    30      a min cut. M should be a map of bools initialized to false.
    31 
    32 */
    33 
    34 #ifndef HUGO_PREFLOW_H
    35 #define HUGO_PREFLOW_H
    36 
    37 #define H0 20
    38 #define H1 1
    39 
    40 #include <vector>
    41 #include <queue>
    42 
    43 namespace hugo {
    44 
    45   template <typename Graph, typename T, 
    46     typename FlowMap=typename Graph::EdgeMap<T>,
    47     typename CapMap=typename Graph::EdgeMap<T> >
    48   class Preflow {
    49     
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::Edge Edge;
    52     typedef typename Graph::NodeIt NodeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55     
    56     const Graph& G;
    57     Node s;
    58     Node t;
    59     FlowMap& flow;
    60     const CapMap& capacity;  
    61     T value;
    62 
    63   public:
    64     Preflow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
    65 	    FlowMap& _flow ) :
    66       G(_G), s(_s), t(_t), flow(_flow), capacity(_capacity) {}
    67 
    68 
    69     void run() {
    70 
    71       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    72       int n=G.nodeNum(); 
    73       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
    74       int heur1=(int)(H1*n);  //time while running 'highest label'
    75       int heur=heur1;         //starting time interval (#of relabels)
    76       bool what_heur=1;       
    77       /*
    78 	what_heur is 0 in case 'bound decrease' 
    79 	and 1 in case 'highest label'
    80       */
    81       bool end=false;     
    82       /*
    83 	Needed for 'bound decrease', 'true'
    84 	means no active nodes are above bound b.
    85       */
    86       int relabel=0;
    87       int k=n-2;  //bound on the highest level under n containing a node
    88       int b=k;    //bound on the highest level under n of an active node
    89       
    90       typename Graph::NodeMap<int> level(G,n);      
    91       typename Graph::NodeMap<T> excess(G); 
    92 
    93       std::vector<Node> active(n,INVALID);
    94       typename Graph::NodeMap<Node> next(G,INVALID);
    95       //Stack of the active nodes in level i < n.
    96       //We use it in both phases.
    97 
    98       typename Graph::NodeMap<Node> left(G,INVALID);
    99       typename Graph::NodeMap<Node> right(G,INVALID);
   100       std::vector<Node> level_list(n,INVALID);
   101       /*
   102 	List of the nodes in level i<n.
   103       */
   104 
   105       /*Reverse_bfs from t, to find the starting level.*/
   106       level.set(t,0);
   107       std::queue<Node> bfs_queue;
   108       bfs_queue.push(t);
   109 
   110       while (!bfs_queue.empty()) {
   111 
   112 	Node v=bfs_queue.front();	
   113 	bfs_queue.pop();
   114 	int l=level[v]+1;
   115 
   116 	InEdgeIt e;
   117 	for(G.first(e,v); G.valid(e); G.next(e)) {
   118 	  Node w=G.tail(e);
   119 	  if ( level[w] == n && w != s ) {
   120 	    bfs_queue.push(w);
   121 	    Node first=level_list[l];
   122 	    if ( G.valid(first) ) left.set(first,w);
   123 	    right.set(w,first);
   124 	    level_list[l]=w;
   125 	    level.set(w, l);
   126 	  }
   127 	}
   128       }
   129       
   130       level.set(s,n);
   131       
   132 
   133       /* Starting flow. It is everywhere 0 at the moment. */     
   134       OutEdgeIt e;
   135       for(G.first(e,s); G.valid(e); G.next(e)) 
   136 	{
   137 	  T c=capacity[e];
   138 	  if ( c == 0 ) continue;
   139 	  Node w=G.head(e);
   140 	  if ( level[w] < n ) {	  
   141 	    if ( excess[w] == 0 && w!=t ) {
   142 	      next.set(w,active[level[w]]);
   143 	      active[level[w]]=w;
   144 	    }
   145 	    flow.set(e, c); 
   146 	    excess.set(w, excess[w]+c);
   147 	  }
   148 	}
   149 
   150       /* 
   151 	 End of preprocessing 
   152       */
   153 
   154 
   155 
   156       /*
   157 	Push/relabel on the highest level active nodes.
   158       */	
   159       while ( true ) {
   160 	
   161 	if ( b == 0 ) {
   162 	  if ( phase ) break;
   163 	  
   164 	  if ( !what_heur && !end && k > 0 ) {
   165 	    b=k;
   166 	    end=true;
   167 	  } else {
   168 	    phase=1;
   169 	    level.set(s,0);
   170 	    std::queue<Node> bfs_queue;
   171 	    bfs_queue.push(s);
   172 	    
   173 	    while (!bfs_queue.empty()) {
   174 	      
   175 	      Node v=bfs_queue.front();	
   176 	      bfs_queue.pop();
   177 	      int l=level[v]+1;
   178 	      
   179 	      InEdgeIt e;
   180 	      for(G.first(e,v); G.valid(e); G.next(e)) {
   181 		if ( capacity[e] == flow[e] ) continue;
   182 		Node u=G.tail(e);
   183 		if ( level[u] >= n ) { 
   184 		  bfs_queue.push(u);
   185 		  level.set(u, l);
   186 		  if ( excess[u] > 0 ) {
   187 		    next.set(u,active[l]);
   188 		    active[l]=u;
   189 		  }
   190 		}
   191 	      }
   192 	    
   193 	      OutEdgeIt f;
   194 	      for(G.first(f,v); G.valid(f); G.next(f)) {
   195 		if ( 0 == flow[f] ) continue;
   196 		Node u=G.head(f);
   197 		if ( level[u] >= n ) { 
   198 		  bfs_queue.push(u);
   199 		  level.set(u, l);
   200 		  if ( excess[u] > 0 ) {
   201 		    next.set(u,active[l]);
   202 		    active[l]=u;
   203 		  }
   204 		}
   205 	      }
   206 	    }
   207 	    b=n-2;
   208 	    }
   209 	    
   210 	}
   211 	  
   212 	  
   213 	if ( !G.valid(active[b]) ) --b; 
   214 	else {
   215 	  end=false;  
   216 
   217 	  Node w=active[b];
   218 	  active[b]=next[w];
   219 	  int lev=level[w];
   220 	  T exc=excess[w];
   221 	  int newlevel=n;       //bound on the next level of w
   222 	  
   223 	  OutEdgeIt e;
   224 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   225 	    
   226 	    if ( flow[e] == capacity[e] ) continue; 
   227 	    Node v=G.head(e);            
   228 	    //e=wv	    
   229 	    
   230 	    if( lev > level[v] ) {      
   231 	      /*Push is allowed now*/
   232 	      
   233 	      if ( excess[v]==0 && v!=t && v!=s ) {
   234 		int lev_v=level[v];
   235 		next.set(v,active[lev_v]);
   236 		active[lev_v]=v;
   237 	      }
   238 	      
   239 	      T cap=capacity[e];
   240 	      T flo=flow[e];
   241 	      T remcap=cap-flo;
   242 	      
   243 	      if ( remcap >= exc ) {       
   244 		/*A nonsaturating push.*/
   245 		
   246 		flow.set(e, flo+exc);
   247 		excess.set(v, excess[v]+exc);
   248 		exc=0;
   249 		break; 
   250 		
   251 	      } else { 
   252 		/*A saturating push.*/
   253 		
   254 		flow.set(e, cap);
   255 		excess.set(v, excess[v]+remcap);
   256 		exc-=remcap;
   257 	      }
   258 	    } else if ( newlevel > level[v] ){
   259 	      newlevel = level[v];
   260 	    }	    
   261 	    
   262 	  } //for out edges wv 
   263 	
   264 	
   265 	if ( exc > 0 ) {	
   266 	  InEdgeIt e;
   267 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   268 	    
   269 	    if( flow[e] == 0 ) continue; 
   270 	    Node v=G.tail(e);  
   271 	    //e=vw
   272 	    
   273 	    if( lev > level[v] ) {  
   274 	      /*Push is allowed now*/
   275 	      
   276 	      if ( excess[v]==0 && v!=t && v!=s ) {
   277 		int lev_v=level[v];
   278 		next.set(v,active[lev_v]);
   279 		active[lev_v]=v;
   280 	      }
   281 	      
   282 	      T flo=flow[e];
   283 	      
   284 	      if ( flo >= exc ) { 
   285 		/*A nonsaturating push.*/
   286 		
   287 		flow.set(e, flo-exc);
   288 		excess.set(v, excess[v]+exc);
   289 		exc=0;
   290 		break; 
   291 	      } else {                                               
   292 		/*A saturating push.*/
   293 		
   294 		excess.set(v, excess[v]+flo);
   295 		exc-=flo;
   296 		flow.set(e,0);
   297 	      }  
   298 	    } else if ( newlevel > level[v] ) {
   299 	      newlevel = level[v];
   300 	    }	    
   301 	  } //for in edges vw
   302 	  
   303 	} // if w still has excess after the out edge for cycle
   304 	
   305 	excess.set(w, exc);
   306 	 
   307 	/*
   308 	  Relabel
   309 	*/
   310 	
   311 
   312 	if ( exc > 0 ) {
   313 	  //now 'lev' is the old level of w
   314 	
   315 	  if ( phase ) {
   316 	    level.set(w,++newlevel);
   317 	    next.set(w,active[newlevel]);
   318 	    active[newlevel]=w;
   319 	    b=newlevel;
   320 	  } else {
   321 	    //unlacing starts
   322 	    Node right_n=right[w];
   323 	    Node left_n=left[w];
   324 
   325 	    if ( G.valid(right_n) ) {
   326 	      if ( G.valid(left_n) ) {
   327 		right.set(left_n, right_n);
   328 		left.set(right_n, left_n);
   329 	      } else {
   330 		level_list[lev]=right_n;   
   331 		left.set(right_n, INVALID);
   332 	      } 
   333 	    } else {
   334 	      if ( G.valid(left_n) ) {
   335 		right.set(left_n, INVALID);
   336 	      } else { 
   337 		level_list[lev]=INVALID;   
   338 	      } 
   339 	    } 
   340 	    //unlacing ends
   341 		
   342 	    //gapping starts
   343 	    if ( !G.valid(level_list[lev]) ) {
   344 	      
   345 	      for (int i=lev; i!=k ; ) {
   346 		Node v=level_list[++i];
   347 		while ( G.valid(v) ) {
   348 		  level.set(v,n);
   349 		  v=right[v];
   350 		}
   351 		level_list[i]=INVALID;
   352 		if ( !what_heur ) active[i]=INVALID;
   353 	      }	     
   354 
   355 	      level.set(w,n);
   356 	      b=lev-1;
   357 	      k=b;
   358 	      //gapping ends
   359 	    } else {
   360 	      
   361 	      if ( newlevel == n ) level.set(w,n); 
   362 	      else {
   363 		level.set(w,++newlevel);
   364 		next.set(w,active[newlevel]);
   365 		active[newlevel]=w;
   366 		if ( what_heur ) b=newlevel;
   367 		if ( k < newlevel ) ++k;
   368 		Node first=level_list[newlevel];
   369 		if ( G.valid(first) ) left.set(first,w);
   370 		right.set(w,first);
   371 		left.set(w,INVALID);
   372 		level_list[newlevel]=w;
   373 	      }
   374 	    }
   375 
   376 
   377 	    ++relabel; 
   378 	    if ( relabel >= heur ) {
   379 	      relabel=0;
   380 	      if ( what_heur ) {
   381 		what_heur=0;
   382 		heur=heur0;
   383 		end=false;
   384 	      } else {
   385 		what_heur=1;
   386 		heur=heur1;
   387 		b=k; 
   388 	      }
   389 	    }
   390 	  } //phase 0
   391 	  
   392 	  
   393 	} // if ( exc > 0 )
   394 	  
   395 	
   396 	}  // if stack[b] is nonempty
   397 	
   398       } // while(true)
   399 
   400 
   401       value = excess[t];
   402       /*Max flow value.*/
   403      
   404     } //void run()
   405 
   406 
   407 
   408 
   409 
   410     /*
   411       Returns the maximum value of a flow.
   412      */
   413 
   414     T flowValue() {
   415       return value;
   416     }
   417 
   418 
   419     FlowMap Flow() {
   420       return flow;
   421       }
   422 
   423 
   424     
   425     void Flow(FlowMap& _flow ) {
   426       NodeIt v;
   427       for(G.first(v) ; G.valid(v); G.next(v))
   428 	_flow.set(v,flow[v]);
   429     }
   430 
   431 
   432 
   433     /*
   434       Returns the minimum min cut, by a bfs from s in the residual graph.
   435     */
   436    
   437     template<typename _CutMap>
   438     void minMinCut(_CutMap& M) {
   439     
   440       std::queue<Node> queue;
   441       
   442       M.set(s,true);      
   443       queue.push(s);
   444 
   445       while (!queue.empty()) {
   446         Node w=queue.front();
   447 	queue.pop();
   448 
   449 	OutEdgeIt e;
   450 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   451 	  Node v=G.head(e);
   452 	  if (!M[v] && flow[e] < capacity[e] ) {
   453 	    queue.push(v);
   454 	    M.set(v, true);
   455 	  }
   456 	} 
   457 
   458 	InEdgeIt f;
   459 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   460 	  Node v=G.tail(f);
   461 	  if (!M[v] && flow[f] > 0 ) {
   462 	    queue.push(v);
   463 	    M.set(v, true);
   464 	  }
   465 	} 
   466       }
   467     }
   468 
   469 
   470   
   471     /*
   472       Returns the maximum min cut, by a reverse bfs 
   473       from t in the residual graph.
   474     */
   475     
   476     template<typename _CutMap>
   477     void maxMinCut(_CutMap& M) {
   478     
   479       std::queue<Node> queue;
   480       
   481       M.set(t,true);        
   482       queue.push(t);
   483 
   484       while (!queue.empty()) {
   485         Node w=queue.front();
   486 	queue.pop();
   487 
   488 
   489 	InEdgeIt e;
   490 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   491 	  Node v=G.tail(e);
   492 	  if (!M[v] && flow[e] < capacity[e] ) {
   493 	    queue.push(v);
   494 	    M.set(v, true);
   495 	  }
   496 	}
   497 	
   498 	OutEdgeIt f;
   499 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   500 	  Node v=G.head(f);
   501 	  if (!M[v] && flow[f] > 0 ) {
   502 	    queue.push(v);
   503 	    M.set(v, true);
   504 	  }
   505 	}
   506       }
   507 
   508       NodeIt v;
   509       for(G.first(v) ; G.valid(v); G.next(v)) {
   510 	M.set(v, !M[v]);
   511       }
   512 
   513     }
   514 
   515 
   516 
   517     template<typename CutMap>
   518     void minCut(CutMap& M) {
   519       minMinCut(M);
   520     }
   521 
   522 
   523   };
   524 
   525 } //namespace hugo
   526 
   527 #endif //PREFLOW_H
   528 
   529 
   530 
   531