Small bug corrected.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/base_extender.h>
27 #include <lemon/bits/graph_extender.h>
29 #include <lemon/error.h>
40 int first_in, first_out;
46 int prev_in, prev_out;
47 int next_in, next_out;
50 std::vector<NodeT> nodes;
56 std::vector<EdgeT> edges;
62 typedef ListGraphBase Graph;
65 friend class ListGraphBase;
69 explicit Node(int pid) { id = pid;}
73 Node (Invalid) { id = -1; }
74 bool operator==(const Node& node) const {return id == node.id;}
75 bool operator!=(const Node& node) const {return id != node.id;}
76 bool operator<(const Node& node) const {return id < node.id;}
80 friend class ListGraphBase;
84 explicit Edge(int pid) { id = pid;}
88 Edge (Invalid) { id = -1; }
89 bool operator==(const Edge& edge) const {return id == edge.id;}
90 bool operator!=(const Edge& edge) const {return id != edge.id;}
91 bool operator<(const Edge& edge) const {return id < edge.id;}
97 : nodes(), first_node(-1),
98 first_free_node(-1), edges(), first_free_edge(-1) {}
101 int maxNodeId() const { return nodes.size()-1; }
102 int maxEdgeId() const { return edges.size()-1; }
104 Node source(Edge e) const { return Node(edges[e.id].source); }
105 Node target(Edge e) const { return Node(edges[e.id].target); }
108 void first(Node& node) const {
109 node.id = first_node;
112 void next(Node& node) const {
113 node.id = nodes[node.id].next;
117 void first(Edge& e) const {
120 n!=-1 && nodes[n].first_in == -1;
122 e.id = (n == -1) ? -1 : nodes[n].first_in;
125 void next(Edge& edge) const {
126 if (edges[edge.id].next_in != -1) {
127 edge.id = edges[edge.id].next_in;
130 for(n = nodes[edges[edge.id].target].next;
131 n!=-1 && nodes[n].first_in == -1;
133 edge.id = (n == -1) ? -1 : nodes[n].first_in;
137 void firstOut(Edge &e, const Node& v) const {
138 e.id = nodes[v.id].first_out;
140 void nextOut(Edge &e) const {
141 e.id=edges[e.id].next_out;
144 void firstIn(Edge &e, const Node& v) const {
145 e.id = nodes[v.id].first_in;
147 void nextIn(Edge &e) const {
148 e.id=edges[e.id].next_in;
152 static int id(Node v) { return v.id; }
153 static int id(Edge e) { return e.id; }
155 static Node nodeFromId(int id) { return Node(id);}
156 static Edge edgeFromId(int id) { return Edge(id);}
161 if(first_free_node==-1) {
163 nodes.push_back(NodeT());
166 first_free_node = nodes[n].next;
169 nodes[n].next = first_node;
170 if(first_node != -1) nodes[first_node].prev = n;
174 nodes[n].first_in = nodes[n].first_out = -1;
179 Edge addEdge(Node u, Node v) {
182 if (first_free_edge == -1) {
184 edges.push_back(EdgeT());
187 first_free_edge = edges[n].next_in;
190 edges[n].source = u.id;
191 edges[n].target = v.id;
193 edges[n].next_out = nodes[u.id].first_out;
194 if(nodes[u.id].first_out != -1) {
195 edges[nodes[u.id].first_out].prev_out = n;
198 edges[n].next_in = nodes[v.id].first_in;
199 if(nodes[v.id].first_in != -1) {
200 edges[nodes[v.id].first_in].prev_in = n;
203 edges[n].prev_in = edges[n].prev_out = -1;
205 nodes[u.id].first_out = nodes[v.id].first_in = n;
210 void erase(const Node& node) {
213 if(nodes[n].next != -1) {
214 nodes[nodes[n].next].prev = nodes[n].prev;
217 if(nodes[n].prev != -1) {
218 nodes[nodes[n].prev].next = nodes[n].next;
220 first_node = nodes[n].next;
223 nodes[n].next = first_free_node;
228 void erase(const Edge& edge) {
231 if(edges[n].next_in!=-1) {
232 edges[edges[n].next_in].prev_in = edges[n].prev_in;
235 if(edges[n].prev_in!=-1) {
236 edges[edges[n].prev_in].next_in = edges[n].next_in;
238 nodes[edges[n].target].first_in = edges[n].next_in;
242 if(edges[n].next_out!=-1) {
243 edges[edges[n].next_out].prev_out = edges[n].prev_out;
246 if(edges[n].prev_out!=-1) {
247 edges[edges[n].prev_out].next_out = edges[n].next_out;
249 nodes[edges[n].source].first_out = edges[n].next_out;
252 edges[n].next_in = first_free_edge;
260 first_node = first_free_node = first_free_edge = -1;
264 void changeTarget(Edge e, Node n)
266 if(edges[e.id].next_in != -1)
267 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
268 if(edges[e.id].prev_in != -1)
269 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
270 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
271 if (nodes[n.id].first_in != -1) {
272 edges[nodes[n.id].first_in].prev_in = e.id;
274 edges[e.id].target = n.id;
275 edges[e.id].prev_in = -1;
276 edges[e.id].next_in = nodes[n.id].first_in;
277 nodes[n.id].first_in = e.id;
279 void changeSource(Edge e, Node n)
281 if(edges[e.id].next_out != -1)
282 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
283 if(edges[e.id].prev_out != -1)
284 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
285 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
286 if (nodes[n.id].first_out != -1) {
287 edges[nodes[n.id].first_out].prev_out = e.id;
289 edges[e.id].source = n.id;
290 edges[e.id].prev_out = -1;
291 edges[e.id].next_out = nodes[n.id].first_out;
292 nodes[n.id].first_out = e.id;
297 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
299 /// \addtogroup graphs
302 ///A list graph class.
304 ///This is a simple and fast graph implementation.
306 ///It conforms to the \ref concepts::Graph "Graph concept" and it
307 ///also provides several additional useful extra functionalities.
308 ///The most of the member functions and nested classes are
309 ///documented only in the concept class.
311 ///An important extra feature of this graph implementation is that
312 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
314 ///\sa concepts::Graph.
316 class ListGraph : public ExtendedListGraphBase {
318 ///ListGraph is \e not copy constructible. Use GraphCopy() instead.
320 ///ListGraph is \e not copy constructible. Use GraphCopy() instead.
322 ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
323 ///\brief Assignment of ListGraph to another one is \e not allowed.
324 ///Use GraphCopy() instead.
326 ///Assignment of ListGraph to another one is \e not allowed.
327 ///Use GraphCopy() instead.
328 void operator=(const ListGraph &) {}
331 typedef ExtendedListGraphBase Parent;
339 ///Add a new node to the graph.
341 /// \return the new node.
343 Node addNode() { return Parent::addNode(); }
345 ///Add a new edge to the graph.
347 ///Add a new edge to the graph with source node \c s
348 ///and target node \c t.
349 ///\return the new edge.
350 Edge addEdge(const Node& s, const Node& t) {
351 return Parent::addEdge(s, t);
354 /// Changes the target of \c e to \c n
356 /// Changes the target of \c e to \c n
358 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s referencing
359 ///the changed edge remain valid. However <tt>InEdgeIt</tt>s are
361 ///\warning This functionality cannot be used together with the Snapshot
363 void changeTarget(Edge e, Node n) {
364 Parent::changeTarget(e,n);
366 /// Changes the source of \c e to \c n
368 /// Changes the source of \c e to \c n
370 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
371 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
373 ///\warning This functionality cannot be used together with the Snapshot
375 void changeSource(Edge e, Node n) {
376 Parent::changeSource(e,n);
379 /// Invert the direction of an edge.
381 ///\note The <tt>EdgeIt</tt>s referencing the changed edge remain
382 ///valid. However <tt>OutEdgeIt</tt>s and <tt>InEdgeIt</tt>s are
384 ///\warning This functionality cannot be used together with the Snapshot
386 void reverseEdge(Edge e) {
388 changeTarget(e,source(e));
392 /// \brief Using this it is possible to avoid the superfluous memory
395 ///Using this it is possible to avoid the superfluous memory
396 ///allocation: if you know that the graph you want to build will
397 ///contain at least 10 million nodes then it is worth reserving
398 ///space for this amount before starting to build the graph.
399 void reserveNode(int n) { nodes.reserve(n); };
401 /// \brief Using this it is possible to avoid the superfluous memory
404 ///Using this it is possible to avoid the superfluous memory
405 ///allocation: see the \ref reserveNode function.
406 void reserveEdge(int n) { edges.reserve(n); };
409 ///Contract two nodes.
411 ///This function contracts two nodes.
413 ///Node \p b will be removed but instead of deleting
414 ///incident edges, they will be joined to \p a.
415 ///The last parameter \p r controls whether to remove loops. \c true
416 ///means that loops will be removed.
418 ///\note The <tt>EdgeIt</tt>s
419 ///referencing a moved edge remain
420 ///valid. However <tt>InEdgeIt</tt>s and <tt>OutEdgeIt</tt>s
421 ///may be invalidated.
422 ///\warning This functionality cannot be used together with the Snapshot
424 void contract(Node a, Node b, bool r = true)
426 for(OutEdgeIt e(*this,b);e!=INVALID;) {
429 if(r && target(e)==a) erase(e);
430 else changeSource(e,a);
433 for(InEdgeIt e(*this,b);e!=INVALID;) {
436 if(r && source(e)==a) erase(e);
437 else changeTarget(e,a);
445 ///This function splits a node. First a new node is added to the graph,
446 ///then the source of each outgoing edge of \c n is moved to this new node.
447 ///If \c connect is \c true (this is the default value), then a new edge
448 ///from \c n to the newly created node is also added.
449 ///\return The newly created node.
451 ///\note The <tt>EdgeIt</tt>s referencing a moved edge remain
452 ///valid. However <tt>InEdgeIt</tt>s and <tt>OutEdgeIt</tt>s may
455 ///\warning This functionality cannot be used together with the
456 ///Snapshot feature. \todo It could be implemented in a bit
458 Node split(Node n, bool connect = true) {
460 for(OutEdgeIt e(*this,n);e!=INVALID;) {
466 if (connect) addEdge(n,b);
472 ///This function splits an edge. First a new node \c b is added to
473 ///the graph, then the original edge is re-targeted to \c
474 ///b. Finally an edge from \c b to the original target is added.
475 ///\return The newly created node.
476 ///\warning This functionality
477 ///cannot be used together with the Snapshot feature.
480 addEdge(b,target(e));
485 /// \brief Class to make a snapshot of the graph and restore
488 /// Class to make a snapshot of the graph and to restore it
491 /// The newly added nodes and edges can be removed using the
492 /// restore() function.
494 /// \warning Edge and node deletions cannot be restored. This
495 /// events invalidate the snapshot.
499 typedef Parent::NodeNotifier NodeNotifier;
501 class NodeObserverProxy : public NodeNotifier::ObserverBase {
504 NodeObserverProxy(Snapshot& _snapshot)
505 : snapshot(_snapshot) {}
507 using NodeNotifier::ObserverBase::attach;
508 using NodeNotifier::ObserverBase::detach;
509 using NodeNotifier::ObserverBase::attached;
513 virtual void add(const Node& node) {
514 snapshot.addNode(node);
516 virtual void add(const std::vector<Node>& nodes) {
517 for (int i = nodes.size() - 1; i >= 0; ++i) {
518 snapshot.addNode(nodes[i]);
521 virtual void erase(const Node& node) {
522 snapshot.eraseNode(node);
524 virtual void erase(const std::vector<Node>& nodes) {
525 for (int i = 0; i < (int)nodes.size(); ++i) {
526 snapshot.eraseNode(nodes[i]);
529 virtual void build() {
530 NodeNotifier* notifier = getNotifier();
532 std::vector<Node> nodes;
533 for (notifier->first(node); node != INVALID; notifier->next(node)) {
534 nodes.push_back(node);
536 for (int i = nodes.size() - 1; i >= 0; --i) {
537 snapshot.addNode(nodes[i]);
540 virtual void clear() {
541 NodeNotifier* notifier = getNotifier();
543 for (notifier->first(node); node != INVALID; notifier->next(node)) {
544 snapshot.eraseNode(node);
551 class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
554 EdgeObserverProxy(Snapshot& _snapshot)
555 : snapshot(_snapshot) {}
557 using EdgeNotifier::ObserverBase::attach;
558 using EdgeNotifier::ObserverBase::detach;
559 using EdgeNotifier::ObserverBase::attached;
563 virtual void add(const Edge& edge) {
564 snapshot.addEdge(edge);
566 virtual void add(const std::vector<Edge>& edges) {
567 for (int i = edges.size() - 1; i >= 0; ++i) {
568 snapshot.addEdge(edges[i]);
571 virtual void erase(const Edge& edge) {
572 snapshot.eraseEdge(edge);
574 virtual void erase(const std::vector<Edge>& edges) {
575 for (int i = 0; i < (int)edges.size(); ++i) {
576 snapshot.eraseEdge(edges[i]);
579 virtual void build() {
580 EdgeNotifier* notifier = getNotifier();
582 std::vector<Edge> edges;
583 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
584 edges.push_back(edge);
586 for (int i = edges.size() - 1; i >= 0; --i) {
587 snapshot.addEdge(edges[i]);
590 virtual void clear() {
591 EdgeNotifier* notifier = getNotifier();
593 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
594 snapshot.eraseEdge(edge);
603 NodeObserverProxy node_observer_proxy;
604 EdgeObserverProxy edge_observer_proxy;
606 std::list<Node> added_nodes;
607 std::list<Edge> added_edges;
610 void addNode(const Node& node) {
611 added_nodes.push_front(node);
613 void eraseNode(const Node& node) {
614 std::list<Node>::iterator it =
615 std::find(added_nodes.begin(), added_nodes.end(), node);
616 if (it == added_nodes.end()) {
618 edge_observer_proxy.detach();
619 throw NodeNotifier::ImmediateDetach();
621 added_nodes.erase(it);
625 void addEdge(const Edge& edge) {
626 added_edges.push_front(edge);
628 void eraseEdge(const Edge& edge) {
629 std::list<Edge>::iterator it =
630 std::find(added_edges.begin(), added_edges.end(), edge);
631 if (it == added_edges.end()) {
633 node_observer_proxy.detach();
634 throw EdgeNotifier::ImmediateDetach();
636 added_edges.erase(it);
640 void attach(ListGraph &_graph) {
642 node_observer_proxy.attach(graph->getNotifier(Node()));
643 edge_observer_proxy.attach(graph->getNotifier(Edge()));
647 node_observer_proxy.detach();
648 edge_observer_proxy.detach();
651 bool attached() const {
652 return node_observer_proxy.attached();
662 /// \brief Default constructor.
664 /// Default constructor.
665 /// To actually make a snapshot you must call save().
667 : graph(0), node_observer_proxy(*this),
668 edge_observer_proxy(*this) {}
670 /// \brief Constructor that immediately makes a snapshot.
672 /// This constructor immediately makes a snapshot of the graph.
673 /// \param _graph The graph we make a snapshot of.
674 Snapshot(ListGraph &_graph)
675 : node_observer_proxy(*this),
676 edge_observer_proxy(*this) {
680 /// \brief Make a snapshot.
682 /// Make a snapshot of the graph.
684 /// This function can be called more than once. In case of a repeated
685 /// call, the previous snapshot gets lost.
686 /// \param _graph The graph we make the snapshot of.
687 void save(ListGraph &_graph) {
695 /// \brief Undo the changes until the last snapshot.
697 /// Undo the changes until the last snapshot created by save().
700 for(std::list<Edge>::iterator it = added_edges.begin();
701 it != added_edges.end(); ++it) {
704 for(std::list<Node>::iterator it = added_nodes.begin();
705 it != added_nodes.end(); ++it) {
711 /// \brief Gives back true when the snapshot is valid.
713 /// Gives back true when the snapshot is valid.
723 class ListUGraphBase {
734 int prev_out, next_out;
737 std::vector<NodeT> nodes;
743 std::vector<EdgeT> edges;
749 typedef ListUGraphBase Graph;
756 friend class ListUGraphBase;
760 explicit Node(int pid) { id = pid;}
764 Node (Invalid) { id = -1; }
765 bool operator==(const Node& node) const {return id == node.id;}
766 bool operator!=(const Node& node) const {return id != node.id;}
767 bool operator<(const Node& node) const {return id < node.id;}
771 friend class ListUGraphBase;
775 explicit UEdge(int pid) { id = pid;}
779 UEdge (Invalid) { id = -1; }
780 bool operator==(const UEdge& edge) const {return id == edge.id;}
781 bool operator!=(const UEdge& edge) const {return id != edge.id;}
782 bool operator<(const UEdge& edge) const {return id < edge.id;}
786 friend class ListUGraphBase;
790 explicit Edge(int pid) { id = pid;}
793 operator UEdge() const { return uEdgeFromId(id / 2); }
796 Edge (Invalid) { id = -1; }
797 bool operator==(const Edge& edge) const {return id == edge.id;}
798 bool operator!=(const Edge& edge) const {return id != edge.id;}
799 bool operator<(const Edge& edge) const {return id < edge.id;}
805 : nodes(), first_node(-1),
806 first_free_node(-1), edges(), first_free_edge(-1) {}
809 int maxNodeId() const { return nodes.size()-1; }
810 int maxUEdgeId() const { return edges.size() / 2 - 1; }
811 int maxEdgeId() const { return edges.size()-1; }
813 Node source(Edge e) const { return Node(edges[e.id ^ 1].target); }
814 Node target(Edge e) const { return Node(edges[e.id].target); }
816 Node source(UEdge e) const { return Node(edges[2 * e.id].target); }
817 Node target(UEdge e) const { return Node(edges[2 * e.id + 1].target); }
819 static bool direction(Edge e) {
820 return (e.id & 1) == 1;
823 static Edge direct(UEdge e, bool d) {
824 return Edge(e.id * 2 + (d ? 1 : 0));
827 void first(Node& node) const {
828 node.id = first_node;
831 void next(Node& node) const {
832 node.id = nodes[node.id].next;
835 void first(Edge& e) const {
837 while (n != -1 && nodes[n].first_out == -1) {
840 e.id = (n == -1) ? -1 : nodes[n].first_out;
843 void next(Edge& e) const {
844 if (edges[e.id].next_out != -1) {
845 e.id = edges[e.id].next_out;
847 int n = nodes[edges[e.id ^ 1].target].next;
848 while(n != -1 && nodes[n].first_out == -1) {
851 e.id = (n == -1) ? -1 : nodes[n].first_out;
855 void first(UEdge& e) const {
858 e.id = nodes[n].first_out;
859 while ((e.id & 1) != 1) {
860 e.id = edges[e.id].next_out;
871 void next(UEdge& e) const {
872 int n = edges[e.id * 2].target;
873 e.id = edges[(e.id * 2) | 1].next_out;
874 while ((e.id & 1) != 1) {
875 e.id = edges[e.id].next_out;
883 e.id = nodes[n].first_out;
884 while ((e.id & 1) != 1) {
885 e.id = edges[e.id].next_out;
896 void firstOut(Edge &e, const Node& v) const {
897 e.id = nodes[v.id].first_out;
899 void nextOut(Edge &e) const {
900 e.id = edges[e.id].next_out;
903 void firstIn(Edge &e, const Node& v) const {
904 e.id = ((nodes[v.id].first_out) ^ 1);
905 if (e.id == -2) e.id = -1;
907 void nextIn(Edge &e) const {
908 e.id = ((edges[e.id ^ 1].next_out) ^ 1);
909 if (e.id == -2) e.id = -1;
912 void firstInc(UEdge &e, bool& d, const Node& v) const {
913 int de = nodes[v.id].first_out;
917 void nextInc(UEdge &e, bool& d) const {
918 int de = (edges[(e.id * 2) | (d ? 1 : 0)].next_out);
923 static int id(Node v) { return v.id; }
924 static int id(Edge e) { return e.id; }
925 static int id(UEdge e) { return e.id; }
927 static Node nodeFromId(int id) { return Node(id);}
928 static Edge edgeFromId(int id) { return Edge(id);}
929 static UEdge uEdgeFromId(int id) { return UEdge(id);}
934 if(first_free_node==-1) {
936 nodes.push_back(NodeT());
939 first_free_node = nodes[n].next;
942 nodes[n].next = first_node;
943 if (first_node != -1) nodes[first_node].prev = n;
947 nodes[n].first_out = -1;
952 UEdge addEdge(Node u, Node v) {
955 if (first_free_edge == -1) {
957 edges.push_back(EdgeT());
958 edges.push_back(EdgeT());
961 first_free_edge = edges[n].next_out;
964 edges[n].target = u.id;
965 edges[n | 1].target = v.id;
967 edges[n].next_out = nodes[v.id].first_out;
968 edges[n | 1].next_out = nodes[u.id].first_out;
969 if (nodes[v.id].first_out != -1) {
970 edges[nodes[v.id].first_out].prev_out = n;
972 if (nodes[u.id].first_out != -1) {
973 edges[nodes[u.id].first_out].prev_out = (n | 1);
976 edges[n].prev_out = edges[n | 1].prev_out = -1;
978 nodes[v.id].first_out = n;
979 nodes[u.id].first_out = (n | 1);
984 void erase(const Node& node) {
987 if(nodes[n].next != -1) {
988 nodes[nodes[n].next].prev = nodes[n].prev;
991 if(nodes[n].prev != -1) {
992 nodes[nodes[n].prev].next = nodes[n].next;
994 first_node = nodes[n].next;
997 nodes[n].next = first_free_node;
1002 void erase(const UEdge& edge) {
1003 int n = edge.id * 2;
1005 if (edges[n].next_out != -1) {
1006 edges[edges[n].next_out].prev_out = edges[n].prev_out;
1009 if (edges[n].prev_out != -1) {
1010 edges[edges[n].prev_out].next_out = edges[n].next_out;
1012 nodes[edges[n | 1].target].first_out = edges[n].next_out;
1015 if (edges[n | 1].next_out != -1) {
1016 edges[edges[n | 1].next_out].prev_out = edges[n | 1].prev_out;
1019 if (edges[n | 1].prev_out != -1) {
1020 edges[edges[n | 1].prev_out].next_out = edges[n | 1].next_out;
1022 nodes[edges[n].target].first_out = edges[n | 1].next_out;
1025 edges[n].next_out = first_free_edge;
1026 first_free_edge = n;
1033 first_node = first_free_node = first_free_edge = -1;
1038 void changeTarget(UEdge e, Node n) {
1039 if(edges[2 * e.id].next_out != -1) {
1040 edges[edges[2 * e.id].next_out].prev_out = edges[2 * e.id].prev_out;
1042 if(edges[2 * e.id].prev_out != -1) {
1043 edges[edges[2 * e.id].prev_out].next_out =
1044 edges[2 * e.id].next_out;
1046 nodes[edges[(2 * e.id) | 1].target].first_out =
1047 edges[2 * e.id].next_out;
1050 if (nodes[n.id].first_out != -1) {
1051 edges[nodes[n.id].first_out].prev_out = 2 * e.id;
1053 edges[(2 * e.id) | 1].target = n.id;
1054 edges[2 * e.id].prev_out = -1;
1055 edges[2 * e.id].next_out = nodes[n.id].first_out;
1056 nodes[n.id].first_out = 2 * e.id;
1059 void changeSource(UEdge e, Node n) {
1060 if(edges[(2 * e.id) | 1].next_out != -1) {
1061 edges[edges[(2 * e.id) | 1].next_out].prev_out =
1062 edges[(2 * e.id) | 1].prev_out;
1064 if(edges[(2 * e.id) | 1].prev_out != -1) {
1065 edges[edges[(2 * e.id) | 1].prev_out].next_out =
1066 edges[(2 * e.id) | 1].next_out;
1068 nodes[edges[2 * e.id].target].first_out =
1069 edges[(2 * e.id) | 1].next_out;
1072 if (nodes[n.id].first_out != -1) {
1073 edges[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
1075 edges[2 * e.id].target = n.id;
1076 edges[(2 * e.id) | 1].prev_out = -1;
1077 edges[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
1078 nodes[n.id].first_out = ((2 * e.id) | 1);
1083 // typedef UGraphExtender<UndirGraphExtender<ListGraphBase> >
1084 // ExtendedListUGraphBase;
1086 typedef UGraphExtender<ListUGraphBase> ExtendedListUGraphBase;
1090 /// \addtogroup graphs
1093 ///An undirected list graph class.
1095 ///This is a simple and fast undirected graph implementation.
1097 ///An important extra feature of this graph implementation is that
1098 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
1100 ///It conforms to the
1101 ///\ref concepts::UGraph "UGraph concept".
1103 ///\sa concepts::UGraph.
1105 class ListUGraph : public ExtendedListUGraphBase {
1107 ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead.
1109 ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead.
1111 ListUGraph(const ListUGraph &) :ExtendedListUGraphBase() {};
1112 ///\brief Assignment of ListUGraph to another one is \e not allowed.
1113 ///Use UGraphCopy() instead.
1115 ///Assignment of ListUGraph to another one is \e not allowed.
1116 ///Use UGraphCopy() instead.
1117 void operator=(const ListUGraph &) {}
1125 typedef ExtendedListUGraphBase Parent;
1127 typedef Parent::OutEdgeIt IncEdgeIt;
1129 /// \brief Add a new node to the graph.
1131 /// \return the new node.
1133 Node addNode() { return Parent::addNode(); }
1135 /// \brief Add a new edge to the graph.
1137 /// Add a new edge to the graph with source node \c s
1138 /// and target node \c t.
1139 /// \return the new undirected edge.
1140 UEdge addEdge(const Node& s, const Node& t) {
1141 return Parent::addEdge(s, t);
1143 /// \brief Changes the source of \c e to \c n
1145 /// Changes the source of \c e to \c n
1147 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1148 ///referencing the changed edge remain
1149 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1150 void changeSource(UEdge e, Node n) {
1151 Parent::changeSource(e,n);
1153 /// \brief Changes the target of \c e to \c n
1155 /// Changes the target of \c e to \c n
1157 /// \note The <tt>EdgeIt</tt>s referencing the changed edge remain
1158 /// valid. However the other iterators may be invalidated.
1159 void changeTarget(UEdge e, Node n) {
1160 Parent::changeTarget(e,n);
1162 /// \brief Changes the source of \c e to \c n
1164 /// Changes the source of \c e to \c n. It changes the proper
1165 /// node of the represented undirected edge.
1167 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1168 ///referencing the changed edge remain
1169 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1170 void changeSource(Edge e, Node n) {
1171 if (Parent::direction(e)) {
1172 Parent::changeSource(e,n);
1174 Parent::changeTarget(e,n);
1177 /// \brief Changes the target of \c e to \c n
1179 /// Changes the target of \c e to \c n. It changes the proper
1180 /// node of the represented undirected edge.
1182 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1183 ///referencing the changed edge remain
1184 ///valid. However <tt>InEdgeIt</tt>s are invalidated.
1185 void changeTarget(Edge e, Node n) {
1186 if (Parent::direction(e)) {
1187 Parent::changeTarget(e,n);
1189 Parent::changeSource(e,n);
1192 /// \brief Contract two nodes.
1194 /// This function contracts two nodes.
1196 /// Node \p b will be removed but instead of deleting
1197 /// its neighboring edges, they will be joined to \p a.
1198 /// The last parameter \p r controls whether to remove loops. \c true
1199 /// means that loops will be removed.
1201 /// \note The <tt>EdgeIt</tt>s referencing a moved edge remain
1203 void contract(Node a, Node b, bool r = true) {
1204 for(IncEdgeIt e(*this, b); e!=INVALID;) {
1205 IncEdgeIt f = e; ++f;
1206 if (r && runningNode(e) == a) {
1208 } else if (source(e) == b) {
1219 /// \brief Class to make a snapshot of the graph and restore
1222 /// Class to make a snapshot of the graph and to restore it
1225 /// The newly added nodes and undirected edges can be removed
1226 /// using the restore() function.
1228 /// \warning Edge and node deletions cannot be restored. This
1229 /// events invalidate the snapshot.
1233 typedef Parent::NodeNotifier NodeNotifier;
1235 class NodeObserverProxy : public NodeNotifier::ObserverBase {
1238 NodeObserverProxy(Snapshot& _snapshot)
1239 : snapshot(_snapshot) {}
1241 using NodeNotifier::ObserverBase::attach;
1242 using NodeNotifier::ObserverBase::detach;
1243 using NodeNotifier::ObserverBase::attached;
1247 virtual void add(const Node& node) {
1248 snapshot.addNode(node);
1250 virtual void add(const std::vector<Node>& nodes) {
1251 for (int i = nodes.size() - 1; i >= 0; ++i) {
1252 snapshot.addNode(nodes[i]);
1255 virtual void erase(const Node& node) {
1256 snapshot.eraseNode(node);
1258 virtual void erase(const std::vector<Node>& nodes) {
1259 for (int i = 0; i < (int)nodes.size(); ++i) {
1260 snapshot.eraseNode(nodes[i]);
1263 virtual void build() {
1264 NodeNotifier* notifier = getNotifier();
1266 std::vector<Node> nodes;
1267 for (notifier->first(node); node != INVALID; notifier->next(node)) {
1268 nodes.push_back(node);
1270 for (int i = nodes.size() - 1; i >= 0; --i) {
1271 snapshot.addNode(nodes[i]);
1274 virtual void clear() {
1275 NodeNotifier* notifier = getNotifier();
1277 for (notifier->first(node); node != INVALID; notifier->next(node)) {
1278 snapshot.eraseNode(node);
1285 class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase {
1288 UEdgeObserverProxy(Snapshot& _snapshot)
1289 : snapshot(_snapshot) {}
1291 using UEdgeNotifier::ObserverBase::attach;
1292 using UEdgeNotifier::ObserverBase::detach;
1293 using UEdgeNotifier::ObserverBase::attached;
1297 virtual void add(const UEdge& edge) {
1298 snapshot.addUEdge(edge);
1300 virtual void add(const std::vector<UEdge>& edges) {
1301 for (int i = edges.size() - 1; i >= 0; ++i) {
1302 snapshot.addUEdge(edges[i]);
1305 virtual void erase(const UEdge& edge) {
1306 snapshot.eraseUEdge(edge);
1308 virtual void erase(const std::vector<UEdge>& edges) {
1309 for (int i = 0; i < (int)edges.size(); ++i) {
1310 snapshot.eraseUEdge(edges[i]);
1313 virtual void build() {
1314 UEdgeNotifier* notifier = getNotifier();
1316 std::vector<UEdge> edges;
1317 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
1318 edges.push_back(edge);
1320 for (int i = edges.size() - 1; i >= 0; --i) {
1321 snapshot.addUEdge(edges[i]);
1324 virtual void clear() {
1325 UEdgeNotifier* notifier = getNotifier();
1327 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
1328 snapshot.eraseUEdge(edge);
1337 NodeObserverProxy node_observer_proxy;
1338 UEdgeObserverProxy edge_observer_proxy;
1340 std::list<Node> added_nodes;
1341 std::list<UEdge> added_edges;
1344 void addNode(const Node& node) {
1345 added_nodes.push_front(node);
1347 void eraseNode(const Node& node) {
1348 std::list<Node>::iterator it =
1349 std::find(added_nodes.begin(), added_nodes.end(), node);
1350 if (it == added_nodes.end()) {
1352 edge_observer_proxy.detach();
1353 throw NodeNotifier::ImmediateDetach();
1355 added_nodes.erase(it);
1359 void addUEdge(const UEdge& edge) {
1360 added_edges.push_front(edge);
1362 void eraseUEdge(const UEdge& edge) {
1363 std::list<UEdge>::iterator it =
1364 std::find(added_edges.begin(), added_edges.end(), edge);
1365 if (it == added_edges.end()) {
1367 node_observer_proxy.detach();
1368 throw UEdgeNotifier::ImmediateDetach();
1370 added_edges.erase(it);
1374 void attach(ListUGraph &_graph) {
1376 node_observer_proxy.attach(graph->getNotifier(Node()));
1377 edge_observer_proxy.attach(graph->getNotifier(UEdge()));
1381 node_observer_proxy.detach();
1382 edge_observer_proxy.detach();
1385 bool attached() const {
1386 return node_observer_proxy.attached();
1390 added_nodes.clear();
1391 added_edges.clear();
1396 /// \brief Default constructor.
1398 /// Default constructor.
1399 /// To actually make a snapshot you must call save().
1401 : graph(0), node_observer_proxy(*this),
1402 edge_observer_proxy(*this) {}
1404 /// \brief Constructor that immediately makes a snapshot.
1406 /// This constructor immediately makes a snapshot of the graph.
1407 /// \param _graph The graph we make a snapshot of.
1408 Snapshot(ListUGraph &_graph)
1409 : node_observer_proxy(*this),
1410 edge_observer_proxy(*this) {
1414 /// \brief Make a snapshot.
1416 /// Make a snapshot of the graph.
1418 /// This function can be called more than once. In case of a repeated
1419 /// call, the previous snapshot gets lost.
1420 /// \param _graph The graph we make the snapshot of.
1421 void save(ListUGraph &_graph) {
1429 /// \brief Undo the changes until the last snapshot.
1431 /// Undo the changes until the last snapshot created by save().
1434 for(std::list<UEdge>::iterator it = added_edges.begin();
1435 it != added_edges.end(); ++it) {
1438 for(std::list<Node>::iterator it = added_nodes.begin();
1439 it != added_nodes.end(); ++it) {
1445 /// \brief Gives back true when the snapshot is valid.
1447 /// Gives back true when the snapshot is valid.
1448 bool valid() const {
1455 class ListBpUGraphBase {
1458 class NodeSetError : public LogicError {
1460 virtual const char* what() const throw() {
1461 return "lemon::ListBpUGraph::NodeSetError";
1468 int first_edge, prev, next;
1472 int aNode, prev_out, next_out;
1473 int bNode, prev_in, next_in;
1476 std::vector<NodeT> aNodes;
1477 std::vector<NodeT> bNodes;
1479 std::vector<UEdgeT> edges;
1482 int first_free_anode;
1485 int first_free_bnode;
1487 int first_free_edge;
1492 friend class ListBpUGraphBase;
1496 explicit Node(int _id) : id(_id) {}
1499 Node(Invalid) { id = -1; }
1500 bool operator==(const Node i) const {return id==i.id;}
1501 bool operator!=(const Node i) const {return id!=i.id;}
1502 bool operator<(const Node i) const {return id<i.id;}
1506 friend class ListBpUGraphBase;
1510 explicit UEdge(int _id) { id = _id;}
1513 UEdge (Invalid) { id = -1; }
1514 bool operator==(const UEdge i) const {return id==i.id;}
1515 bool operator!=(const UEdge i) const {return id!=i.id;}
1516 bool operator<(const UEdge i) const {return id<i.id;}
1520 : first_anode(-1), first_free_anode(-1),
1521 first_bnode(-1), first_free_bnode(-1),
1522 first_free_edge(-1) {}
1524 void firstANode(Node& node) const {
1525 node.id = first_anode != -1 ? (first_anode << 1) : -1;
1527 void nextANode(Node& node) const {
1528 node.id = aNodes[node.id >> 1].next;
1531 void firstBNode(Node& node) const {
1532 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
1534 void nextBNode(Node& node) const {
1535 node.id = bNodes[node.id >> 1].next;
1538 void first(Node& node) const {
1539 if (first_anode != -1) {
1540 node.id = (first_anode << 1);
1541 } else if (first_bnode != -1) {
1542 node.id = (first_bnode << 1) + 1;
1547 void next(Node& node) const {
1549 node.id = aNodes[node.id >> 1].next;
1550 if (node.id == -1) {
1551 if (first_bnode != -1) {
1552 node.id = (first_bnode << 1) + 1;
1556 node.id = bNodes[node.id >> 1].next;
1560 void first(UEdge& edge) const {
1561 int aNodeId = first_anode;
1562 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
1563 aNodeId = aNodes[aNodeId].next != -1 ?
1564 aNodes[aNodeId].next >> 1 : -1;
1566 if (aNodeId != -1) {
1567 edge.id = aNodes[aNodeId].first_edge;
1572 void next(UEdge& edge) const {
1573 int aNodeId = edges[edge.id].aNode >> 1;
1574 edge.id = edges[edge.id].next_out;
1575 if (edge.id == -1) {
1576 aNodeId = aNodes[aNodeId].next != -1 ?
1577 aNodes[aNodeId].next >> 1 : -1;
1578 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
1579 aNodeId = aNodes[aNodeId].next != -1 ?
1580 aNodes[aNodeId].next >> 1 : -1;
1582 if (aNodeId != -1) {
1583 edge.id = aNodes[aNodeId].first_edge;
1590 void firstFromANode(UEdge& edge, const Node& node) const {
1591 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
1592 edge.id = aNodes[node.id >> 1].first_edge;
1594 void nextFromANode(UEdge& edge) const {
1595 edge.id = edges[edge.id].next_out;
1598 void firstFromBNode(UEdge& edge, const Node& node) const {
1599 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
1600 edge.id = bNodes[node.id >> 1].first_edge;
1602 void nextFromBNode(UEdge& edge) const {
1603 edge.id = edges[edge.id].next_in;
1606 static int id(const Node& node) {
1609 static Node nodeFromId(int id) {
1612 int maxNodeId() const {
1613 return aNodes.size() > bNodes.size() ?
1614 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
1617 static int id(const UEdge& edge) {
1620 static UEdge uEdgeFromId(int id) {
1623 int maxUEdgeId() const {
1624 return edges.size();
1627 static int aNodeId(const Node& node) {
1628 return node.id >> 1;
1630 static Node nodeFromANodeId(int id) {
1631 return Node(id << 1);
1633 int maxANodeId() const {
1634 return aNodes.size();
1637 static int bNodeId(const Node& node) {
1638 return node.id >> 1;
1640 static Node nodeFromBNodeId(int id) {
1641 return Node((id << 1) + 1);
1643 int maxBNodeId() const {
1644 return bNodes.size();
1647 Node aNode(const UEdge& edge) const {
1648 return Node(edges[edge.id].aNode);
1650 Node bNode(const UEdge& edge) const {
1651 return Node(edges[edge.id].bNode);
1654 static bool aNode(const Node& node) {
1655 return (node.id & 1) == 0;
1658 static bool bNode(const Node& node) {
1659 return (node.id & 1) == 1;
1664 if (first_free_anode == -1) {
1665 aNodeId = aNodes.size();
1666 aNodes.push_back(NodeT());
1668 aNodeId = first_free_anode;
1669 first_free_anode = aNodes[first_free_anode].next;
1671 if (first_anode != -1) {
1672 aNodes[aNodeId].next = first_anode << 1;
1673 aNodes[first_anode].prev = aNodeId << 1;
1675 aNodes[aNodeId].next = -1;
1677 aNodes[aNodeId].prev = -1;
1678 first_anode = aNodeId;
1679 aNodes[aNodeId].first_edge = -1;
1680 return Node(aNodeId << 1);
1685 if (first_free_bnode == -1) {
1686 bNodeId = bNodes.size();
1687 bNodes.push_back(NodeT());
1689 bNodeId = first_free_bnode;
1690 first_free_bnode = bNodes[first_free_bnode].next;
1692 if (first_bnode != -1) {
1693 bNodes[bNodeId].next = (first_bnode << 1) + 1;
1694 bNodes[first_bnode].prev = (bNodeId << 1) + 1;
1696 bNodes[bNodeId].next = -1;
1698 bNodes[bNodeId].prev = -1;
1699 first_bnode = bNodeId;
1700 bNodes[bNodeId].first_edge = -1;
1701 return Node((bNodeId << 1) + 1);
1704 UEdge addEdge(const Node& source, const Node& target) {
1705 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
1707 if (first_free_edge != -1) {
1708 edgeId = first_free_edge;
1709 first_free_edge = edges[edgeId].next_out;
1711 edgeId = edges.size();
1712 edges.push_back(UEdgeT());
1714 if ((source.id & 1) == 0) {
1715 edges[edgeId].aNode = source.id;
1716 edges[edgeId].bNode = target.id;
1718 edges[edgeId].aNode = target.id;
1719 edges[edgeId].bNode = source.id;
1721 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
1722 edges[edgeId].prev_out = -1;
1723 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
1724 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
1726 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
1727 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
1728 edges[edgeId].prev_in = -1;
1729 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
1730 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
1732 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
1733 return UEdge(edgeId);
1736 void erase(const Node& node) {
1738 int aNodeId = node.id >> 1;
1739 if (aNodes[aNodeId].prev != -1) {
1740 aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
1743 aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1;
1745 if (aNodes[aNodeId].next != -1) {
1746 aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
1748 aNodes[aNodeId].next = first_free_anode;
1749 first_free_anode = aNodeId;
1751 int bNodeId = node.id >> 1;
1752 if (bNodes[bNodeId].prev != -1) {
1753 bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
1756 bNodes[bNodeId].next != -1 ? bNodes[bNodeId].next >> 1 : -1;
1758 if (bNodes[bNodeId].next != -1) {
1759 bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
1761 bNodes[bNodeId].next = first_free_bnode;
1762 first_free_bnode = bNodeId;
1766 void erase(const UEdge& edge) {
1768 if (edges[edge.id].prev_out != -1) {
1769 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
1771 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
1773 if (edges[edge.id].next_out != -1) {
1774 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
1777 if (edges[edge.id].prev_in != -1) {
1778 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
1780 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
1782 if (edges[edge.id].next_in != -1) {
1783 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
1786 edges[edge.id].next_out = first_free_edge;
1787 first_free_edge = edge.id;
1795 first_free_anode = -1;
1797 first_free_bnode = -1;
1798 first_free_edge = -1;
1801 void changeANode(const UEdge& edge, const Node& node) {
1802 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
1803 if (edges[edge.id].prev_out != -1) {
1804 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
1806 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
1808 if (edges[edge.id].next_out != -1) {
1809 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
1811 if (aNodes[node.id >> 1].first_edge != -1) {
1812 edges[aNodes[node.id >> 1].first_edge].prev_out = edge.id;
1814 edges[edge.id].prev_out = -1;
1815 edges[edge.id].next_out = aNodes[node.id >> 1].first_edge;
1816 aNodes[node.id >> 1].first_edge = edge.id;
1817 edges[edge.id].aNode = node.id;
1820 void changeBNode(const UEdge& edge, const Node& node) {
1821 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
1822 if (edges[edge.id].prev_in != -1) {
1823 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
1825 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
1827 if (edges[edge.id].next_in != -1) {
1828 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
1830 if (bNodes[node.id >> 1].first_edge != -1) {
1831 edges[bNodes[node.id >> 1].first_edge].prev_in = edge.id;
1833 edges[edge.id].prev_in = -1;
1834 edges[edge.id].next_in = bNodes[node.id >> 1].first_edge;
1835 bNodes[node.id >> 1].first_edge = edge.id;
1836 edges[edge.id].bNode = node.id;
1842 typedef BpUGraphExtender<BidirBpUGraphExtender<ListBpUGraphBase> >
1843 ExtendedListBpUGraphBase;
1847 /// \brief A smart bipartite undirected graph class.
1849 /// This is a bipartite undirected graph implementation.
1850 /// It is conforms to the \ref concepts::BpUGraph "BpUGraph concept".
1852 ///An important extra feature of this graph implementation is that
1853 ///its maps are real \ref concepts::ReferenceMap "reference map"s.
1855 /// \sa concepts::BpUGraph.
1857 class ListBpUGraph : public ExtendedListBpUGraphBase {
1858 /// \brief ListBpUGraph is \e not copy constructible.
1860 ///ListBpUGraph is \e not copy constructible.
1861 ListBpUGraph(const ListBpUGraph &) :ExtendedListBpUGraphBase() {};
1862 /// \brief Assignment of ListBpUGraph to another one is \e not
1865 /// Assignment of ListBpUGraph to another one is \e not allowed.
1866 void operator=(const ListBpUGraph &) {}
1868 /// \brief Constructor
1874 typedef ExtendedListBpUGraphBase Parent;
1875 /// \brief Add a new ANode to the graph.
1877 /// \return the new node.
1879 Node addANode() { return Parent::addANode(); }
1881 /// \brief Add a new BNode to the graph.
1883 /// \return the new node.
1885 Node addBNode() { return Parent::addBNode(); }
1887 /// \brief Add a new edge to the graph.
1889 /// Add a new edge to the graph with an ANode and a BNode.
1890 /// \return the new undirected edge.
1891 UEdge addEdge(const Node& s, const Node& t) {
1892 return Parent::addEdge(s, t);
1895 /// \brief Changes the ANode of \c e to \c n
1897 /// Changes the ANode of \c e to \c n
1899 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
1900 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
1902 void changeANode(UEdge e, Node n) {
1903 Parent::changeANode(e,n);
1906 /// \brief Changes the BNode of \c e to \c n
1908 /// Changes the BNode of \c e to \c n
1910 /// \note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1911 /// referencing the changed edge remain
1912 /// valid. However <tt>InEdgeIt</tt>s are invalidated.
1913 void changeBNode(UEdge e, Node n) {
1914 Parent::changeBNode(e,n);
1917 /// \brief Changes the source(ANode) of \c e to \c n
1919 /// Changes the source(ANode) of \c e to \c n
1921 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s referencing
1922 ///the changed edge remain valid. However <tt>OutEdgeIt</tt>s are
1924 void changeSource(UEdge e, Node n) {
1925 Parent::changeANode(e,n);
1928 /// \brief Changes the target(BNode) of \c e to \c n
1930 /// Changes the target(BNode) of \c e to \c n
1932 /// \note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1933 /// referencing the changed edge remain
1934 /// valid. However <tt>InEdgeIt</tt>s are invalidated.
1935 void changeTarget(UEdge e, Node n) {
1936 Parent::changeBNode(e,n);
1939 /// \brief Changes the source of \c e to \c n
1941 /// Changes the source of \c e to \c n. It changes the proper
1942 /// node of the represented undirected edge.
1944 ///\note The <tt>EdgeIt</tt>s and <tt>InEdgeIt</tt>s
1945 ///referencing the changed edge remain
1946 ///valid. However <tt>OutEdgeIt</tt>s are invalidated.
1947 void changeSource(Edge e, Node n) {
1948 if (Parent::direction(e)) {
1949 Parent::changeANode(e,n);
1951 Parent::changeBNode(e,n);
1954 /// \brief Changes the target of \c e to \c n
1956 /// Changes the target of \c e to \c n. It changes the proper
1957 /// node of the represented undirected edge.
1959 ///\note The <tt>EdgeIt</tt>s and <tt>OutEdgeIt</tt>s
1960 ///referencing the changed edge remain
1961 ///valid. However <tt>InEdgeIt</tt>s are invalidated.
1962 void changeTarget(Edge e, Node n) {
1963 if (Parent::direction(e)) {
1964 Parent::changeBNode(e,n);
1966 Parent::changeANode(e,n);
1969 /// \brief Contract two nodes.
1971 /// This function contracts two nodes.
1973 /// Node \p b will be removed but instead of deleting its
1974 /// neighboring edges, they will be joined to \p a. The two nodes
1975 /// should be from the same nodeset, of course.
1977 /// \note The <tt>EdgeIt</tt>s referencing a moved edge remain
1979 void contract(const Node& a, const Node& b) {
1980 LEMON_ASSERT(Parent::aNode(a) == Parent::aNode(b), NodeSetError());
1981 if (Parent::aNode(a)) {
1982 for (IncEdgeIt e(*this, b); e!=INVALID;) {
1983 IncEdgeIt f = e; ++f;
1988 for (IncEdgeIt e(*this, b); e!=INVALID;) {
1989 IncEdgeIt f = e; ++f;
1997 /// \brief Class to make a snapshot of the graph and restore
2000 /// Class to make a snapshot of the graph and to restore it
2003 /// The newly added nodes and undirected edges can be removed
2004 /// using the restore() function.
2006 /// \warning Edge and node deletions cannot be restored. This
2007 /// events invalidate the snapshot.
2011 typedef Parent::NodeNotifier NodeNotifier;
2013 class NodeObserverProxy : public NodeNotifier::ObserverBase {
2016 NodeObserverProxy(Snapshot& _snapshot)
2017 : snapshot(_snapshot) {}
2019 using NodeNotifier::ObserverBase::attach;
2020 using NodeNotifier::ObserverBase::detach;
2021 using NodeNotifier::ObserverBase::attached;
2025 virtual void add(const Node& node) {
2026 snapshot.addNode(node);
2028 virtual void add(const std::vector<Node>& nodes) {
2029 for (int i = nodes.size() - 1; i >= 0; ++i) {
2030 snapshot.addNode(nodes[i]);
2033 virtual void erase(const Node& node) {
2034 snapshot.eraseNode(node);
2036 virtual void erase(const std::vector<Node>& nodes) {
2037 for (int i = 0; i < (int)nodes.size(); ++i) {
2038 snapshot.eraseNode(nodes[i]);
2041 virtual void build() {
2042 NodeNotifier* notifier = getNotifier();
2044 std::vector<Node> nodes;
2045 for (notifier->first(node); node != INVALID; notifier->next(node)) {
2046 nodes.push_back(node);
2048 for (int i = nodes.size() - 1; i >= 0; --i) {
2049 snapshot.addNode(nodes[i]);
2052 virtual void clear() {
2053 NodeNotifier* notifier = getNotifier();
2055 for (notifier->first(node); node != INVALID; notifier->next(node)) {
2056 snapshot.eraseNode(node);
2063 class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase {
2066 UEdgeObserverProxy(Snapshot& _snapshot)
2067 : snapshot(_snapshot) {}
2069 using UEdgeNotifier::ObserverBase::attach;
2070 using UEdgeNotifier::ObserverBase::detach;
2071 using UEdgeNotifier::ObserverBase::attached;
2075 virtual void add(const UEdge& edge) {
2076 snapshot.addUEdge(edge);
2078 virtual void add(const std::vector<UEdge>& edges) {
2079 for (int i = edges.size() - 1; i >= 0; ++i) {
2080 snapshot.addUEdge(edges[i]);
2083 virtual void erase(const UEdge& edge) {
2084 snapshot.eraseUEdge(edge);
2086 virtual void erase(const std::vector<UEdge>& edges) {
2087 for (int i = 0; i < (int)edges.size(); ++i) {
2088 snapshot.eraseUEdge(edges[i]);
2091 virtual void build() {
2092 UEdgeNotifier* notifier = getNotifier();
2094 std::vector<UEdge> edges;
2095 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
2096 edges.push_back(edge);
2098 for (int i = edges.size() - 1; i >= 0; --i) {
2099 snapshot.addUEdge(edges[i]);
2102 virtual void clear() {
2103 UEdgeNotifier* notifier = getNotifier();
2105 for (notifier->first(edge); edge != INVALID; notifier->next(edge)) {
2106 snapshot.eraseUEdge(edge);
2113 ListBpUGraph *graph;
2115 NodeObserverProxy node_observer_proxy;
2116 UEdgeObserverProxy edge_observer_proxy;
2118 std::list<Node> added_nodes;
2119 std::list<UEdge> added_edges;
2122 void addNode(const Node& node) {
2123 added_nodes.push_front(node);
2125 void eraseNode(const Node& node) {
2126 std::list<Node>::iterator it =
2127 std::find(added_nodes.begin(), added_nodes.end(), node);
2128 if (it == added_nodes.end()) {
2130 edge_observer_proxy.detach();
2131 throw NodeNotifier::ImmediateDetach();
2133 added_nodes.erase(it);
2137 void addUEdge(const UEdge& edge) {
2138 added_edges.push_front(edge);
2140 void eraseUEdge(const UEdge& edge) {
2141 std::list<UEdge>::iterator it =
2142 std::find(added_edges.begin(), added_edges.end(), edge);
2143 if (it == added_edges.end()) {
2145 node_observer_proxy.detach();
2146 throw UEdgeNotifier::ImmediateDetach();
2148 added_edges.erase(it);
2152 void attach(ListBpUGraph &_graph) {
2154 node_observer_proxy.attach(graph->getNotifier(Node()));
2155 edge_observer_proxy.attach(graph->getNotifier(UEdge()));
2159 node_observer_proxy.detach();
2160 edge_observer_proxy.detach();
2163 bool attached() const {
2164 return node_observer_proxy.attached();
2168 added_nodes.clear();
2169 added_edges.clear();
2174 /// \brief Default constructor.
2176 /// Default constructor.
2177 /// To actually make a snapshot you must call save().
2179 : graph(0), node_observer_proxy(*this),
2180 edge_observer_proxy(*this) {}
2182 /// \brief Constructor that immediately makes a snapshot.
2184 /// This constructor immediately makes a snapshot of the graph.
2185 /// \param _graph The graph we make a snapshot of.
2186 Snapshot(ListBpUGraph &_graph)
2187 : node_observer_proxy(*this),
2188 edge_observer_proxy(*this) {
2192 /// \brief Make a snapshot.
2194 /// Make a snapshot of the graph.
2196 /// This function can be called more than once. In case of a repeated
2197 /// call, the previous snapshot gets lost.
2198 /// \param _graph The graph we make the snapshot of.
2199 void save(ListBpUGraph &_graph) {
2207 /// \brief Undo the changes until the last snapshot.
2209 /// Undo the changes until the last snapshot created by save().
2212 for(std::list<UEdge>::iterator it = added_edges.begin();
2213 it != added_edges.end(); ++it) {
2216 for(std::list<Node>::iterator it = added_nodes.begin();
2217 it != added_nodes.end(); ++it) {
2223 /// \brief Gives back true when the snapshot is valid.
2225 /// Gives back true when the snapshot is valid.
2226 bool valid() const {