lemon/kruskal.h
author alpar
Wed, 13 Jul 2005 20:02:29 +0000
changeset 1556 caf0f91e16a7
parent 1547 dd57a540ff5f
child 1557 3e8d928e283d
permissions -rw-r--r--
Avoid ambiguity.
     1 /* -*- C++ -*-
     2  * lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_KRUSKAL_H
    18 #define LEMON_KRUSKAL_H
    19 
    20 #include <algorithm>
    21 #include <lemon/unionfind.h>
    22 #include<lemon/utility.h>
    23 
    24 /**
    25 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    26 @ingroup galgs
    27 \brief This group containes the algorithms for finding a minimum cost spanning
    28 tree in a graph
    29 
    30 This group containes the algorithms for finding a minimum cost spanning
    31 tree in a graph
    32 */
    33 
    34 ///\ingroup spantree
    35 ///\file
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    37 ///
    38 ///Kruskal's algorithm to compute a minimum cost tree.
    39 
    40 namespace lemon {
    41 
    42   /// \addtogroup spantree
    43   /// @{
    44 
    45   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    46 
    47   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    48   /// \param g The graph the algorithm runs on.
    49   /// It can be either \ref concept::StaticGraph "directed" or 
    50   /// \ref concept::UndirStaticGraph "undirected".
    51   /// If the graph is directed, the algorithm consider it to be 
    52   /// undirected by disregarding the direction of the edges.
    53   ///
    54   /// \param in This object is used to describe the edge costs. It must
    55   /// be an STL compatible 'Forward Container'
    56   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    57   /// where X is the type of the costs. It must contain every edge in
    58   /// cost-ascending order.
    59   ///\par
    60   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    61   /// which converts a
    62   /// simple edge map to an input of this form. Alternatively, you can use
    63   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    64   /// the edge costs are given by an edge map.
    65   ///
    66   /// \retval out This must be a writable \c bool edge map.
    67   /// After running the algorithm
    68   /// this will contain the found minimum cost spanning tree: the value of an
    69   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    70   /// be set to \c false. The value of each edge will be set exactly once.
    71   ///
    72   /// \return The cost of the found tree.
    73   ///
    74   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    75   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    76   /// people would expect. So, one should be careful not to add both of the
    77   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
    78   /// (\ref kruskalEdgeMap() and \ref KruskalMapInput are kind enough to do so.)
    79 
    80   template <class GR, class IN, class OUT>
    81   typename IN::value_type::second_type
    82   kruskal(GR const& g, IN const& in, 
    83 		 OUT& out)
    84   {
    85     typedef typename IN::value_type::second_type EdgeCost;
    86     typedef typename GR::template NodeMap<int> NodeIntMap;
    87     typedef typename GR::Node Node;
    88 
    89     NodeIntMap comp(g, -1);
    90     UnionFind<Node,NodeIntMap> uf(comp); 
    91       
    92     EdgeCost tot_cost = 0;
    93     for (typename IN::const_iterator p = in.begin(); 
    94 	 p!=in.end(); ++p ) {
    95       if ( uf.join(g.target((*p).first),
    96 		   g.source((*p).first)) ) {
    97 	out.set((*p).first, true);
    98 	tot_cost += (*p).second;
    99       }
   100       else {
   101 	out.set((*p).first, false);
   102       }
   103     }
   104     return tot_cost;
   105   }
   106 
   107   /* A work-around for running Kruskal with const-reference bool maps... */
   108 
   109   /// Helper class for calling kruskal with "constant" output map.
   110 
   111   /// Helper class for calling kruskal with output maps constructed
   112   /// on-the-fly.
   113   ///
   114   /// A typical examle is the following call:
   115   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   116   /// Here, the third argument is a temporary object (which wraps around an
   117   /// iterator with a writable bool map interface), and thus by rules of C++
   118   /// is a \c const object. To enable call like this exist this class and
   119   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   120   /// third argument.
   121   template<class Map>
   122   class NonConstMapWr {
   123     const Map &m;
   124   public:
   125     typedef typename Map::Value Value;
   126 
   127     NonConstMapWr(const Map &_m) : m(_m) {}
   128 
   129     template<class Key>
   130     void set(Key const& k, Value const &v) const { m.set(k,v); }
   131   };
   132 
   133   template <class GR, class IN, class OUT>
   134   inline
   135   typename IN::value_type::second_type
   136   kruskal(GR const& g, IN const& edges, OUT const& out_map)
   137   {
   138     NonConstMapWr<OUT> map_wr(out_map);
   139     return kruskal(g, edges, map_wr);
   140   }  
   141 
   142   /* ** ** Input-objects ** ** */
   143 
   144   /// Kruskal's input source.
   145 
   146   /// Kruskal's input source.
   147   ///
   148   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   149   ///
   150   /// \sa makeKruskalMapInput()
   151   ///
   152   ///\param GR The type of the graph the algorithm runs on.
   153   ///\param Map An edge map containing the cost of the edges.
   154   ///\par
   155   ///The cost type can be any type satisfying
   156   ///the STL 'LessThan comparable'
   157   ///concept if it also has an operator+() implemented. (It is necessary for
   158   ///computing the total cost of the tree).
   159   ///
   160   template<class GR, class Map>
   161   class KruskalMapInput
   162     : public std::vector< std::pair<typename GR::Edge,
   163 				    typename Map::Value> > {
   164     
   165   public:
   166     typedef std::vector< std::pair<typename GR::Edge,
   167 				   typename Map::Value> > Parent;
   168     typedef typename Parent::value_type value_type;
   169 
   170   private:
   171     class comparePair {
   172     public:
   173       bool operator()(const value_type& a,
   174 		      const value_type& b) {
   175 	return a.second < b.second;
   176       }
   177     };
   178 
   179     template<class _GR>
   180     typename enable_if<typename _GR::UndirTag,void>::type
   181     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   182     {
   183       for(typename GR::UndirEdgeIt e(g);e!=INVALID;++e) 
   184 	push_back(value_type(typename GR::Edge(e,true), m[e]));
   185     }
   186 
   187     template<class _GR>
   188     typename disable_if<typename _GR::UndirTag,void>::type
   189     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   190     {
   191       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   192 	push_back(value_type(e, m[e]));
   193     }
   194     
   195     
   196   public:
   197 
   198     void sort() {
   199       std::sort(this->begin(), this->end(), comparePair());
   200     }
   201 
   202     KruskalMapInput(GR const& g, Map const& m) {
   203       fillWithEdges(g,m); 
   204       sort();
   205     }
   206   };
   207 
   208   /// Creates a KruskalMapInput object for \ref kruskal()
   209 
   210   /// It makes easier to use 
   211   /// \ref KruskalMapInput by making it unnecessary 
   212   /// to explicitly give the type of the parameters.
   213   ///
   214   /// In most cases you possibly
   215   /// want to use the function kruskalEdgeMap() instead.
   216   ///
   217   ///\param g The type of the graph the algorithm runs on.
   218   ///\param m An edge map containing the cost of the edges.
   219   ///\par
   220   ///The cost type can be any type satisfying the
   221   ///STL 'LessThan Comparable'
   222   ///concept if it also has an operator+() implemented. (It is necessary for
   223   ///computing the total cost of the tree).
   224   ///
   225   ///\return An appropriate input source for \ref kruskal().
   226   ///
   227   template<class GR, class Map>
   228   inline
   229   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   230   {
   231     return KruskalMapInput<GR,Map>(g,m);
   232   }
   233   
   234   
   235 
   236   /* ** ** Output-objects: simple writable bool maps ** ** */
   237   
   238 
   239 
   240   /// A writable bool-map that makes a sequence of "true" keys
   241 
   242   /// A writable bool-map that creates a sequence out of keys that receives
   243   /// the value "true".
   244   ///
   245   /// \sa makeKruskalSequenceOutput()
   246   ///
   247   /// Very often, when looking for a min cost spanning tree, we want as
   248   /// output a container containing the edges of the found tree. For this
   249   /// purpose exist this class that wraps around an STL iterator with a
   250   /// writable bool map interface. When a key gets value "true" this key
   251   /// is added to sequence pointed by the iterator.
   252   ///
   253   /// A typical usage:
   254   /// \code
   255   /// std::vector<Graph::Edge> v;
   256   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   257   /// \endcode
   258   /// 
   259   /// For the most common case, when the input is given by a simple edge
   260   /// map and the output is a sequence of the tree edges, a special
   261   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   262   ///
   263   /// \warning Not a regular property map, as it doesn't know its Key
   264 
   265   template<class Iterator>
   266   class KruskalSequenceOutput {
   267     mutable Iterator it;
   268 
   269   public:
   270     typedef bool Value;
   271 
   272     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   273 
   274     template<typename Key>
   275     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   276   };
   277 
   278   template<class Iterator>
   279   inline
   280   KruskalSequenceOutput<Iterator>
   281   makeKruskalSequenceOutput(Iterator it) {
   282     return KruskalSequenceOutput<Iterator>(it);
   283   }
   284 
   285 
   286 
   287   /* ** ** Wrapper funtions ** ** */
   288 
   289 
   290 
   291   /// \brief Wrapper function to kruskal().
   292   /// Input is from an edge map, output is a plain bool map.
   293   ///
   294   /// Wrapper function to kruskal().
   295   /// Input is from an edge map, output is a plain bool map.
   296   ///
   297   ///\param g The type of the graph the algorithm runs on.
   298   ///\param in An edge map containing the cost of the edges.
   299   ///\par
   300   ///The cost type can be any type satisfying the
   301   ///STL 'LessThan Comparable'
   302   ///concept if it also has an operator+() implemented. (It is necessary for
   303   ///computing the total cost of the tree).
   304   ///
   305   /// \retval out This must be a writable \c bool edge map.
   306   /// After running the algorithm
   307   /// this will contain the found minimum cost spanning tree: the value of an
   308   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   309   /// be set to \c false. The value of each edge will be set exactly once.
   310   ///
   311   /// \return The cost of the found tree.
   312 
   313   template <class GR, class IN, class RET>
   314   inline
   315   typename IN::Value
   316   kruskalEdgeMap(GR const& g,
   317 		 IN const& in,
   318 		 RET &out) {
   319     return kruskal(g,
   320 		   KruskalMapInput<GR,IN>(g,in),
   321 		   out);
   322   }
   323 
   324   /// \brief Wrapper function to kruskal().
   325   /// Input is from an edge map, output is an STL Sequence.
   326   ///
   327   /// Wrapper function to kruskal().
   328   /// Input is from an edge map, output is an STL Sequence.
   329   ///
   330   ///\param g The type of the graph the algorithm runs on.
   331   ///\param in An edge map containing the cost of the edges.
   332   ///\par
   333   ///The cost type can be any type satisfying the
   334   ///STL 'LessThan Comparable'
   335   ///concept if it also has an operator+() implemented. (It is necessary for
   336   ///computing the total cost of the tree).
   337   ///
   338   /// \retval out This must be an iteraror of an STL Container with
   339   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   340   /// The algorithm copies the elements of the found tree into this sequence.
   341   /// For example, if we know that the spanning tree of the graph \c g has
   342   /// say 53 edges then
   343   /// we can put its edges into a STL vector \c tree with a code like this.
   344   /// \code
   345   /// std::vector<Edge> tree(53);
   346   /// kruskalEdgeMap_IteratorOut(g,cost,tree.begin());
   347   /// \endcode
   348   /// Or if we don't know in advance the size of the tree, we can write this.
   349   /// \code
   350   /// std::vector<Edge> tree;
   351   /// kruskalEdgeMap_IteratorOut(g,cost,std::back_inserter(tree));
   352   /// \endcode
   353   ///
   354   /// \return The cost of the found tree.
   355   ///
   356   /// \bug its name does not follow the coding style.
   357 
   358   template <class GR, class IN, class RET>
   359   inline
   360   typename IN::Value
   361   kruskalEdgeMap_IteratorOut(const GR& g,
   362 			     const IN& in,
   363 			     RET out)
   364   {
   365     KruskalSequenceOutput<RET> _out(out);
   366     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   367   }
   368 
   369   /// @}
   370 
   371 } //namespace lemon
   372 
   373 #endif //LEMON_KRUSKAL_H