lemon/fib_heap.h
author klao
Fri, 03 Feb 2006 14:07:52 +0000
changeset 1951 cb7a6e0573bc
parent 1903 f3d24016dad5
child 1956 a055123339d5
permissions -rw-r--r--
graph_adaptor.h: probably a doxygen bug: in tex formulas there should be
whitespace after the opening and before the closing \f$
     1 /* -*- C++ -*-
     2  * lemon/fib_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FIB_HEAP_H
    18 #define LEMON_FIB_HEAP_H
    19 
    20 ///\file
    21 ///\ingroup auxdat
    22 ///\brief Fibonacci Heap implementation.
    23 
    24 #include <vector>
    25 #include <functional>
    26 #include <cmath>
    27 
    28 namespace lemon {
    29   
    30   /// \ingroup auxdat
    31 
    32   /// Fibonacci Heap.
    33 
    34   ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    35   ///is a data structure for storing items with specified values called \e
    36   ///priorities in such a way that finding the item with minimum priority is
    37   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    38   ///one can change the priority of an item, add or erase an item, etc.
    39   ///
    40   ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    41   ///heap. In case of many calls to these operations, it is better to use a
    42   ///\e binary \e heap.
    43   ///
    44   ///\param Item Type of the items to be stored.  
    45   ///\param Prio Type of the priority of the items.
    46   ///\param ItemIntMap A read and writable Item int map, used internally
    47   ///to handle the cross references.
    48   ///\param Compare A class for the ordering of the priorities. The
    49   ///default is \c std::less<Prio>.
    50   ///
    51   ///\sa BinHeap
    52   ///\sa Dijkstra
    53   ///\author Jacint Szabo 
    54  
    55 #ifdef DOXYGEN
    56   template <typename Item, 
    57 	    typename Prio, 
    58 	    typename ItemIntMap, 
    59 	    typename Compare>
    60 #else
    61   template <typename Item, 
    62 	    typename Prio, 
    63 	    typename ItemIntMap, 
    64 	    typename Compare = std::less<Prio> >
    65 #endif
    66   class FibHeap {
    67   public:     
    68     typedef Prio PrioType;
    69     
    70   private:
    71     class store;
    72     
    73     std::vector<store> container;
    74     int minimum;
    75     ItemIntMap &iimap;
    76     Compare comp;
    77     int num_items;
    78     
    79   public:
    80     ///Status of the nodes
    81     enum state_enum {
    82       ///The node is in the heap
    83       IN_HEAP = 0,
    84       ///The node has never been in the heap
    85       PRE_HEAP = -1,
    86       ///The node was in the heap but it got out of it
    87       POST_HEAP = -2
    88     };
    89     
    90     /// \brief The constructor
    91     ///
    92     /// \c _iimap should be given to the constructor, since it is
    93     ///   used internally to handle the cross references.
    94     explicit FibHeap(ItemIntMap &_iimap) 
    95       : minimum(0), iimap(_iimap), num_items() {} 
    96  
    97     /// \brief The constructor
    98     ///
    99     /// \c _iimap should be given to the constructor, since it is used
   100     /// internally to handle the cross references. \c _comp is an
   101     /// object for ordering of the priorities. 
   102     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
   103 		  iimap(_iimap), comp(_comp), num_items() {}
   104     
   105     /// \brief The number of items stored in the heap.
   106     ///
   107     /// Returns the number of items stored in the heap.
   108     int size() const { return num_items; }
   109 
   110     /// \brief Checks if the heap stores no items.
   111     ///
   112     ///   Returns \c true if and only if the heap stores no items.
   113     bool empty() const { return num_items==0; }
   114 
   115     /// \brief Make empty this heap.
   116     /// 
   117     /// Make empty this heap.
   118     void clear() {
   119       if (num_items != 0) {
   120 	for (int i = 0; i < (int)container.size(); ++i) {
   121 	  iimap[container[i].name] = -2;
   122 	}
   123       }
   124       container.clear(); minimum = 0; num_items = 0;
   125     }
   126 
   127     /// \brief \c item gets to the heap with priority \c value independently 
   128     /// if \c item was already there.
   129     ///
   130     /// This method calls \ref push(\c item, \c value) if \c item is not
   131     /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   132     /// \ref increase(\c item, \c value) otherwise.
   133     void set (Item const item, PrioType const value); 
   134     
   135     /// \brief Adds \c item to the heap with priority \c value. 
   136     ///    
   137     /// Adds \c item to the heap with priority \c value. 
   138     /// \pre \c item must not be stored in the heap. 
   139     void push (Item const item, PrioType const value);
   140     
   141     /// \brief Returns the item with minimum priority relative to \c Compare.
   142     ///
   143     /// This method returns the item with minimum priority relative to \c
   144     /// Compare.  
   145     /// \pre The heap must be nonempty.  
   146     Item top() const { return container[minimum].name; }
   147 
   148     /// \brief Returns the minimum priority relative to \c Compare.
   149     ///
   150     /// It returns the minimum priority relative to \c Compare.
   151     /// \pre The heap must be nonempty.
   152     PrioType prio() const { return container[minimum].prio; }
   153     
   154     /// \brief Returns the priority of \c item.
   155     ///
   156     /// This function returns the priority of \c item.
   157     /// \pre \c item must be in the heap.
   158     PrioType& operator[](const Item& item) { 
   159       return container[iimap[item]].prio; 
   160     }
   161     
   162     /// \brief Returns the priority of \c item.
   163     ///
   164     /// It returns the priority of \c item.
   165     /// \pre \c item must be in the heap.
   166     const PrioType& operator[](const Item& item) const { 
   167       return container[iimap[item]].prio; 
   168     }
   169 
   170 
   171     /// \brief Deletes the item with minimum priority relative to \c Compare.
   172     ///
   173     /// This method deletes the item with minimum priority relative to \c
   174     /// Compare from the heap.  
   175     /// \pre The heap must be non-empty.  
   176     void pop();
   177 
   178     /// \brief Deletes \c item from the heap.
   179     ///
   180     /// This method deletes \c item from the heap, if \c item was already
   181     /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   182     void erase (const Item& item); 
   183 
   184     /// \brief Decreases the priority of \c item to \c value.
   185     ///
   186     /// This method decreases the priority of \c item to \c value.
   187     /// \pre \c item must be stored in the heap with priority at least \c
   188     ///   value relative to \c Compare.
   189     void decrease (Item item, PrioType const value); 
   190 
   191     /// \brief Increases the priority of \c item to \c value.
   192     ///
   193     /// This method sets the priority of \c item to \c value. Though
   194     /// there is no precondition on the priority of \c item, this
   195     /// method should be used only if it is indeed necessary to increase
   196     /// (relative to \c Compare) the priority of \c item, because this
   197     /// method is inefficient.
   198     void increase (Item item, PrioType const value) {
   199       erase(item);
   200       push(item, value);
   201     }
   202 
   203 
   204     /// \brief Returns if \c item is in, has already been in, or has never 
   205     /// been in the heap.
   206     ///
   207     /// This method returns PRE_HEAP if \c item has never been in the
   208     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   209     /// otherwise. In the latter case it is possible that \c item will
   210     /// get back to the heap again.
   211     state_enum state(const Item &item) const {
   212       int i=iimap[item];
   213       if( i>=0 ) {
   214 	if ( container[i].in ) i=0;
   215 	else i=-2; 
   216       }
   217       return state_enum(i);
   218     }    
   219 
   220     /// \brief Sets the state of the \c item in the heap.
   221     ///
   222     /// Sets the state of the \c item in the heap. It can be used to
   223     /// manually clear the heap when it is important to achive the
   224     /// better time complexity.
   225     /// \param i The item.
   226     /// \param st The state. It should not be \c IN_HEAP. 
   227     void state(const Item& i, state_enum st) {
   228       switch (st) {
   229       case POST_HEAP:
   230       case PRE_HEAP:
   231         if (state(i) == IN_HEAP) {
   232           erase(i);
   233         }
   234         iimap[i] = st;
   235         break;
   236       case IN_HEAP:
   237         break;
   238       }
   239     }
   240     
   241   private:
   242     
   243     void balance();
   244     void makeroot(int c);
   245     void cut(int a, int b);
   246     void cascade(int a);
   247     void fuse(int a, int b);
   248     void unlace(int a);
   249 
   250 
   251     class store {
   252       friend class FibHeap;
   253       
   254       Item name;
   255       int parent;
   256       int left_neighbor;
   257       int right_neighbor;
   258       int child;
   259       int degree;  
   260       bool marked;
   261       bool in;
   262       PrioType prio;
   263       
   264       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   265     };
   266   };    
   267  
   268 
   269 
   270     // **********************************************************************
   271     //  IMPLEMENTATIONS
   272     // **********************************************************************
   273     
   274   template <typename Item, typename Prio, typename ItemIntMap, 
   275     typename Compare>
   276   void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
   277   (Item const item, PrioType const value) 
   278   {
   279     int i=iimap[item];
   280     if ( i >= 0 && container[i].in ) {
   281       if ( comp(value, container[i].prio) ) decrease(item, value); 
   282       if ( comp(container[i].prio, value) ) increase(item, value); 
   283     } else push(item, value);
   284   }
   285     
   286   template <typename Item, typename Prio, typename ItemIntMap, 
   287     typename Compare>
   288   void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
   289   (Item const item, PrioType const value) {
   290       int i=iimap[item];      
   291       if ( i < 0 ) {
   292 	int s=container.size();
   293 	iimap.set( item, s );	
   294 	store st;
   295 	st.name=item;
   296 	container.push_back(st);
   297 	i=s;
   298       } else {
   299 	container[i].parent=container[i].child=-1;
   300 	container[i].degree=0;
   301 	container[i].in=true;
   302 	container[i].marked=false;
   303       }
   304 
   305       if ( num_items ) {
   306 	container[container[minimum].right_neighbor].left_neighbor=i;
   307 	container[i].right_neighbor=container[minimum].right_neighbor;
   308 	container[minimum].right_neighbor=i;
   309 	container[i].left_neighbor=minimum;
   310 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   311       } else {
   312 	container[i].right_neighbor=container[i].left_neighbor=i;
   313 	minimum=i;	
   314       }
   315       container[i].prio=value;
   316       ++num_items;
   317     }
   318     
   319   template <typename Item, typename Prio, typename ItemIntMap, 
   320     typename Compare>
   321   void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
   322       /*The first case is that there are only one root.*/
   323       if ( container[minimum].left_neighbor==minimum ) {
   324 	container[minimum].in=false;
   325 	if ( container[minimum].degree!=0 ) { 
   326 	  makeroot(container[minimum].child);
   327 	  minimum=container[minimum].child;
   328 	  balance();
   329 	}
   330       } else {
   331 	int right=container[minimum].right_neighbor;
   332 	unlace(minimum);
   333 	container[minimum].in=false;
   334 	if ( container[minimum].degree > 0 ) {
   335 	  int left=container[minimum].left_neighbor;
   336 	  int child=container[minimum].child;
   337 	  int last_child=container[child].left_neighbor;
   338 	
   339 	  makeroot(child);
   340 	  
   341 	  container[left].right_neighbor=child;
   342 	  container[child].left_neighbor=left;
   343 	  container[right].left_neighbor=last_child;
   344 	  container[last_child].right_neighbor=right;
   345 	}
   346 	minimum=right;
   347 	balance();
   348       } // the case where there are more roots
   349       --num_items;   
   350     }
   351 
   352 
   353   template <typename Item, typename Prio, typename ItemIntMap, 
   354     typename Compare>
   355   void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
   356   (const Item& item) {
   357       int i=iimap[item];
   358       
   359       if ( i >= 0 && container[i].in ) { 	
   360 	if ( container[i].parent!=-1 ) {
   361 	  int p=container[i].parent;
   362 	  cut(i,p);	    
   363 	  cascade(p);
   364 	}
   365 	minimum=i;     //As if its prio would be -infinity
   366 	pop();
   367       }
   368   }
   369     
   370   template <typename Item, typename Prio, typename ItemIntMap, 
   371     typename Compare>
   372   void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
   373   (Item item, PrioType const value) {
   374       int i=iimap[item];
   375       container[i].prio=value;
   376       int p=container[i].parent;
   377       
   378       if ( p!=-1 && comp(value, container[p].prio) ) {
   379 	cut(i,p);	    
   380 	cascade(p);
   381       }      
   382       if ( comp(value, container[minimum].prio) ) minimum=i; 
   383   }
   384  
   385 
   386   template <typename Item, typename Prio, typename ItemIntMap, 
   387     typename Compare>
   388   void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
   389 
   390     int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
   391   
   392     std::vector<int> A(maxdeg,-1); 
   393     
   394     /*
   395      *Recall that now minimum does not point to the minimum prio element.
   396      *We set minimum to this during balance().
   397      */
   398     int anchor=container[minimum].left_neighbor; 
   399     int next=minimum; 
   400     bool end=false; 
   401     	
   402        do {
   403 	int active=next;
   404 	if ( anchor==active ) end=true;
   405 	int d=container[active].degree;
   406 	next=container[active].right_neighbor;
   407 
   408 	while (A[d]!=-1) {	  
   409 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   410 	    fuse(active,A[d]); 
   411 	  } else { 
   412 	    fuse(A[d],active);
   413 	    active=A[d];
   414 	  } 
   415 	  A[d]=-1;
   416 	  ++d;
   417 	}	
   418 	A[d]=active;
   419        } while ( !end );
   420 
   421 
   422        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   423        int s=minimum;
   424        int m=minimum;
   425        do {  
   426 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   427 	 s=container[s].right_neighbor;
   428        } while ( s != m );
   429     }
   430 
   431   template <typename Item, typename Prio, typename ItemIntMap, 
   432     typename Compare>
   433   void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
   434   (int c) {
   435       int s=c;
   436       do {  
   437 	container[s].parent=-1;
   438 	s=container[s].right_neighbor;
   439       } while ( s != c );
   440     }
   441   
   442   
   443   template <typename Item, typename Prio, typename ItemIntMap, 
   444     typename Compare>
   445   void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
   446   (int a, int b) {    
   447     /*
   448      *Replacing a from the children of b.
   449      */
   450     --container[b].degree;
   451     
   452     if ( container[b].degree !=0 ) {
   453       int child=container[b].child;
   454       if ( child==a ) 
   455 	container[b].child=container[child].right_neighbor;
   456       unlace(a);
   457     }
   458     
   459     
   460     /*Lacing a to the roots.*/
   461     int right=container[minimum].right_neighbor;
   462     container[minimum].right_neighbor=a;
   463     container[a].left_neighbor=minimum;
   464     container[a].right_neighbor=right;
   465     container[right].left_neighbor=a;
   466     
   467     container[a].parent=-1;
   468     container[a].marked=false;
   469   }
   470   
   471 
   472   template <typename Item, typename Prio, typename ItemIntMap, 
   473     typename Compare>
   474   void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
   475   (int a) 
   476     {
   477       if ( container[a].parent!=-1 ) {
   478 	int p=container[a].parent;
   479 	
   480 	if ( container[a].marked==false ) container[a].marked=true;
   481 	else {
   482 	  cut(a,p);
   483 	  cascade(p);
   484 	}
   485       }
   486     }
   487 
   488 
   489   template <typename Item, typename Prio, typename ItemIntMap, 
   490     typename Compare>
   491   void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
   492   (int a, int b) {
   493       unlace(b);
   494       
   495       /*Lacing b under a.*/
   496       container[b].parent=a;
   497 
   498       if (container[a].degree==0) {
   499 	container[b].left_neighbor=b;
   500 	container[b].right_neighbor=b;
   501 	container[a].child=b;	
   502       } else {
   503 	int child=container[a].child;
   504 	int last_child=container[child].left_neighbor;
   505 	container[child].left_neighbor=b;
   506 	container[b].right_neighbor=child;
   507 	container[last_child].right_neighbor=b;
   508 	container[b].left_neighbor=last_child;
   509       }
   510 
   511       ++container[a].degree;
   512       
   513       container[b].marked=false;
   514     }
   515 
   516   
   517   /*
   518    *It is invoked only if a has siblings.
   519    */
   520   template <typename Item, typename Prio, typename ItemIntMap, 
   521     typename Compare>
   522   void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
   523   (int a) {      
   524       int leftn=container[a].left_neighbor;
   525       int rightn=container[a].right_neighbor;
   526       container[leftn].right_neighbor=rightn;
   527       container[rightn].left_neighbor=leftn;
   528   }
   529   
   530 
   531 } //namespace lemon
   532 
   533 #endif //LEMON_FIB_HEAP_H
   534