src/work/preflow_push_hl.hh
author jacint
Fri, 30 Jan 2004 14:53:17 +0000
changeset 47 cbdb54e46d96
parent 20 bf088f14b87a
permissions -rw-r--r--
Moved to /jacint
     1 /*
     2 preflow_push_hl.hh
     3 by jacint. 
     4 Runs the highest label variant of the preflow push algorithm with 
     5 running time O(n^2\sqrt(m)). 
     6 
     7 Member functions:
     8 
     9 void run() : runs the algorithm
    10 
    11  The following functions should be used after run() was already run.
    12 
    13 T maxflow() : returns the value of a maximum flow
    14 
    15 T flowonedge(edge_iterator e) : for a fixed maximum flow x it returns x(e) 
    16 
    17 edge_property_vector<graph_type, T> allflow() : returns the fixed maximum flow x
    18 
    19 node_property_vector<graph_type, bool> mincut() : returns a 
    20      characteristic vector of a minimum cut. (An empty level 
    21      in the algorithm gives a minimum cut.)
    22 */
    23 
    24 #ifndef PREFLOW_PUSH_HL_HH
    25 #define PREFLOW_PUSH_HL_HH
    26 
    27 #include <algorithm>
    28 #include <vector>
    29 #include <stack>
    30 
    31 #include <marci_graph_traits.hh>
    32 #include <marci_property_vector.hh>
    33 #include <reverse_bfs.hh>
    34 
    35 namespace marci {
    36 
    37   template <typename graph_type, typename T>
    38   class preflow_push_hl {
    39     
    40     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    41     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    42     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    43     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    44     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
    45     typedef typename graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
    46     
    47 
    48     graph_type& G;
    49     node_iterator s;
    50     node_iterator t;
    51     edge_property_vector<graph_type, T> flow;
    52     edge_property_vector<graph_type, T>& capacity; 
    53     T value;
    54     node_property_vector<graph_type, bool> mincutvector;
    55 
    56    
    57   public:
    58 
    59     preflow_push_hl(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { }
    60 
    61 
    62 
    63 
    64     /*
    65       The run() function runs the highest label preflow-push, 
    66       running time: O(n^2\sqrt(m))
    67     */
    68     void run() {
    69  
    70       node_property_vector<graph_type, int> level(G);         //level of node
    71       node_property_vector<graph_type, T> excess(G);          //excess of node
    72             
    73       int n=number_of(G.first_node());                        //number of nodes 
    74       int b=n; 
    75       /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
    76 
    77       std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
    78 
    79 
    80 
    81 
    82       /*Reverse_bfs from t, to find the starting level.*/
    83 
    84       reverse_bfs<list_graph> bfs(G, t);
    85       bfs.run();
    86       for(each_node_iterator v=G.first_node(); v.valid(); ++v) {
    87 	level.put(v, bfs.dist(v)); 
    88 	//std::cout << "the level of " << v << " is " << bfs.dist(v);
    89       }
    90 
    91       /*The level of s is fixed to n*/ 
    92       level.put(s,n);
    93 
    94 
    95 
    96 
    97 
    98       /* Starting flow. It is everywhere 0 at the moment. */
    99      
   100       for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
   101 	{
   102 	  node_iterator w=G.head(i);
   103 	  flow.put(i, capacity.get(i)); 
   104 	  stack[bfs.dist(w)].push(w); 
   105 	  excess.put(w, capacity.get(i));
   106 	}
   107 
   108 
   109       /* 
   110 	 End of preprocessing 
   111       */
   112 
   113 
   114 
   115       /*
   116 	Push/relabel on the highest level active nodes.
   117       */
   118 	
   119       /*While there exists active node.*/
   120       while (b) { 
   121 
   122 	/*We decrease the bound if there is no active node of level b.*/
   123 	if (stack[b].empty()) {
   124 	  --b;
   125 	} else {
   126 
   127 	  node_iterator w=stack[b].top();    //w is the highest label active node.
   128 	  stack[b].pop();                    //We delete w from the stack.
   129 	
   130 	  int newlevel=2*n-2;                   //In newlevel we maintain the next level of w.
   131 	
   132 	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
   133 	    node_iterator v=G.head(e);
   134 	    /*e is the edge wv.*/
   135 
   136 	    if (flow.get(e)<capacity.get(e)) {              
   137 	      /*e is an edge of the residual graph */
   138 
   139 	      if(level.get(w)==level.get(v)+1) {      
   140 		/*Push is allowed now*/
   141 
   142 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
   143 		  /*A nonsaturating push.*/
   144 		  
   145 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   146 		  /*v becomes active.*/
   147 		  
   148 		  flow.put(e, flow.get(e)+excess.get(w));
   149 		  excess.put(v, excess.get(v)+excess.get(w));
   150 		  excess.put(w,0);
   151 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
   152 		  break; 
   153 		} else { 
   154 		  /*A saturating push.*/
   155 
   156 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   157 		  /*v becomes active.*/
   158 
   159 		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
   160 		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
   161 		  flow.put(e, capacity.get(e));
   162 		  //std::cout << w<<" " <<v<<" elore elen sat pump "   << std::endl;
   163 		  if (excess.get(w)==0) break;
   164 		  /*If w is not active any more, then we go on to the next node.*/
   165 		  
   166 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
   167 	      } // if(level.get(w)==level.get(v)+1)
   168 	    
   169 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   170 	    
   171 	    } //if (flow.get(e)<capacity.get(e))
   172 	 
   173 	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
   174 	  
   175 
   176 
   177 	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
   178 	    node_iterator v=G.tail(e);
   179 	    /*e is the edge vw.*/
   180 
   181 	    if (excess.get(w)==0) break;
   182 	    /*It may happen, that w became inactive in the first for cycle.*/		
   183 	    if(flow.get(e)>0) {             
   184 	      /*e is an edge of the residual graph */
   185 
   186 	      if(level.get(w)==level.get(v)+1) {  
   187 		/*Push is allowed now*/
   188 		
   189 		if (flow.get(e) > excess.get(w)) { 
   190 		  /*A nonsaturating push.*/
   191 		  
   192 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   193 		  /*v becomes active.*/
   194 
   195 		  flow.put(e, flow.get(e)-excess.get(w));
   196 		  excess.put(v, excess.get(v)+excess.get(w));
   197 		  excess.put(w,0);
   198 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
   199 		  break; 
   200 		} else {                                               
   201 		  /*A saturating push.*/
   202 		  
   203 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
   204 		  /*v becomes active.*/
   205 		  
   206 		  excess.put(v, excess.get(v)+flow.get(e));
   207 		  excess.put(w, excess.get(w)-flow.get(e));
   208 		  flow.put(e,0);
   209 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
   210 		  if (excess.get(w)==0) { break;}
   211 		} //if (flow.get(e) > excess.get(v)) 
   212 	      } //if(level.get(w)==level.get(v)+1)
   213 	      
   214 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
   215 	      
   216 
   217 	    } //if (flow.get(e)>0)
   218 
   219 	  } //for
   220 
   221 
   222 	  if (excess.get(w)>0) {
   223 	    level.put(w,++newlevel);
   224 	    stack[newlevel].push(w);
   225 	    b=newlevel;
   226 	    //std::cout << "The new level of " << w << " is "<< newlevel <<std::endl; 
   227 	  }
   228 
   229 
   230 	} //else
   231        
   232       } //while(b)
   233 
   234       value = excess.get(t);
   235       /*Max flow value.*/
   236 
   237 
   238 
   239 
   240     } //void run()
   241 
   242 
   243 
   244 
   245 
   246     /*
   247       Returns the maximum value of a flow.
   248      */
   249 
   250     T maxflow() {
   251       return value;
   252     }
   253 
   254 
   255 
   256     /*
   257       For the maximum flow x found by the algorithm, it returns the flow value on edge e, i.e. x(e). 
   258     */
   259 
   260     T flowonedge(edge_iterator e) {
   261       return flow.get(e);
   262     }
   263 
   264 
   265 
   266     /*
   267       Returns the maximum flow x found by the algorithm.
   268     */
   269 
   270     edge_property_vector<graph_type, T> allflow() {
   271       return flow;
   272     }
   273 
   274 
   275 
   276     /*
   277       Returns a minimum cut by using a reverse bfs from t in the residual graph.
   278     */
   279     
   280     node_property_vector<graph_type, bool> mincut() {
   281     
   282       std::queue<node_iterator> queue;
   283       
   284       mincutvector.put(t,false);      
   285       queue.push(t);
   286 
   287       while (!queue.empty()) {
   288         node_iterator w=queue.front();
   289 	queue.pop();
   290 
   291 	for(in_edge_iterator e=G.first_in_edge(w) ; e.valid(); ++e) {
   292 	  node_iterator v=G.tail(e);
   293 	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
   294 	    queue.push(v);
   295 	    mincutvector.put(v, false);
   296 	  }
   297 	} // for
   298 
   299 	for(out_edge_iterator e=G.first_out_edge(w) ; e.valid(); ++e) {
   300 	  node_iterator v=G.head(e);
   301 	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
   302 	    queue.push(v);
   303 	    mincutvector.put(v, false);
   304 	  }
   305 	} // for
   306 
   307       }
   308 
   309       return mincutvector;
   310     
   311     }
   312 
   313 
   314   };
   315 }//namespace marci
   316 #endif 
   317 
   318 
   319 
   320