src/hugo/max_flow.h
author alpar
Thu, 19 Aug 2004 11:33:06 +0000
changeset 766 cf4d2db9d43f
parent 758 49b1a30c4dc4
child 773 ce9438c5a82d
permissions -rw-r--r--
Add lp_solver_wrapper.h to work doxygen.
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 
     8 #include <hugo/graph_wrapper.h>
     9 #include <hugo/invalid.h>
    10 #include <hugo/maps.h>
    11 
    12 /// \file
    13 /// \ingroup flowalgs
    14 
    15 namespace hugo {
    16 
    17   /// \addtogroup flowalgs
    18   /// @{                                                   
    19 
    20   ///Maximum flow algorithms class.
    21 
    22   ///This class provides various algorithms for finding a flow of
    23   ///maximum value in a directed graph. The \e source node, the \e
    24   ///target node, the \e capacity of the edges and the \e starting \e
    25   ///flow value of the edges should be passed to the algorithm through the
    26   ///constructor. It is possible to change these quantities using the
    27   ///functions \ref setSource, \ref setTarget, \ref setCap and
    28   ///\ref setFlow. Before any subsequent runs of any algorithm of
    29   ///the class \ref setFlow should be called. 
    30   ///
    31   ///After running an algorithm of the class, the actual flow value 
    32   ///can be obtained by calling \ref flowValue(). The minimum
    33   ///value cut can be written into a \c node map of \c bools by
    34   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    35   ///the inclusionwise minimum and maximum of the minimum value
    36   ///cuts, resp.)
    37   ///
    38   ///\param Graph The directed graph type the algorithm runs on.
    39   ///\param Num The number type of the capacities and the flow values.
    40   ///\param CapMap The capacity map type.
    41   ///\param FlowMap The flow map type.
    42   ///
    43   ///\author Marton Makai, Jacint Szabo 
    44   template <typename Graph, typename Num,
    45 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    46             typename FlowMap=typename Graph::template EdgeMap<Num> >
    47   class MaxFlow {
    48   protected:
    49     typedef typename Graph::Node Node;
    50     typedef typename Graph::NodeIt NodeIt;
    51     typedef typename Graph::EdgeIt EdgeIt;
    52     typedef typename Graph::OutEdgeIt OutEdgeIt;
    53     typedef typename Graph::InEdgeIt InEdgeIt;
    54 
    55     typedef typename std::vector<Node> VecFirst;
    56     typedef typename Graph::template NodeMap<Node> NNMap;
    57     typedef typename std::vector<Node> VecNode;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64     int n;      //the number of nodes of G
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     typedef typename Graph::template NodeMap<int> ReachedMap;
    70 
    71 
    72     //level works as a bool map in augmenting path algorithms and is
    73     //used by bfs for storing reached information.  In preflow, it
    74     //shows the levels of nodes.     
    75     ReachedMap level;
    76 
    77     //excess is needed only in preflow
    78     typename Graph::template NodeMap<Num> excess;
    79 
    80     // constants used for heuristics
    81     static const int H0=20;
    82     static const int H1=1;
    83 
    84   public:
    85 
    86     ///Indicates the property of the starting flow.
    87 
    88     ///Indicates the property of the starting flow. The meanings are as follows:
    89     ///- \c ZERO_FLOW: constant zero flow
    90     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    91     ///the sum of the out-flows in every node except the \e source and
    92     ///the \e target.
    93     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    94     ///least the sum of the out-flows in every node except the \e source.
    95     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    96     ///set to the constant zero flow in the beginning of the algorithm in this case.
    97     enum FlowEnum{
    98       ZERO_FLOW,
    99       GEN_FLOW,
   100       PRE_FLOW,
   101       NO_FLOW
   102     };
   103 
   104     enum StatusEnum {
   105       AFTER_NOTHING,
   106       AFTER_AUGMENTING,
   107       AFTER_FAST_AUGMENTING, 
   108       AFTER_PRE_FLOW_PHASE_1,      
   109       AFTER_PRE_FLOW_PHASE_2
   110     };
   111 
   112     /// Do not needle this flag only if necessary.
   113     StatusEnum status;
   114 
   115 //     int number_of_augmentations;
   116 
   117 
   118 //     template<typename IntMap>
   119 //     class TrickyReachedMap {
   120 //     protected:
   121 //       IntMap* map;
   122 //       int* number_of_augmentations;
   123 //     public:
   124 //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   125 // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   126 //       void set(const Node& n, bool b) {
   127 // 	if (b)
   128 // 	  map->set(n, *number_of_augmentations);
   129 // 	else 
   130 // 	  map->set(n, *number_of_augmentations-1);
   131 //       }
   132 //       bool operator[](const Node& n) const { 
   133 // 	return (*map)[n]==*number_of_augmentations; 
   134 //       }
   135 //     };
   136     
   137     ///Constructor
   138 
   139     ///\todo Document, please.
   140     ///
   141     MaxFlow(const Graph& _G, Node _s, Node _t,
   142 	    const CapMap& _capacity, FlowMap& _flow) :
   143       g(&_G), s(_s), t(_t), capacity(&_capacity),
   144       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   145       status(AFTER_NOTHING) { }
   146 
   147     ///Runs a maximum flow algorithm.
   148 
   149     ///Runs a preflow algorithm, which is the fastest maximum flow
   150     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   151     ///\pre The starting flow must be
   152     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   153     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   154     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   155     /// - any map if \c fe is NO_FLOW.
   156     void run(FlowEnum fe=ZERO_FLOW) {
   157       preflow(fe);
   158     }
   159 
   160                                                                               
   161     ///Runs a preflow algorithm.  
   162 
   163     ///Runs a preflow algorithm. The preflow algorithms provide the
   164     ///fastest way to compute a maximum flow in a directed graph.
   165     ///\pre The starting flow must be
   166     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   167     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   168     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   169     /// - any map if \c fe is NO_FLOW.
   170     ///
   171     ///\todo NO_FLOW should be the default flow.
   172     void preflow(FlowEnum fe) {
   173       preflowPhase1(fe);
   174       preflowPhase2();
   175     }
   176     // Heuristics:
   177     //   2 phase
   178     //   gap
   179     //   list 'level_list' on the nodes on level i implemented by hand
   180     //   stack 'active' on the active nodes on level i                                                                                    
   181     //   runs heuristic 'highest label' for H1*n relabels
   182     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   183     //   Parameters H0 and H1 are initialized to 20 and 1.
   184 
   185     ///Runs the first phase of the preflow algorithm.
   186 
   187     ///The preflow algorithm consists of two phases, this method runs the
   188     ///first phase. After the first phase the maximum flow value and a
   189     ///minimum value cut can already be computed, though a maximum flow
   190     ///is not yet obtained. So after calling this method \ref flowValue
   191     ///and \ref actMinCut gives proper results.
   192     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   193     ///give minimum value cuts unless calling \ref preflowPhase2.
   194     ///\pre The starting flow must be
   195     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   196     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   197     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   198     /// - any map if \c fe is NO_FLOW.
   199     void preflowPhase1(FlowEnum fe)
   200     {
   201 
   202       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   203       int heur1=(int)(H1*n);  //time while running 'highest label'
   204       int heur=heur1;         //starting time interval (#of relabels)
   205       int numrelabel=0;
   206 
   207       bool what_heur=1;
   208       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   209 
   210       bool end=false;
   211       //Needed for 'bound decrease', true means no active nodes are above bound
   212       //b.
   213 
   214       int k=n-2;  //bound on the highest level under n containing a node
   215       int b=k;    //bound on the highest level under n of an active node
   216 
   217       VecFirst first(n, INVALID);
   218       NNMap next(*g, INVALID); //maybe INVALID is not needed
   219 
   220       NNMap left(*g, INVALID);
   221       NNMap right(*g, INVALID);
   222       VecNode level_list(n,INVALID);
   223       //List of the nodes in level i<n, set to n.
   224 
   225       preflowPreproc(fe, next, first, level_list, left, right);
   226       //End of preprocessing
   227 
   228       //Push/relabel on the highest level active nodes.
   229       while ( true ) {
   230 	if ( b == 0 ) {
   231 	  if ( !what_heur && !end && k > 0 ) {
   232 	    b=k;
   233 	    end=true;
   234 	  } else break;
   235 	}
   236 
   237 	if ( !g->valid(first[b]) ) --b;
   238 	else {
   239 	  end=false;
   240 	  Node w=first[b];
   241 	  first[b]=next[w];
   242 	  int newlevel=push(w, next, first);
   243 	  if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list,
   244 				       left, right, b, k, what_heur);
   245 
   246 	  ++numrelabel;
   247 	  if ( numrelabel >= heur ) {
   248 	    numrelabel=0;
   249 	    if ( what_heur ) {
   250 	      what_heur=0;
   251 	      heur=heur0;
   252 	      end=false;
   253 	    } else {
   254 	      what_heur=1;
   255 	      heur=heur1;
   256 	      b=k;
   257 	    }
   258 	  }
   259 	}
   260       }
   261 
   262       status=AFTER_PRE_FLOW_PHASE_1;
   263     }
   264 
   265 
   266     ///Runs the second phase of the preflow algorithm.
   267 
   268     ///The preflow algorithm consists of two phases, this method runs
   269     ///the second phase. After calling \ref preflowPhase1 and then
   270     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   271     ///\ref minMinCut and \ref maxMinCut give proper results.
   272     ///\pre \ref preflowPhase1 must be called before.
   273     void preflowPhase2()
   274     {
   275 
   276       int k=n-2;  //bound on the highest level under n containing a node
   277       int b=k;    //bound on the highest level under n of an active node
   278 
   279     
   280       VecFirst first(n, INVALID);
   281       NNMap next(*g, INVALID); //maybe INVALID is not needed
   282       level.set(s,0);
   283       std::queue<Node> bfs_queue;
   284       bfs_queue.push(s);
   285 
   286       while (!bfs_queue.empty()) {
   287 
   288 	Node v=bfs_queue.front();
   289 	bfs_queue.pop();
   290 	int l=level[v]+1;
   291 
   292 	InEdgeIt e;
   293 	for(g->first(e,v); g->valid(e); g->next(e)) {
   294 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   295 	  Node u=g->tail(e);
   296 	  if ( level[u] >= n ) {
   297 	    bfs_queue.push(u);
   298 	    level.set(u, l);
   299 	    if ( excess[u] > 0 ) {
   300 	      next.set(u,first[l]);
   301 	      first[l]=u;
   302 	    }
   303 	  }
   304 	}
   305 
   306 	OutEdgeIt f;
   307 	for(g->first(f,v); g->valid(f); g->next(f)) {
   308 	  if ( 0 >= (*flow)[f] ) continue;
   309 	  Node u=g->head(f);
   310 	  if ( level[u] >= n ) {
   311 	    bfs_queue.push(u);
   312 	    level.set(u, l);
   313 	    if ( excess[u] > 0 ) {
   314 	      next.set(u,first[l]);
   315 	      first[l]=u;
   316 	    }
   317 	  }
   318 	}
   319       }
   320       b=n-2;
   321 
   322       while ( true ) {
   323 
   324 	if ( b == 0 ) break;
   325 
   326 	if ( !g->valid(first[b]) ) --b;
   327 	else {
   328 
   329 	  Node w=first[b];
   330 	  first[b]=next[w];
   331 	  int newlevel=push(w,next, first/*active*/);
   332 
   333 	  //relabel
   334 	  if ( excess[w] > 0 ) {
   335 	    level.set(w,++newlevel);
   336 	    next.set(w,first[newlevel]);
   337 	    first[newlevel]=w;
   338 	    b=newlevel;
   339 	  }
   340 	} 
   341       } // while(true)
   342 
   343       status=AFTER_PRE_FLOW_PHASE_2;
   344     }
   345 
   346 
   347     /// Returns the value of the maximum flow.
   348 
   349     /// Returns the excess of the target node \ref t. 
   350     /// After running \ref preflowPhase1, this is the value of 
   351     /// the maximum flow.
   352     /// It can be called already after running \ref preflowPhase1.
   353     Num flowValue() const {
   354 //       Num a=0;
   355 //       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
   356 //       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
   357 //       return a;
   358       return excess[t];
   359       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   360     }
   361 
   362 
   363     ///Returns a minimum value cut after calling \ref preflowPhase1.
   364 
   365     ///After the first phase of the preflow algorithm the maximum flow
   366     ///value and a minimum value cut can already be computed. This
   367     ///method can be called after running \ref preflowPhase1 for
   368     ///obtaining a minimum value cut.
   369     /// \warning Gives proper result only right after calling \ref
   370     /// preflowPhase1.
   371     /// \todo We have to make some status variable which shows the
   372     /// actual state
   373     /// of the class. This enables us to determine which methods are valid
   374     /// for MinCut computation
   375     template<typename _CutMap>
   376     void actMinCut(_CutMap& M) const {
   377       NodeIt v;
   378       switch (status) {
   379       case AFTER_PRE_FLOW_PHASE_1:
   380 	for(g->first(v); g->valid(v); g->next(v)) {
   381 	  if (level[v] < n) {
   382 	    M.set(v, false);
   383 	  } else {
   384 	    M.set(v, true);
   385 	  }
   386 	}
   387 	break;
   388       case AFTER_PRE_FLOW_PHASE_2:
   389       case AFTER_NOTHING:
   390       case AFTER_AUGMENTING:
   391       case AFTER_FAST_AUGMENTING:
   392 	minMinCut(M);
   393 	break;
   394       }
   395     }
   396 
   397     ///Returns the inclusionwise minimum of the minimum value cuts.
   398 
   399     ///Sets \c M to the characteristic vector of the minimum value cut
   400     ///which is inclusionwise minimum. It is computed by processing
   401     ///a bfs from the source node \c s in the residual graph.
   402     ///\pre M should be a node map of bools initialized to false.
   403     ///\pre \c flow must be a maximum flow.
   404     template<typename _CutMap>
   405     void minMinCut(_CutMap& M) const {
   406       std::queue<Node> queue;
   407 
   408       M.set(s,true);
   409       queue.push(s);
   410 
   411       while (!queue.empty()) {
   412         Node w=queue.front();
   413 	queue.pop();
   414 
   415 	OutEdgeIt e;
   416 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   417 	  Node v=g->head(e);
   418 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   419 	    queue.push(v);
   420 	    M.set(v, true);
   421 	  }
   422 	}
   423 
   424 	InEdgeIt f;
   425 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   426 	  Node v=g->tail(f);
   427 	  if (!M[v] && (*flow)[f] > 0 ) {
   428 	    queue.push(v);
   429 	    M.set(v, true);
   430 	  }
   431 	}
   432       }
   433     }
   434 
   435     ///Returns the inclusionwise maximum of the minimum value cuts.
   436 
   437     ///Sets \c M to the characteristic vector of the minimum value cut
   438     ///which is inclusionwise maximum. It is computed by processing a
   439     ///backward bfs from the target node \c t in the residual graph.
   440     ///\pre M should be a node map of bools initialized to false.
   441     ///\pre \c flow must be a maximum flow. 
   442     template<typename _CutMap>
   443     void maxMinCut(_CutMap& M) const {
   444 
   445       NodeIt v;
   446       for(g->first(v) ; g->valid(v); g->next(v)) {
   447 	M.set(v, true);
   448       }
   449 
   450       std::queue<Node> queue;
   451 
   452       M.set(t,false);
   453       queue.push(t);
   454 
   455       while (!queue.empty()) {
   456         Node w=queue.front();
   457 	queue.pop();
   458 
   459 	InEdgeIt e;
   460 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   461 	  Node v=g->tail(e);
   462 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   463 	    queue.push(v);
   464 	    M.set(v, false);
   465 	  }
   466 	}
   467 
   468 	OutEdgeIt f;
   469 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   470 	  Node v=g->head(f);
   471 	  if (M[v] && (*flow)[f] > 0 ) {
   472 	    queue.push(v);
   473 	    M.set(v, false);
   474 	  }
   475 	}
   476       }
   477     }
   478 
   479     ///Returns a minimum value cut.
   480 
   481     ///Sets \c M to the characteristic vector of a minimum value cut.
   482     ///\pre M should be a node map of bools initialized to false.
   483     ///\pre \c flow must be a maximum flow.    
   484     template<typename CutMap>
   485     void minCut(CutMap& M) const { minMinCut(M); }
   486 
   487     ///Sets the source node to \c _s.
   488 
   489     ///Sets the source node to \c _s.
   490     /// 
   491     void setSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   492 
   493     ///Sets the target node to \c _t.
   494 
   495     ///Sets the target node to \c _t.
   496     ///
   497     void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   498 
   499     /// Sets the edge map of the capacities to _cap.
   500 
   501     /// Sets the edge map of the capacities to _cap.
   502     /// 
   503     void setCap(const CapMap& _cap)
   504     { capacity=&_cap; status=AFTER_NOTHING; }
   505 
   506     /// Sets the edge map of the flows to _flow.
   507 
   508     /// Sets the edge map of the flows to _flow.
   509     /// 
   510     void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   511 
   512 
   513   private:
   514 
   515     int push(Node w, NNMap& next, VecFirst& first) {
   516 
   517       int lev=level[w];
   518       Num exc=excess[w];
   519       int newlevel=n;       //bound on the next level of w
   520 
   521       OutEdgeIt e;
   522       for(g->first(e,w); g->valid(e); g->next(e)) {
   523 
   524 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   525 	Node v=g->head(e);
   526 
   527 	if( lev > level[v] ) { //Push is allowed now
   528 
   529 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   530 	    next.set(v,first[level[v]]);
   531 	    first[level[v]]=v;
   532 	  }
   533 
   534 	  Num cap=(*capacity)[e];
   535 	  Num flo=(*flow)[e];
   536 	  Num remcap=cap-flo;
   537 
   538 	  if ( remcap >= exc ) { //A nonsaturating push.
   539 
   540 	    flow->set(e, flo+exc);
   541 	    excess.set(v, excess[v]+exc);
   542 	    exc=0;
   543 	    break;
   544 
   545 	  } else { //A saturating push.
   546 	    flow->set(e, cap);
   547 	    excess.set(v, excess[v]+remcap);
   548 	    exc-=remcap;
   549 	  }
   550 	} else if ( newlevel > level[v] ) newlevel = level[v];
   551       } //for out edges wv
   552 
   553       if ( exc > 0 ) {
   554 	InEdgeIt e;
   555 	for(g->first(e,w); g->valid(e); g->next(e)) {
   556 
   557 	  if( (*flow)[e] <= 0 ) continue;
   558 	  Node v=g->tail(e);
   559 
   560 	  if( lev > level[v] ) { //Push is allowed now
   561 
   562 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   563 	      next.set(v,first[level[v]]);
   564 	      first[level[v]]=v;
   565 	    }
   566 
   567 	    Num flo=(*flow)[e];
   568 
   569 	    if ( flo >= exc ) { //A nonsaturating push.
   570 
   571 	      flow->set(e, flo-exc);
   572 	      excess.set(v, excess[v]+exc);
   573 	      exc=0;
   574 	      break;
   575 	    } else {  //A saturating push.
   576 
   577 	      excess.set(v, excess[v]+flo);
   578 	      exc-=flo;
   579 	      flow->set(e,0);
   580 	    }
   581 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   582 	} //for in edges vw
   583 
   584       } // if w still has excess after the out edge for cycle
   585 
   586       excess.set(w, exc);
   587 
   588       return newlevel;
   589     }
   590 
   591 
   592 
   593     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
   594 			VecNode& level_list, NNMap& left, NNMap& right)
   595     {
   596       switch (fe) { //setting excess
   597 	case NO_FLOW: 
   598 	{
   599 	  EdgeIt e;
   600 	  for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   601 	  
   602 	  NodeIt v;
   603 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   604 	  break;
   605 	}
   606 	case ZERO_FLOW: 
   607 	{
   608 	  NodeIt v;
   609 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   610 	  break;
   611 	}
   612 	case GEN_FLOW:
   613 	{
   614 	  NodeIt v;
   615 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   616 
   617 	  Num exc=0;
   618 	  InEdgeIt e;
   619 	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   620 	  OutEdgeIt f;
   621 	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   622 	  excess.set(t,exc);
   623 	  break;
   624 	}
   625 	default: break;
   626       }
   627 
   628       NodeIt v;
   629       for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   630       //setting each node to level n
   631       
   632       std::queue<Node> bfs_queue;
   633 
   634 
   635       switch (fe) {
   636       case NO_FLOW:   //flow is already set to const zero
   637       case ZERO_FLOW:
   638 	{
   639 	  //Reverse_bfs from t, to find the starting level.
   640 	  level.set(t,0);
   641 	  bfs_queue.push(t);
   642 
   643 	  while (!bfs_queue.empty()) {
   644 
   645 	    Node v=bfs_queue.front();
   646 	    bfs_queue.pop();
   647 	    int l=level[v]+1;
   648 
   649 	    InEdgeIt e;
   650 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   651 	      Node w=g->tail(e);
   652 	      if ( level[w] == n && w != s ) {
   653 		bfs_queue.push(w);
   654 		Node z=level_list[l];
   655 		if ( g->valid(z) ) left.set(z,w);
   656 		right.set(w,z);
   657 		level_list[l]=w;
   658 		level.set(w, l);
   659 	      }
   660 	    }
   661 	  }
   662 
   663 	  //the starting flow
   664 	  OutEdgeIt e;
   665 	  for(g->first(e,s); g->valid(e); g->next(e))
   666 	    {
   667 	      Num c=(*capacity)[e];
   668 	      if ( c <= 0 ) continue;
   669 	      Node w=g->head(e);
   670 	      if ( level[w] < n ) {
   671 		if ( excess[w] <= 0 && w!=t ) //putting into the stack
   672 		  { 
   673 		    next.set(w,first[level[w]]);
   674 		    first[level[w]]=w;
   675 		  }
   676 		flow->set(e, c);
   677 		excess.set(w, excess[w]+c);
   678 	      }
   679 	    }
   680 	  break;
   681 	}
   682 
   683       case GEN_FLOW:
   684 	{
   685 	  //Reverse_bfs from t in the residual graph,
   686 	  //to find the starting level.
   687 	  level.set(t,0);
   688 	  bfs_queue.push(t);
   689 
   690 	  while (!bfs_queue.empty()) {
   691 
   692 	    Node v=bfs_queue.front();
   693 	    bfs_queue.pop();
   694 	    int l=level[v]+1;
   695 
   696 	    InEdgeIt e;
   697 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   698 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   699 	      Node w=g->tail(e);
   700 	      if ( level[w] == n && w != s ) {
   701 		bfs_queue.push(w);
   702 		Node z=level_list[l];
   703 		if ( g->valid(z) ) left.set(z,w);
   704 		right.set(w,z);
   705 		level_list[l]=w;
   706 		level.set(w, l);
   707 	      }
   708 	    }
   709 
   710 	    OutEdgeIt f;
   711 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   712 	      if ( 0 >= (*flow)[f] ) continue;
   713 	      Node w=g->head(f);
   714 	      if ( level[w] == n && w != s ) {
   715 		bfs_queue.push(w);
   716 		Node z=level_list[l];
   717 		if ( g->valid(z) ) left.set(z,w);
   718 		right.set(w,z);
   719 		level_list[l]=w;
   720 		level.set(w, l);
   721 	      }
   722 	    }
   723 	  }
   724 
   725 	  //the starting flow
   726 	  OutEdgeIt e;
   727 	  for(g->first(e,s); g->valid(e); g->next(e))
   728 	    {
   729 	      Num rem=(*capacity)[e]-(*flow)[e];
   730 	      if ( rem <= 0 ) continue;
   731 	      Node w=g->head(e);
   732 	      if ( level[w] < n ) {
   733 		if ( excess[w] <= 0 && w!=t ) //putting into the stack
   734 		  {
   735 		    next.set(w,first[level[w]]);
   736 		    first[level[w]]=w;
   737 		  }   
   738 		flow->set(e, (*capacity)[e]);
   739 		excess.set(w, excess[w]+rem);
   740 	      }
   741 	    }
   742 
   743 	  InEdgeIt f;
   744 	  for(g->first(f,s); g->valid(f); g->next(f))
   745 	    {
   746 	      if ( (*flow)[f] <= 0 ) continue;
   747 	      Node w=g->tail(f);
   748 	      if ( level[w] < n ) {
   749 		if ( excess[w] <= 0 && w!=t )
   750 		  {
   751 		    next.set(w,first[level[w]]);
   752 		    first[level[w]]=w;
   753 		  }  
   754 		excess.set(w, excess[w]+(*flow)[f]);
   755 		flow->set(f, 0);
   756 	      }
   757 	    }
   758 	  break;
   759 	} //case GEN_FLOW
   760     
   761       case PRE_FLOW:
   762 	{
   763 	  //Reverse_bfs from t in the residual graph,
   764 	  //to find the starting level.
   765 	  level.set(t,0);
   766 	  bfs_queue.push(t);
   767 
   768 	  while (!bfs_queue.empty()) {
   769 
   770 	    Node v=bfs_queue.front();
   771 	    bfs_queue.pop();
   772 	    int l=level[v]+1;
   773 
   774 	    InEdgeIt e;
   775 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   776 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   777 	      Node w=g->tail(e);
   778 	      if ( level[w] == n && w != s ) {
   779 		bfs_queue.push(w);
   780 		Node z=level_list[l];
   781 		if ( g->valid(z) ) left.set(z,w);
   782 		right.set(w,z);
   783 		level_list[l]=w;
   784 		level.set(w, l);
   785 	      }
   786 	    }
   787 
   788 	    OutEdgeIt f;
   789 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   790 	      if ( 0 >= (*flow)[f] ) continue;
   791 	      Node w=g->head(f);
   792 	      if ( level[w] == n && w != s ) {
   793 		bfs_queue.push(w);
   794 		Node z=level_list[l];
   795 		if ( g->valid(z) ) left.set(z,w);
   796 		right.set(w,z);
   797 		level_list[l]=w;
   798 		level.set(w, l);
   799 	      }
   800 	    }
   801 	  }
   802 
   803 
   804 	  //the starting flow
   805 	  OutEdgeIt e;
   806 	  for(g->first(e,s); g->valid(e); g->next(e))
   807 	    {
   808 	      Num rem=(*capacity)[e]-(*flow)[e];
   809 	      if ( rem <= 0 ) continue;
   810 	      Node w=g->head(e);
   811 	      if ( level[w] < n ) {
   812 		flow->set(e, (*capacity)[e]);
   813 		excess.set(w, excess[w]+rem);
   814 	      }
   815 	    }
   816 
   817 	  InEdgeIt f;
   818 	  for(g->first(f,s); g->valid(f); g->next(f))
   819 	    {
   820 	      if ( (*flow)[f] <= 0 ) continue;
   821 	      Node w=g->tail(f);
   822 	      if ( level[w] < n ) {
   823 		excess.set(w, excess[w]+(*flow)[f]);
   824 		flow->set(f, 0);
   825 	      }
   826 	    }
   827 	  
   828 	  NodeIt w; //computing the excess
   829 	  for(g->first(w); g->valid(w); g->next(w)) {
   830 	    Num exc=0;
   831 
   832 	    InEdgeIt e;
   833 	    for(g->first(e,w); g->valid(e); g->next(e)) exc+=(*flow)[e];
   834 	    OutEdgeIt f;
   835 	    for(g->first(f,w); g->valid(f); g->next(f)) exc-=(*flow)[f];
   836 
   837 	    excess.set(w,exc);
   838 
   839 	    //putting the active nodes into the stack
   840 	    int lev=level[w];
   841 	    if ( exc > 0 && lev < n && w != t ) 
   842 	      {
   843 		next.set(w,first[lev]);
   844 		first[lev]=w;
   845 	      }
   846 	  }
   847 	  break;
   848 	} //case PRE_FLOW
   849       }
   850     } //preflowPreproc
   851 
   852 
   853     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
   854 		 VecNode& level_list, NNMap& left,
   855 		 NNMap& right, int& b, int& k, bool what_heur )
   856     {
   857 
   858       Num lev=level[w];
   859 
   860       Node right_n=right[w];
   861       Node left_n=left[w];
   862 
   863       //unlacing starts
   864       if ( g->valid(right_n) ) {
   865 	if ( g->valid(left_n) ) {
   866 	  right.set(left_n, right_n);
   867 	  left.set(right_n, left_n);
   868 	} else {
   869 	  level_list[lev]=right_n;
   870 	  left.set(right_n, INVALID);
   871 	}
   872       } else {
   873 	if ( g->valid(left_n) ) {
   874 	  right.set(left_n, INVALID);
   875 	} else {
   876 	  level_list[lev]=INVALID;
   877 	}
   878       }
   879       //unlacing ends
   880 
   881       if ( !g->valid(level_list[lev]) ) {
   882 
   883 	//gapping starts
   884 	for (int i=lev; i!=k ; ) {
   885 	  Node v=level_list[++i];
   886 	  while ( g->valid(v) ) {
   887 	    level.set(v,n);
   888 	    v=right[v];
   889 	  }
   890 	  level_list[i]=INVALID;
   891 	  if ( !what_heur ) first[i]=INVALID;
   892 	}
   893 
   894 	level.set(w,n);
   895 	b=lev-1;
   896 	k=b;
   897 	//gapping ends
   898 
   899       } else {
   900 
   901 	if ( newlevel == n ) level.set(w,n);
   902 	else {
   903 	  level.set(w,++newlevel);
   904 	  next.set(w,first[newlevel]);
   905 	  first[newlevel]=w;
   906 	  if ( what_heur ) b=newlevel;
   907 	  if ( k < newlevel ) ++k;      //now k=newlevel
   908 	  Node z=level_list[newlevel];
   909 	  if ( g->valid(z) ) left.set(z,w);
   910 	  right.set(w,z);
   911 	  left.set(w,INVALID);
   912 	  level_list[newlevel]=w;
   913 	}
   914       }
   915     } //relabel
   916 
   917     void printexcess() {////
   918       std::cout << "Excesses:" <<std::endl;
   919 
   920       NodeIt v;
   921       for(g->first(v); g->valid(v); g->next(v)) {
   922 	std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; 
   923       }
   924     }
   925 
   926  void printlevel() {////
   927       std::cout << "Levels:" <<std::endl;
   928 
   929       NodeIt v;
   930       for(g->first(v); g->valid(v); g->next(v)) {
   931 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
   932       }
   933     }
   934 
   935 void printactive() {////
   936       std::cout << "Levels:" <<std::endl;
   937 
   938       NodeIt v;
   939       for(g->first(v); g->valid(v); g->next(v)) {
   940 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
   941       }
   942     }
   943 
   944 
   945   };  //class MaxFlow
   946 } //namespace hugo
   947 
   948 #endif //HUGO_MAX_FLOW_H
   949 
   950 
   951 
   952