src/work/jacint/preflow_hl0.h
author jacint
Sun, 22 Feb 2004 12:17:16 +0000
changeset 113 cf7b01232d86
permissions -rw-r--r--
*** empty log message ***
     1 // -*- C++ -*-
     2 /*
     3 preflow_hl0.h
     4 by jacint. 
     5 Heuristics: 
     6  2 phase
     7  gap
     8  list 'level_list' on the nodes on level i implemented by hand
     9  stack 'active' on the active nodes on level i implemented by hand
    10  bound decrease
    11  
    12 The bound decrease heuristic behaves unexpectedly well.
    13 
    14 The constructor runs the algorithm.
    15 
    16 Members:
    17 
    18 T maxFlow() : returns the value of a maximum flow
    19 
    20 T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    21 
    22 FlowMap Flow() : returns the fixed maximum flow x
    23 
    24 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    25      minimum min cut. M should be a map of bools initialized to false.
    26 
    27 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    28      maximum min cut. M should be a map of bools initialized to false.
    29 
    30 
    31 void minCut(CutMap& M) : sets M to the characteristic vector of 
    32      a min cut. M should be a map of bools initialized to false.
    33 
    34 */
    35 
    36 #ifndef PREFLOW_HL0_H
    37 #define PREFLOW_HL0_H
    38 
    39 #include <vector>
    40 #include <queue>
    41 
    42 #include <time_measure.h> //for test
    43 
    44 namespace hugo {
    45 
    46   template <typename Graph, typename T, 
    47     typename FlowMap=typename Graph::EdgeMap<T>,
    48     typename CapMap=typename Graph::EdgeMap<T> >
    49   class preflow_hl0 {
    50     
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::EachNodeIt EachNodeIt;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     typedef typename Graph::InEdgeIt InEdgeIt;
    56     
    57     Graph& G;
    58     NodeIt s;
    59     NodeIt t;
    60     FlowMap flow;
    61     CapMap& capacity;
    62     T value;
    63 
    64   public:
    65     double time;    
    66     
    67     preflow_hl0(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity ) :
    68       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) {
    69 
    70       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    71       int n=G.nodeNum(); 
    72       bool end=false;     
    73       /*
    74 	'true' means no active nodes are above bound b.
    75       */
    76       int k=n-2;  //bound on the highest level under n containing a node
    77       int b=k;    //bound on the highest level under n of an active node
    78       /*
    79 	b is a bound on the highest level of the stack. 
    80 	k is a bound on the highest nonempty level i < n.
    81       */
    82 
    83       typename Graph::NodeMap<int> level(G,n);      
    84       typename Graph::NodeMap<T> excess(G); 
    85 
    86       std::vector<NodeIt> active(n);
    87       typename Graph::NodeMap<NodeIt> next(G);
    88       //Stack of the active nodes in level i < n.
    89       //We use it in both phases.
    90 
    91       typename Graph::NodeMap<NodeIt> left(G);
    92       typename Graph::NodeMap<NodeIt> right(G);
    93       std::vector<NodeIt> level_list(n);
    94       /*
    95 	List of the nodes in level i<n.
    96       */
    97 
    98       /*Reverse_bfs from t, to find the starting level.*/
    99       level.set(t,0);
   100       std::queue<NodeIt> bfs_queue;
   101       bfs_queue.push(t);
   102 
   103       while (!bfs_queue.empty()) {
   104 
   105 	NodeIt v=bfs_queue.front();	
   106 	bfs_queue.pop();
   107 	int l=level.get(v)+1;
   108 
   109 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   110 	  NodeIt w=G.tail(e);
   111 	  if ( level.get(w) == n && w != s ) {
   112 	    bfs_queue.push(w);
   113 	    NodeIt first=level_list[l];
   114 	    if ( first != 0 ) left.set(first,w);
   115 	    right.set(w,first);
   116 	    level_list[l]=w;
   117 	    level.set(w, l);
   118 	  }
   119 	}
   120       }
   121       
   122       level.set(s,n);
   123       
   124 
   125       /* Starting flow. It is everywhere 0 at the moment. */     
   126       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   127 	{
   128 	  T c=capacity.get(e);
   129 	  if ( c == 0 ) continue;
   130 	  NodeIt w=G.head(e);
   131 	  if ( level.get(w) < n ) {	  
   132 	    if ( excess.get(w) == 0 && w!=t ) {
   133 	      next.set(w,active[level.get(w)]);
   134 	      active[level.get(w)]=w;
   135 	    }
   136 	    flow.set(e, c); 
   137 	    excess.set(w, excess.get(w)+c);
   138 	  }
   139 	}
   140 
   141       /* 
   142 	 End of preprocessing 
   143       */
   144 
   145 
   146 
   147       /*
   148 	Push/relabel on the highest level active nodes.
   149       */	
   150       while ( true ) {
   151 	
   152 	if ( b == 0 ) {
   153 	  if ( phase ) break;
   154 	  
   155 	  if ( !end && k > 0 ) {
   156 	    b=k;
   157 	    end=true;
   158 	  } else {
   159 	    phase=1;
   160 	    time=currTime();
   161 	    level.set(s,0);
   162 	    std::queue<NodeIt> bfs_queue;
   163 	    bfs_queue.push(s);
   164 	    
   165 	    while (!bfs_queue.empty()) {
   166 	      
   167 	      NodeIt v=bfs_queue.front();	
   168 	      bfs_queue.pop();
   169 	      int l=level.get(v)+1;
   170 	      
   171 	      for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   172 		if ( capacity.get(e) == flow.get(e) ) continue;
   173 		NodeIt u=G.tail(e);
   174 		if ( level.get(u) >= n ) { 
   175 		  bfs_queue.push(u);
   176 		  level.set(u, l);
   177 		  if ( excess.get(u) > 0 ) {
   178 		    next.set(u,active[l]);
   179 		    active[l]=u;
   180 		  }
   181 		}
   182 	      }
   183 	    
   184 	      for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
   185 		if ( 0 == flow.get(e) ) continue;
   186 		NodeIt u=G.head(e);
   187 		if ( level.get(u) >= n ) { 
   188 		  bfs_queue.push(u);
   189 		  level.set(u, l);
   190 		  if ( excess.get(u) > 0 ) {
   191 		    next.set(u,active[l]);
   192 		    active[l]=u;
   193 		  }
   194 		}
   195 	      }
   196 	    }
   197 	    b=n-2;
   198 	    }
   199 	    
   200 	}
   201 	  
   202 	  
   203 	if ( active[b] == 0 ) --b; 
   204 	else {
   205 	  end=false;  
   206 
   207 	  NodeIt w=active[b];
   208 	  active[b]=next.get(w);
   209 	  int lev=level.get(w);
   210 	  T exc=excess.get(w);
   211 	  int newlevel=n;       //bound on the next level of w
   212 	  
   213 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   214 	    
   215 	    if ( flow.get(e) == capacity.get(e) ) continue; 
   216 	    NodeIt v=G.head(e);            
   217 	    //e=wv	    
   218 	    
   219 	    if( lev > level.get(v) ) {      
   220 	      /*Push is allowed now*/
   221 	      
   222 	      if ( excess.get(v)==0 && v!=t && v!=s ) {
   223 		int lev_v=level.get(v);
   224 		next.set(v,active[lev_v]);
   225 		active[lev_v]=v;
   226 	      }
   227 	      
   228 	      T cap=capacity.get(e);
   229 	      T flo=flow.get(e);
   230 	      T remcap=cap-flo;
   231 	      
   232 	      if ( remcap >= exc ) {       
   233 		/*A nonsaturating push.*/
   234 		
   235 		flow.set(e, flo+exc);
   236 		excess.set(v, excess.get(v)+exc);
   237 		exc=0;
   238 		break; 
   239 		
   240 	      } else { 
   241 		/*A saturating push.*/
   242 		
   243 		flow.set(e, cap);
   244 		excess.set(v, excess.get(v)+remcap);
   245 		exc-=remcap;
   246 	      }
   247 	    } else if ( newlevel > level.get(v) ){
   248 	      newlevel = level.get(v);
   249 	    }	    
   250 	    
   251 	  } //for out edges wv 
   252 	
   253 	
   254 	if ( exc > 0 ) {	
   255 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   256 	    
   257 	    if( flow.get(e) == 0 ) continue; 
   258 	    NodeIt v=G.tail(e);  
   259 	    //e=vw
   260 	    
   261 	    if( lev > level.get(v) ) {  
   262 	      /*Push is allowed now*/
   263 	      
   264 	      if ( excess.get(v)==0 && v!=t && v!=s ) {
   265 		int lev_v=level.get(v);
   266 		next.set(v,active[lev_v]);
   267 		active[lev_v]=v;
   268 	      }
   269 	      
   270 	      T flo=flow.get(e);
   271 	      
   272 	      if ( flo >= exc ) { 
   273 		/*A nonsaturating push.*/
   274 		
   275 		flow.set(e, flo-exc);
   276 		excess.set(v, excess.get(v)+exc);
   277 		exc=0;
   278 		break; 
   279 	      } else {                                               
   280 		/*A saturating push.*/
   281 		
   282 		excess.set(v, excess.get(v)+flo);
   283 		exc-=flo;
   284 		flow.set(e,0);
   285 	      }  
   286 	    } else if ( newlevel > level.get(v) ) {
   287 	      newlevel = level.get(v);
   288 	    }	    
   289 	  } //for in edges vw
   290 	  
   291 	} // if w still has excess after the out edge for cycle
   292 	
   293 	excess.set(w, exc);
   294 	 
   295 	/*
   296 	  Relabel
   297 	*/
   298 	
   299 
   300 	if ( exc > 0 ) {
   301 	  //now 'lev' is the old level of w
   302 	
   303 	  if ( phase ) {
   304 	    level.set(w,++newlevel);
   305 	    next.set(w,active[newlevel]);
   306 	    active[newlevel]=w;
   307 	    b=newlevel;
   308 	  } else {
   309 	    //unlacing starts
   310 	    NodeIt right_n=right.get(w);
   311 	    NodeIt left_n=left.get(w);
   312 
   313 	    if ( right_n != 0 ) {
   314 	      if ( left_n != 0 ) {
   315 		right.set(left_n, right_n);
   316 		left.set(right_n, left_n);
   317 	      } else {
   318 		level_list[lev]=right_n;   
   319 		left.set(right_n, 0);
   320 	      } 
   321 	    } else {
   322 	      if ( left_n != 0 ) {
   323 		right.set(left_n, 0);
   324 	      } else { 
   325 		level_list[lev]=0;   
   326 
   327 	      } 
   328 	    } 
   329 	    //unlacing ends
   330 		
   331 	    //gapping starts
   332 	    if ( level_list[lev]==0 ) {
   333 	      
   334 	      for (int i=lev; i!=k ; ) {
   335 		NodeIt v=level_list[++i];
   336 		while ( v != 0 ) {
   337 		  level.set(v,n);
   338 		  v=right.get(v);
   339 		}
   340 		level_list[i]=0;
   341 		active[i]=0;
   342 	      }	     
   343 
   344 	      level.set(w,n);
   345 	      b=lev-1;
   346 	      k=b;
   347 	      //gapping ends
   348 	    } else {
   349 	      
   350 	      if ( newlevel == n ) level.set(w,n); 
   351 	      else {
   352 		level.set(w,++newlevel);
   353 		next.set(w,active[newlevel]);
   354 		active[newlevel]=w;
   355 		if ( k < newlevel ) ++k;
   356 		NodeIt first=level_list[newlevel];
   357 		if ( first != 0 ) left.set(first,w);
   358 		right.set(w,first);
   359 		left.set(w,0);
   360 		level_list[newlevel]=w;
   361 	      }
   362 	    }
   363 
   364 
   365 	  } //phase 0
   366 	  
   367 	  
   368 	} // if ( exc > 0 )
   369 	  
   370 	
   371 	}  // if stack[b] is nonempty
   372 	
   373       } // while(true)
   374 
   375 
   376       value = excess.get(t);
   377       /*Max flow value.*/
   378      
   379     } //void run()
   380 
   381 
   382 
   383 
   384 
   385     /*
   386       Returns the maximum value of a flow.
   387      */
   388 
   389     T maxFlow() {
   390       return value;
   391     }
   392 
   393 
   394 
   395     /*
   396       For the maximum flow x found by the algorithm, 
   397       it returns the flow value on edge e, i.e. x(e). 
   398     */
   399    
   400     T flowOnEdge(EdgeIt e) {
   401       return flow.get(e);
   402     }
   403 
   404 
   405 
   406     FlowMap Flow() {
   407       return flow;
   408       }
   409 
   410 
   411     
   412     void Flow(FlowMap& _flow ) {
   413       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
   414 	_flow.set(v,flow.get(v));
   415 	}
   416 
   417 
   418 
   419     /*
   420       Returns the minimum min cut, by a bfs from s in the residual graph.
   421     */
   422    
   423     template<typename _CutMap>
   424     void minMinCut(_CutMap& M) {
   425     
   426       std::queue<NodeIt> queue;
   427       
   428       M.set(s,true);      
   429       queue.push(s);
   430 
   431       while (!queue.empty()) {
   432         NodeIt w=queue.front();
   433 	queue.pop();
   434 
   435 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   436 	  NodeIt v=G.head(e);
   437 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   438 	    queue.push(v);
   439 	    M.set(v, true);
   440 	  }
   441 	} 
   442 
   443 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   444 	  NodeIt v=G.tail(e);
   445 	  if (!M.get(v) && flow.get(e) > 0 ) {
   446 	    queue.push(v);
   447 	    M.set(v, true);
   448 	  }
   449 	} 
   450       }
   451     }
   452 
   453 
   454   
   455     /*
   456       Returns the maximum min cut, by a reverse bfs 
   457       from t in the residual graph.
   458     */
   459     
   460     template<typename _CutMap>
   461     void maxMinCut(_CutMap& M) {
   462     
   463       std::queue<NodeIt> queue;
   464       
   465       M.set(t,true);        
   466       queue.push(t);
   467 
   468       while (!queue.empty()) {
   469         NodeIt w=queue.front();
   470 	queue.pop();
   471 
   472 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   473 	  NodeIt v=G.tail(e);
   474 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   475 	    queue.push(v);
   476 	    M.set(v, true);
   477 	  }
   478 	}
   479 
   480 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   481 	  NodeIt v=G.head(e);
   482 	  if (!M.get(v) && flow.get(e) > 0 ) {
   483 	    queue.push(v);
   484 	    M.set(v, true);
   485 	  }
   486 	}
   487       }
   488 
   489       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   490 	M.set(v, !M.get(v));
   491       }
   492 
   493     }
   494 
   495 
   496 
   497     template<typename _CutMap>
   498     void minCut(_CutMap& M) {
   499       minMinCut(M);
   500     }
   501 
   502   };
   503 }//namespace marci
   504 #endif 
   505 
   506 
   507 
   508