src/work/johanna/unionfind.h
author marci
Thu, 29 Apr 2004 16:25:03 +0000
changeset 476 cfe550761745
parent 394 3a34c5626e52
child 481 54d8feda437b
permissions -rw-r--r--
preflow, maxflow
     1 // -*- c++ -*- //
     2 #ifndef HUGO_UNION_FIND_H
     3 #define HUGO_UNION_FIND_H
     4 
     5 //!ingroup auxdat
     6 //!\file
     7 //!\brief Union-Find data structures.
     8 
     9 
    10 #include <vector>
    11 #include <list>
    12 #include <utility>
    13 #include <algorithm>
    14 
    15 #include <invalid.h>
    16 
    17 namespace hugo {
    18 
    19   //! \addtogroup auxdat
    20   //! @{
    21 
    22   /**
    23    * \brief A \e Union-Find data structure implementation
    24    *
    25    * The class implements the \e Union-Find data structure. 
    26    * The union operation uses rank heuristic, while
    27    * the find operation uses path compresson.
    28    * This is a very simple but efficient implementation, providing 
    29    * only four methods: join (union), find, insert and size.
    30    * For more features see the \ref UnionFindEnum class.
    31    *
    32    * \pre The elements are automatically added only if the map 
    33    * given to the constructor was filled with -1's. Otherwise you
    34    * need to add all the elements by the \ref insert() method.
    35    */
    36 
    37   template <typename T, typename TIntMap>
    38   class UnionFind {
    39     
    40   public:
    41     typedef T ElementType;
    42     typedef std::pair<int,int> PairType;
    43 
    44   private:
    45     std::vector<PairType> data;
    46     TIntMap& map;
    47 
    48   public:
    49     UnionFind(TIntMap& m) : map(m) {}
    50 
    51     /**
    52      * \brief Returns the index of the element's component.
    53      *
    54      * The method returns the index of the element's component.
    55      * This is an integer between zero and the number of inserted elements.
    56      */
    57 
    58     int find(T a)
    59     {
    60       int comp0 = map[a];
    61       if (comp0 < 0) {
    62 	return insert(a);
    63       }
    64       int comp = comp0;
    65       int next;
    66       while ( (next = data[comp].first) != comp) {
    67 	comp = next;
    68       }
    69       while ( (next = data[comp0].first) != comp) {
    70 	data[comp0].first = comp;
    71 	comp0 = next;
    72       }
    73 
    74       return comp;
    75     }
    76 
    77     /**
    78      * \brief Insert a new element into the structure.
    79      *
    80      * This method inserts a new element into the data structure. 
    81      *
    82      * It is not required to use this method:
    83      * if the map given to the constructor was filled 
    84      * with -1's then it is called automatically
    85      * on the first \ref find or \ref join.
    86      *
    87      * The method returns the index of the new component.
    88      */
    89 
    90     int insert(T a)
    91     {
    92       int n = data.size();
    93       data.push_back(std::make_pair(n, 1));
    94       map.set(a,n);
    95       return n;
    96     }
    97 
    98     /**
    99      * \brief Joining the components of element \e a and element \e b.
   100      *
   101      * This is the \e union operation of the Union-Find structure. 
   102      * Joins the component of elemenent \e a and component of
   103      * element \e b. If \e a and \e b are in the same component then
   104      * it returns false otherwise it returns true.
   105      */
   106 
   107     bool join(T a, T b)
   108     {
   109       int ca = find(a);
   110       int cb = find(b);
   111 
   112       if ( ca == cb ) 
   113 	return false;
   114 
   115       if ( data[ca].second > data[cb].second ) {
   116 	data[cb].first = ca;
   117 	data[ca].second += data[cb].second;
   118       }
   119       else {
   120 	data[ca].first = cb;
   121 	data[cb].second += data[ca].second;
   122       }
   123       return true;
   124     }
   125 
   126     /**
   127      * \brief Returns the size of the component of element \e a.
   128      *
   129      * Returns the size of the component of element \e a.
   130      */
   131 
   132     int size(T a)
   133     {
   134       int ca = find(a);
   135       return data[ca].second;
   136     }
   137 
   138   };
   139 
   140 
   141 
   142 
   143   /*******************************************************/
   144 
   145 
   146 #ifdef DEVELOPMENT_DOCS
   147 
   148   /**
   149    * \brief The auxiliary class for the \ref UnionFindEnum class.
   150    *
   151    * In the \ref UnionFindEnum class all components are represented as
   152    * a std::list. 
   153    * Items of these lists are UnionFindEnumItem structures.
   154    *
   155    * The class has four fields:
   156    *  - T me - the actual element 
   157    *  - IIter parent - the parent of the element in the union-find structure
   158    *  - int size - the size of the component of the element. 
   159    *            Only valid if the element
   160    *            is the leader of the component.
   161    *  - CIter my_class - pointer into the list of components 
   162    *            pointing to the component of the element.
   163    *            Only valid if the element is the leader of the component.
   164    */
   165 
   166 #endif
   167 
   168   template <typename T>
   169   struct UnionFindEnumItem {
   170 
   171     typedef std::list<UnionFindEnumItem> ItemList;
   172     typedef std::list<ItemList> ClassList;
   173     typedef typename ItemList::iterator IIter;
   174     typedef typename ClassList::iterator CIter;
   175 
   176     T me;
   177     IIter parent;
   178     int size;
   179     CIter my_class;
   180 
   181     UnionFindEnumItem() {}
   182     UnionFindEnumItem(const T &_me, CIter _my_class): 
   183       me(_me), size(1), my_class(_my_class) {}
   184   };
   185 
   186 
   187   /**
   188    * \brief A \e Union-Find data structure implementation which
   189    * is able to enumerate the components.
   190    *
   191    * The class implements an \e Union-Find data structure
   192    * which is able to enumerate the components and the items in
   193    * a component. If you don't need this feature then perhaps it's
   194    * better to use the \ref UnionFind class which is more efficient.
   195    *
   196    * The union operation uses rank heuristic, while
   197    * the find operation uses path compresson.
   198    *
   199    * \pre You
   200    * need to add all the elements by the \ref insert() method.
   201    */
   202 
   203 
   204   template <typename T, template <typename Item> class Map>
   205   class UnionFindEnum {
   206 
   207     typedef std::list<UnionFindEnumItem<T> > ItemList;
   208     typedef std::list<ItemList> ClassList;
   209     typedef typename ItemList::iterator IIter;
   210     typedef typename ItemList::const_iterator IcIter;
   211     typedef typename ClassList::iterator CIter;
   212     typedef typename ClassList::const_iterator CcIter;
   213 
   214   public:
   215     typedef T ElementType;
   216     typedef UnionFindEnumItem<T> ItemType;
   217     typedef Map< IIter > MapType;
   218 
   219   private:
   220     MapType& m;
   221     ClassList classes;
   222 
   223     IIter _find(IIter a) const {
   224       IIter comp = a;
   225       IIter next;
   226       while( (next = comp->parent) != comp ) {
   227 	comp = next;
   228       }
   229 
   230       IIter comp1 = a;
   231       while( (next = comp1->parent) != comp ) {
   232 	comp1->parent = comp->parent;
   233 	comp1 = next;
   234       }
   235       return comp;
   236     }
   237 
   238   public:
   239     UnionFindEnum(MapType& _m) : m(_m) {}
   240 
   241 
   242     /**
   243      * \brief Insert the given element into a new component.
   244      *
   245      * This method creates a new component consisting only of the
   246      * given element.
   247      */
   248 
   249     void insert(const T &a)
   250     {
   251 
   252 
   253       classes.push_back(ItemList());
   254       CIter aclass = classes.end();
   255       --aclass;
   256 
   257       ItemList &alist = *aclass;
   258       alist.push_back(ItemType(a, aclass));
   259       IIter ai = alist.begin();
   260 
   261       ai->parent = ai;
   262       m.set(a, ai);
   263 
   264     }
   265 
   266     /**
   267      * \brief Find the leader of the component of the given element.
   268      *
   269      * The method returns the leader of the component of the given element.
   270      */
   271 
   272     T find(const T &a) const {
   273       return _find(m[a])->me;
   274     }
   275 
   276 
   277     /**
   278      * \brief Joining the component of element \e a and element \e b.
   279      *
   280      * This is the \e union operation of the Union-Find structure. 
   281      * Joins the component of elemenent \e a and component of
   282      * element \e b. If \e a and \e b are in the same component then
   283      * returns false else returns true.
   284      */
   285 
   286     bool join(T a, T b) {
   287 
   288       IIter ca = _find(m[a]);
   289       IIter cb = _find(m[b]);
   290 
   291       if ( ca == cb ) {
   292 	return false;
   293       }
   294 
   295       if ( ca->size > cb->size ) {
   296 
   297 	cb->parent = ca->parent;
   298 	ca->size += cb->size;
   299 	
   300 	ItemList &alist = *ca->my_class;
   301 	alist.splice(alist.end(),*cb->my_class);
   302 
   303 	classes.erase(cb->my_class);
   304 	cb->my_class = 0;
   305       }
   306       else {
   307 
   308 	ca->parent = cb->parent;
   309 	cb->size += ca->size;
   310 	
   311 	ItemList &blist = *cb->my_class;
   312 	blist.splice(blist.end(),*ca->my_class);
   313 
   314 	classes.erase(ca->my_class);
   315 	ca->my_class = 0;
   316       }
   317 
   318       return true;
   319     }
   320 
   321 
   322     /**
   323      * \brief Returns the size of the component of element \e a.
   324      *
   325      * Returns the size of the component of element \e a.
   326      */
   327 
   328     int size(const T &a) const {
   329       return _find(m[a])->size;
   330     }
   331 
   332 
   333     /**
   334      * \brief Split up the component of the element. 
   335      *
   336      * Splitting the component of the element into sigleton
   337      * components (component of size one).
   338      */
   339 
   340     void split(const T &a) {
   341 
   342       IIter ca = _find(m[a]);
   343  
   344       if ( ca->size == 1 )
   345 	return;
   346       
   347       CIter aclass = ca->my_class;
   348 
   349       for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
   350 	classes.push_back(ItemList());
   351 	CIter nl = --classes.end();
   352 	nl->splice(nl->end(), *aclass, curr);
   353 
   354 	curr->size=1;
   355 	curr->parent=curr;
   356 	curr->my_class = nl;
   357       }
   358 
   359       ca->size=1;
   360       return;
   361     }
   362 
   363 
   364     /**
   365      * \brief Set the given element to the leader element of its component.
   366      *
   367      * Set the given element to the leader element of its component.
   368      */
   369 
   370     void makeRep(const T &a) {
   371 
   372       IIter ia = m[a];
   373       IIter la = _find(ia);
   374       if (la == ia) return;
   375 
   376       ia->my_class = la->my_class;
   377       la->my_class = 0;
   378 
   379       ia->size = la->size;
   380 
   381       CIter l = ia->my_class;
   382       l->splice(l->begin(),*l,ia);
   383 
   384       ia->parent = ia;
   385       la->parent = ia;
   386     }
   387 
   388 
   389     /**
   390      * \brief Remove the given element from the structure.
   391      *
   392      * Remove the given element from the structure.
   393      *
   394      * Removes the element from its component and if the component becomes
   395      * empty then removes that component from the component list.
   396      */
   397     void erase(const T &a) {
   398 
   399       IIter ma = m[a];
   400       if (ma == 0) return;
   401 
   402       IIter la = _find(ma);
   403       if (la == ma) {
   404 	if (ma -> size == 1){
   405 	  classes.erase(ma->my_class);
   406 	  m.set(a,0);
   407 	  return;
   408 	}
   409 	++la;
   410 	la->size = ma->size; 
   411 	la->my_class = ma->my_class;	
   412       }
   413 
   414       for (IIter i = la; i != la->my_class->end(); ++i) {
   415 	i->parent = la;
   416       }
   417 
   418       la->size--;
   419       la->my_class->erase(ma);
   420       m.set(a,0);
   421     }
   422 
   423     /**
   424      * \brief Removes the component of the given element from the structure.
   425      *
   426      * Removes the component of the given element from the structure.
   427      */
   428 
   429     void eraseClass(const T &a) {
   430       IIter ma = m[a];
   431       if (ma == 0) return;
   432 #     ifdef DEBUG
   433       CIter c = _find(ma)->my_class;
   434       for (IIter i=c->begin(); i!=c->end(); ++i)
   435 	m.set(i->me, 0);
   436 #     endif
   437       classes.erase(_find(ma)->my_class);
   438     }
   439 
   440 
   441     class ClassIt {
   442       friend class UnionFindEnum;
   443 
   444       CcIter i;
   445     public:
   446       ClassIt(Invalid): i(0) {}
   447       ClassIt() {}
   448       
   449       operator const T& () const { 
   450 	ItemList const &ll = *i;
   451 	return (ll.begin())->me; }
   452       bool operator == (ClassIt it) const {
   453 	return (i == it.i);
   454       }
   455       bool operator != (ClassIt it) const {
   456 	return (i != it.i);
   457       }
   458       bool operator < (ClassIt it) const {
   459 	return (i < it.i);
   460       }
   461 
   462       bool valid() const { return i != 0; }
   463     private:
   464       void first(const ClassList &l) { i = l.begin(); validate(l); }
   465       void next(const ClassList &l) {
   466 	++i; 
   467 	validate(l);
   468       }
   469       void validate(const ClassList &l) {
   470 	if ( i == l.end() ) 
   471 	  i = 0;
   472       }
   473     };
   474 
   475     /**
   476      * \brief Sets the iterator to point to the first component.
   477      * 
   478      * Sets the iterator to point to the first component.
   479      *
   480      * With the \ref first, \ref valid and \ref next methods you can
   481      * iterate through the components. For example:
   482      * \code
   483      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   484      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   485      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
   486      *  for (U.first(iter); U.valid(iter); U.next(iter)) {
   487      *    // iter is convertible to Graph::Node
   488      *    cout << iter << endl;
   489      *  }
   490      * \endcode
   491      */
   492 
   493     ClassIt& first(ClassIt& it) const {
   494       it.first(classes);
   495       return it;
   496     }
   497 
   498     /**
   499      * \brief Returns whether the iterator is valid.
   500      *
   501      * Returns whether the iterator is valid.
   502      *
   503      * With the \ref first, \ref valid and \ref next methods you can
   504      * iterate through the components. See the example here: \ref first.
   505      */
   506 
   507     bool valid(ClassIt const &it) const {
   508       return it.valid(); 
   509     }
   510 
   511     /**
   512      * \brief Steps the iterator to the next component. 
   513      *
   514      * Steps the iterator to the next component.
   515      *
   516      * With the \ref first, \ref valid and \ref next methods you can
   517      * iterate through the components. See the example here: \ref first.
   518      */
   519 
   520     ClassIt& next(ClassIt& it) const {
   521       it.next(classes);
   522       return it;
   523     }
   524 
   525 
   526     class ItemIt {
   527       friend class UnionFindEnum;
   528 
   529       IcIter i;
   530       const ItemList *l;
   531     public:
   532       ItemIt(Invalid): i(0) {}
   533       ItemIt() {}
   534       
   535       operator const T& () const { return i->me; }
   536       bool operator == (ItemIt it) const {
   537 	return (i == it.i);
   538       }
   539       bool operator != (ItemIt it) const {
   540 	return (i != it.i);
   541       }
   542       bool operator < (ItemIt it) const {
   543 	return (i < it.i);
   544       }
   545 
   546       bool valid() const { return i != 0; }
   547     private:
   548       void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
   549       void next() {
   550 	++i; 
   551 	validate();
   552       }
   553       void validate() {
   554 	if ( i == l->end() ) 
   555 	  i = 0;
   556       }
   557     };
   558 
   559 
   560 
   561     /**
   562      * \brief Sets the iterator to point to the first element of the component.
   563      * 
   564      * \anchor first2 
   565      * Sets the iterator to point to the first element of the component.
   566      *
   567      * With the \ref first2 "first", \ref valid2 "valid" 
   568      * and \ref next2 "next" methods you can
   569      * iterate through the elements of a component. For example
   570      * (iterating through the component of the node \e node):
   571      * \code
   572      * Graph::Node node = ...;
   573      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   574      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   575      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
   576      *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
   577      *     // iiter is convertible to Graph::Node
   578      *     cout << iiter << endl;
   579      *   }
   580      * \endcode
   581      */
   582     
   583     ItemIt& first(ItemIt& it, const T& a) const {
   584       it.first( * _find(m[a])->my_class );
   585       return it;
   586     }
   587 
   588     /**
   589      * \brief Returns whether the iterator is valid.
   590      *
   591      * \anchor valid2
   592      * Returns whether the iterator is valid.
   593      *
   594      * With the \ref first2 "first", \ref valid2 "valid" 
   595      * and \ref next2 "next" methods you can
   596      * iterate through the elements of a component.
   597      * See the example here: \ref first2 "first".
   598      */
   599 
   600     bool valid(ItemIt const &it) const {
   601       return it.valid(); 
   602     }
   603 
   604     /**
   605      * \brief Steps the iterator to the next component. 
   606      *
   607      * \anchor next2
   608      * Steps the iterator to the next component.
   609      *
   610      * With the \ref first2 "first", \ref valid2 "valid" 
   611      * and \ref next2 "next" methods you can
   612      * iterate through the elements of a component.
   613      * See the example here: \ref first2 "first".
   614      */
   615 
   616     ItemIt& next(ItemIt& it) const {
   617       it.next();
   618       return it;
   619     }
   620     
   621   };
   622 
   623 
   624   //! @}
   625 
   626 } //namespace hugo
   627 
   628 #endif //HUGO_UNION_FIND_H