src/work/marci/bfs_iterator.h
author athos
Thu, 06 May 2004 15:19:59 +0000
changeset 551 d167149bde95
parent 415 679e64913c5e
child 560 5adcef1d7bcc
permissions -rw-r--r--
Written hugo/ into includes.
     1 // -*- c++ -*-
     2 #ifndef HUGO_BFS_ITERATOR_H
     3 #define HUGO_BFS_ITERATOR_H
     4 
     5 #include <queue>
     6 #include <stack>
     7 #include <utility>
     8 
     9 namespace hugo {
    10 
    11   template <typename Graph, /*typename OutEdgeIt,*/ 
    12 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
    13   class BfsIterator {
    14   protected:
    15     typedef typename Graph::Node Node;
    16     typedef typename Graph::OutEdgeIt OutEdgeIt;
    17     const Graph* graph;
    18     std::queue<Node> bfs_queue;
    19     ReachedMap& reached;
    20     bool b_node_newly_reached;
    21     OutEdgeIt actual_edge;
    22     bool own_reached_map;
    23   public:
    24     BfsIterator(const Graph& _graph, ReachedMap& _reached) : 
    25       graph(&_graph), reached(_reached), 
    26       own_reached_map(false) { }
    27     BfsIterator(const Graph& _graph) : 
    28       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
    29       own_reached_map(true) { }
    30     ~BfsIterator() { if (own_reached_map) delete &reached; }
    31     /// This method markes s reached.
    32     /// If the queue is empty, then s is pushed in the bfs queue 
    33     /// and the first OutEdgeIt is processed.
    34     /// If the queue is not empty, then s is simply pushed.
    35     void pushAndSetReached(Node s) { 
    36       reached.set(s, true);
    37       if (bfs_queue.empty()) {
    38 	bfs_queue.push(s);
    39 	graph->first(actual_edge, s);
    40 	if (graph->valid(actual_edge)) { 
    41 	  Node w=graph->bNode(actual_edge);
    42 	  if (!reached[w]) {
    43 	    bfs_queue.push(w);
    44 	    reached.set(w, true);
    45 	    b_node_newly_reached=true;
    46 	  } else {
    47 	    b_node_newly_reached=false;
    48 	  }
    49 	} 
    50       } else {
    51 	bfs_queue.push(s);
    52       }
    53     }
    54     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    55     /// its \c operator++() iterates on the edges in a bfs order.
    56     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    57     operator++() { 
    58       if (graph->valid(actual_edge)) { 
    59 	graph->next(actual_edge);
    60 	if (graph->valid(actual_edge)) {
    61 	  Node w=graph->bNode(actual_edge);
    62 	  if (!reached[w]) {
    63 	    bfs_queue.push(w);
    64 	    reached.set(w, true);
    65 	    b_node_newly_reached=true;
    66 	  } else {
    67 	    b_node_newly_reached=false;
    68 	  }
    69 	}
    70       } else {
    71 	bfs_queue.pop(); 
    72 	if (!bfs_queue.empty()) {
    73 	  graph->first(actual_edge, bfs_queue.front());
    74 	  if (graph->valid(actual_edge)) {
    75 	    Node w=graph->bNode(actual_edge);
    76 	    if (!reached[w]) {
    77 	      bfs_queue.push(w);
    78 	      reached.set(w, true);
    79 	      b_node_newly_reached=true;
    80 	    } else {
    81 	      b_node_newly_reached=false;
    82 	    }
    83 	  }
    84 	}
    85       }
    86       return *this;
    87     }
    88     bool finished() const { return bfs_queue.empty(); }
    89     /// The conversion operator makes for converting the bfs-iterator 
    90     /// to an \c out-edge-iterator.
    91     operator OutEdgeIt() const { return actual_edge; }
    92     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
    93     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
    94     Node aNode() const { return bfs_queue.front(); }
    95     Node bNode() const { return graph->bNode(actual_edge); }
    96     const ReachedMap& getReachedMap() const { return reached; }
    97     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
    98   };  
    99 
   100   /// Bfs searches from s for the nodes wich are not marked in 
   101   /// \c reached_map
   102   /// Reached is a read-write bool-map, Pred is a write-nodemap 
   103   /// and dist is an rw-nodemap, have to be.
   104   template <typename Graph, 
   105 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   106 	    typename PredMap
   107 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   108 	    typename DistMap=typename Graph::template NodeMap<int> > 
   109   class Bfs : public BfsIterator<Graph, ReachedMap> {
   110     typedef BfsIterator<Graph, ReachedMap> Parent;
   111   protected:
   112     typedef typename Parent::Node Node;
   113     PredMap& pred;
   114     DistMap& dist;
   115   public:
   116     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { }
   117     /// s is marked to be reached and pushed in the bfs queue.
   118     /// If the queue is empty, then the first out-edge is processed.
   119     /// If s was not marked previously, then 
   120     /// in addition its pred is set to be INVALID, and dist to 0. 
   121     /// if s was marked previuosly, then it is simply pushed.
   122     void push(Node s) { 
   123       if (this->reached[s]) {
   124 	Parent::pushAndSetReached(s);
   125       } else {
   126 	Parent::pushAndSetReached(s);
   127 	pred.set(s, INVALID);
   128 	dist.set(s, 0);
   129       }
   130     }
   131     /// A bfs is processed from s.
   132     void run(Node s) {
   133       push(s);
   134       while (!this->finished()) this->operator++();
   135     }
   136     Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() {
   137       Parent::operator++();
   138       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   139       {
   140 	pred.set(this->bNode(), this->actual_edge);
   141 	dist.set(this->bNode(), dist[this->aNode()]);
   142       }
   143       return *this;
   144     }
   145     const PredMap& getPredMap() const { return pred; }
   146     const DistMap& getDistMap() const { return dist; }
   147   };
   148 
   149   template <typename Graph, /*typename OutEdgeIt,*/ 
   150 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   151   class DfsIterator {
   152   protected:
   153     typedef typename Graph::Node Node;
   154     typedef typename Graph::OutEdgeIt OutEdgeIt;
   155     const Graph* graph;
   156     std::stack<OutEdgeIt> dfs_stack;
   157     bool b_node_newly_reached;
   158     OutEdgeIt actual_edge;
   159     Node actual_node;
   160     ReachedMap& reached;
   161     bool own_reached_map;
   162   public:
   163     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   164       graph(&_graph), reached(_reached), 
   165       own_reached_map(false) { }
   166     DfsIterator(const Graph& _graph) : 
   167       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   168       own_reached_map(true) { }
   169     ~DfsIterator() { if (own_reached_map) delete &reached; }
   170     void pushAndSetReached(Node s) { 
   171       actual_node=s;
   172       reached.set(s, true);
   173       OutEdgeIt e;
   174       graph->first(e, s);
   175       dfs_stack.push(e); 
   176     }
   177     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   178     operator++() { 
   179       actual_edge=dfs_stack.top();
   180       //actual_node=G.aNode(actual_edge);
   181       if (graph->valid(actual_edge)/*.valid()*/) { 
   182 	Node w=graph->bNode(actual_edge);
   183 	actual_node=w;
   184 	if (!reached[w]) {
   185 	  OutEdgeIt e;
   186 	  graph->first(e, w);
   187 	  dfs_stack.push(e);
   188 	  reached.set(w, true);
   189 	  b_node_newly_reached=true;
   190 	} else {
   191 	  actual_node=graph->aNode(actual_edge);
   192 	  graph->next(dfs_stack.top());
   193 	  b_node_newly_reached=false;
   194 	}
   195       } else {
   196 	//actual_node=G.aNode(dfs_stack.top());
   197 	dfs_stack.pop();
   198       }
   199       return *this;
   200     }
   201     bool finished() const { return dfs_stack.empty(); }
   202     operator OutEdgeIt() const { return actual_edge; }
   203     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   204     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   205     Node aNode() const { return actual_node; /*FIXME*/}
   206     Node bNode() const { return graph->bNode(actual_edge); }
   207     const ReachedMap& getReachedMap() const { return reached; }
   208     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   209   };
   210 
   211   /// Dfs searches from s for the nodes wich are not marked in 
   212   /// \c reached_map
   213   /// Reached is a read-write bool-map, Pred is a write-nodemap, have to be.
   214   template <typename Graph, 
   215 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   216 	    typename PredMap
   217 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   218   class Dfs : public DfsIterator<Graph, ReachedMap> {
   219     typedef DfsIterator<Graph, ReachedMap> Parent;
   220   protected:
   221     typedef typename Parent::Node Node;
   222     PredMap& pred;
   223   public:
   224     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { }
   225     /// s is marked to be reached and pushed in the bfs queue.
   226     /// If the queue is empty, then the first out-edge is processed.
   227     /// If s was not marked previously, then 
   228     /// in addition its pred is set to be INVALID. 
   229     /// if s was marked previuosly, then it is simply pushed.
   230     void push(Node s) { 
   231       if (this->reached[s]) {
   232 	Parent::pushAndSetReached(s);
   233       } else {
   234 	Parent::pushAndSetReached(s);
   235 	pred.set(s, INVALID);
   236       }
   237     }
   238     /// A bfs is processed from s.
   239     void run(Node s) {
   240       push(s);
   241       while (!this->finished()) this->operator++();
   242     }
   243     Dfs<Graph, ReachedMap, PredMap> operator++() {
   244       Parent::operator++();
   245       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   246       {
   247 	pred.set(this->bNode(), this->actual_edge);
   248       }
   249       return *this;
   250     }
   251     const PredMap& getPredMap() const { return pred; }
   252   };
   253 
   254 
   255 } // namespace hugo
   256 
   257 #endif //HUGO_BFS_ITERATOR_H