lemon/gomory_hu_tree.h
author kpeter
Thu, 13 Nov 2008 16:17:50 +0000
changeset 2630 d239741cfd44
parent 2528 e6bc5c0032e9
permissions -rw-r--r--
Various improvements in NetworkSimplex.

- Faster variant of "Altering Candidate List" pivot rule using make_heap
instead of partial_sort.
- Doc improvements.
- Removing unecessary inline keywords.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GOMORY_HU_TREE_H
    20 #define LEMON_GOMORY_HU_TREE_H
    21 
    22 #include <lemon/preflow.h>
    23 #include <lemon/concept_check.h>
    24 #include <lemon/concepts/maps.h>
    25 
    26 /// \ingroup min_cut
    27 /// \file 
    28 /// \brief Gomory-Hu cut tree in undirected graphs.
    29 
    30 namespace lemon {
    31 
    32   /// \ingroup min_cut
    33   ///
    34   /// \brief Gomory-Hu cut tree algorithm
    35   ///
    36   /// The Gomory-Hu tree is a tree on the nodeset of the graph, but it
    37   /// may contain edges which are not in the original graph. It helps
    38   /// to calculate the minimum cut between all pairs of nodes, because
    39   /// the minimum capacity edge on the tree path between two nodes has
    40   /// the same weight as the minimum cut in the graph between these
    41   /// nodes. Moreover this edge separates the nodes to two parts which
    42   /// determine this minimum cut.
    43   /// 
    44   /// The algorithm calculates \e n-1 distinict minimum cuts with
    45   /// preflow algorithm, therefore the algorithm has
    46   /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
    47   /// rooted Gomory-Hu tree, the structure of the tree and the weights
    48   /// can be obtained with \c predNode() and \c predValue()
    49   /// functions. The \c minCutValue() and \c minCutMap() calculates
    50   /// the minimum cut and the minimum cut value between any two node
    51   /// in the graph.
    52   template <typename _UGraph, 
    53 	    typename _Capacity = typename _UGraph::template UEdgeMap<int> >
    54   class GomoryHuTree {
    55   public:
    56 
    57     /// The undirected graph type
    58     typedef _UGraph UGraph;
    59     /// The capacity on undirected edges
    60     typedef _Capacity Capacity;
    61     /// The value type of capacities
    62     typedef typename Capacity::Value Value;
    63     
    64   private:
    65 
    66     UGRAPH_TYPEDEFS(typename UGraph);
    67 
    68     const UGraph& _ugraph;
    69     const Capacity& _capacity;
    70 
    71     Node _root;
    72     typename UGraph::template NodeMap<Node>* _pred;
    73     typename UGraph::template NodeMap<Value>* _weight;
    74     typename UGraph::template NodeMap<int>* _order;
    75 
    76     void createStructures() {
    77       if (!_pred) {
    78 	_pred = new typename UGraph::template NodeMap<Node>(_ugraph);
    79       }
    80       if (!_weight) {
    81 	_weight = new typename UGraph::template NodeMap<Value>(_ugraph);
    82       }
    83       if (!_order) {
    84 	_order = new typename UGraph::template NodeMap<int>(_ugraph);
    85       }
    86     }
    87 
    88     void destroyStructures() {
    89       if (_pred) {
    90 	delete _pred;
    91       }
    92       if (_weight) {
    93 	delete _weight;
    94       }
    95       if (_order) {
    96 	delete _order;
    97       }
    98     }
    99   
   100   public:
   101 
   102     /// \brief Constructor
   103     ///
   104     /// Constructor
   105     /// \param ugraph The undirected graph type.
   106     /// \param capacity The capacity map.
   107     GomoryHuTree(const UGraph& ugraph, const Capacity& capacity) 
   108       : _ugraph(ugraph), _capacity(capacity),
   109 	_pred(0), _weight(0), _order(0) 
   110     {
   111       checkConcept<concepts::ReadMap<UEdge, Value>, Capacity>();
   112     }
   113 
   114 
   115     /// \brief Destructor
   116     ///
   117     /// Destructor
   118     ~GomoryHuTree() {
   119       destroyStructures();
   120     }
   121 
   122     /// \brief Initializes the internal data structures.
   123     ///
   124     /// Initializes the internal data structures.
   125     ///
   126     void init() {
   127       createStructures();
   128 
   129       _root = NodeIt(_ugraph);
   130       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   131 	_pred->set(n, _root);
   132 	_order->set(n, -1);
   133       }
   134       _pred->set(_root, INVALID);
   135       _weight->set(_root, std::numeric_limits<Value>::max()); 
   136     }
   137 
   138 
   139     /// \brief Starts the algorithm
   140     ///
   141     /// Starts the algorithm.
   142     void start() {
   143       Preflow<UGraph, Capacity> fa(_ugraph, _capacity, _root, INVALID);
   144 
   145       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   146 	if (n == _root) continue;
   147 
   148 	Node pn = (*_pred)[n];
   149 	fa.source(n);
   150 	fa.target(pn);
   151 
   152 	fa.runMinCut();
   153 
   154 	_weight->set(n, fa.flowValue());
   155 
   156 	for (NodeIt nn(_ugraph); nn != INVALID; ++nn) {
   157 	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
   158 	    _pred->set(nn, n);
   159 	  }
   160 	}
   161 	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
   162 	  _pred->set(n, (*_pred)[pn]);
   163 	  _pred->set(pn, n);
   164 	  _weight->set(n, (*_weight)[pn]);
   165 	  _weight->set(pn, fa.flowValue());	
   166 	}
   167       }
   168 
   169       _order->set(_root, 0);
   170       int index = 1;
   171 
   172       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   173 	std::vector<Node> st;
   174 	Node nn = n;
   175 	while ((*_order)[nn] == -1) {
   176 	  st.push_back(nn);
   177 	  nn = (*_pred)[nn];
   178 	}
   179 	while (!st.empty()) {
   180 	  _order->set(st.back(), index++);
   181 	  st.pop_back();
   182 	}
   183       }
   184     }
   185 
   186     /// \brief Runs the Gomory-Hu algorithm.  
   187     ///
   188     /// Runs the Gomory-Hu algorithm.
   189     /// \note gh.run() is just a shortcut of the following code.
   190     /// \code
   191     ///   ght.init();
   192     ///   ght.start();
   193     /// \endcode
   194     void run() {
   195       init();
   196       start();
   197     }
   198 
   199     /// \brief Returns the predecessor node in the Gomory-Hu tree.
   200     ///
   201     /// Returns the predecessor node in the Gomory-Hu tree. If the node is
   202     /// the root of the Gomory-Hu tree, then it returns \c INVALID.
   203     Node predNode(const Node& node) {
   204       return (*_pred)[node];
   205     }
   206 
   207     /// \brief Returns the weight of the predecessor edge in the
   208     /// Gomory-Hu tree.
   209     ///
   210     /// Returns the weight of the predecessor edge in the Gomory-Hu
   211     /// tree.  If the node is the root of the Gomory-Hu tree, the
   212     /// result is undefined.
   213     Value predValue(const Node& node) {
   214       return (*_weight)[node];
   215     }
   216 
   217     /// \brief Returns the minimum cut value between two nodes
   218     ///
   219     /// Returns the minimum cut value between two nodes. The
   220     /// algorithm finds the nearest common ancestor in the Gomory-Hu
   221     /// tree and calculates the minimum weight edge on the paths to
   222     /// the ancestor.
   223     Value minCutValue(const Node& s, const Node& t) const {
   224       Node sn = s, tn = t;
   225       Value value = std::numeric_limits<Value>::max();
   226       
   227       while (sn != tn) {
   228 	if ((*_order)[sn] < (*_order)[tn]) {
   229 	  if ((*_weight)[tn] < value) value = (*_weight)[tn];
   230 	  tn = (*_pred)[tn];
   231 	} else {
   232 	  if ((*_weight)[sn] < value) value = (*_weight)[sn];
   233 	  sn = (*_pred)[sn];
   234 	}
   235       }
   236       return value;
   237     }
   238 
   239     /// \brief Returns the minimum cut between two nodes
   240     ///
   241     /// Returns the minimum cut value between two nodes. The
   242     /// algorithm finds the nearest common ancestor in the Gomory-Hu
   243     /// tree and calculates the minimum weight edge on the paths to
   244     /// the ancestor. Then it sets all nodes to the cut determined by
   245     /// this edge. The \c cutMap should be \ref concepts::ReadWriteMap
   246     /// "ReadWriteMap".
   247     template <typename CutMap>
   248     Value minCutMap(const Node& s, const Node& t, CutMap& cutMap) const {
   249       Node sn = s, tn = t;
   250 
   251       Node rn = INVALID;
   252       Value value = std::numeric_limits<Value>::max();
   253       
   254       while (sn != tn) {
   255 	if ((*_order)[sn] < (*_order)[tn]) {
   256 	  if ((*_weight)[tn] < value) {
   257 	    rn = tn;
   258 	    value = (*_weight)[tn];
   259 	  }
   260 	  tn = (*_pred)[tn];
   261 	} else {
   262 	  if ((*_weight)[sn] < value) {
   263 	    rn = sn;
   264 	    value = (*_weight)[sn];
   265 	  }
   266 	  sn = (*_pred)[sn];
   267 	}
   268       }
   269 
   270       typename UGraph::template NodeMap<bool> reached(_ugraph, false);
   271       reached.set(_root, true);
   272       cutMap.set(_root, false);
   273       reached.set(rn, true);
   274       cutMap.set(rn, true);
   275 
   276       for (NodeIt n(_ugraph); n != INVALID; ++n) {
   277 	std::vector<Node> st;
   278 	Node nn = n;
   279 	while (!reached[nn]) {
   280 	  st.push_back(nn);
   281 	  nn = (*_pred)[nn];
   282 	}
   283 	while (!st.empty()) {
   284 	  cutMap.set(st.back(), cutMap[nn]);
   285 	  st.pop_back();
   286 	}
   287       }
   288       
   289       return value;
   290     }
   291 
   292   };
   293 
   294 }
   295 
   296 #endif