tools/lgf-gen.cc
author kpeter
Thu, 13 Nov 2008 16:17:50 +0000
changeset 2630 d239741cfd44
parent 2569 12c2c5c4330b
permissions -rw-r--r--
Various improvements in NetworkSimplex.

- Faster variant of "Altering Candidate List" pivot rule using make_heap
instead of partial_sort.
- Doc improvements.
- Removing unecessary inline keywords.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup tools
    20 ///\file
    21 ///\brief Special plane graph generator.
    22 ///
    23 ///Graph generator application for various types of plane graphs.
    24 ///
    25 ///\verbatim
    26 /// Usage:
    27 ///   ./tools/lgf-gen [-2con|-tree|-tsp|-tsp2|-dela] [-disc|-square|-gauss]
    28 ///      [-rand|-seed int] [--help|-h|-help] [-area num] [-cities int] [-dir]
    29 ///      [-eps] [-g int] [-n int] [prefix]
    30 /// Where:
    31 ///   [prefix]
    32 ///      Prefix of the output files. Default is 'lgf-gen-out'
    33 ///   --help|-h|-help
    34 ///      Print a short help message
    35 ///   -2con
    36 ///      Create a two connected planar graph
    37 ///   -area num
    38 ///      Full relative area of the cities (default is 1)
    39 ///   -cities int
    40 ///      Number of cities (default is 1)
    41 ///   -dela
    42 ///      Delaunay triangulation graph
    43 ///   -dir
    44 ///      Directed graph is generated (each edges are replaced by two directed ones)
    45 ///   -disc
    46 ///      Nodes are evenly distributed on a unit disc (default)
    47 ///   -eps
    48 ///      Also generate .eps output (prefix.eps)
    49 ///   -g int
    50 ///      Girth parameter (default is 10)
    51 ///   -gauss
    52 ///      Nodes are located according to a two-dim gauss distribution
    53 ///   -n int
    54 ///      Number of nodes (default is 100)
    55 ///   -rand
    56 ///      Use time seed for random number generator
    57 ///   -seed int
    58 ///      Random seed
    59 ///   -square
    60 ///      Nodes are evenly distributed on a unit square
    61 ///   -tree
    62 ///      Create a min. cost spanning tree
    63 ///   -tsp
    64 ///      Create a TSP tour
    65 ///   -tsp2
    66 ///      Create a TSP tour (tree based)
    67 ///\endverbatim
    68 /// \image html plane_tree.png
    69 /// \image latex plane_tree.eps "Eucledian spanning tree" width=\textwidth
    70 ///
    71 
    72 
    73 #include <lemon/list_graph.h>
    74 #include <lemon/graph_utils.h>
    75 #include <lemon/random.h>
    76 #include <lemon/dim2.h>
    77 #include <lemon/bfs.h>
    78 #include <lemon/counter.h>
    79 #include <lemon/suurballe.h>
    80 #include <lemon/graph_to_eps.h>
    81 #include <lemon/graph_writer.h>
    82 #include <lemon/arg_parser.h>
    83 #include <lemon/euler.h>
    84 #include <lemon/math.h>
    85 #include <algorithm>
    86 #include <lemon/kruskal.h>
    87 #include <lemon/time_measure.h>
    88 
    89 using namespace lemon;
    90 
    91 typedef dim2::Point<double> Point;
    92 
    93 UGRAPH_TYPEDEFS(ListUGraph);
    94 
    95 bool progress=true;
    96 
    97 int N;
    98 // int girth;
    99 
   100 ListUGraph g;
   101 
   102 std::vector<Node> nodes;
   103 ListUGraph::NodeMap<Point> coords(g);
   104 
   105 
   106 double totalLen(){
   107   double tlen=0;
   108   for(UEdgeIt e(g);e!=INVALID;++e)
   109     tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
   110   return tlen;
   111 }
   112 
   113 int tsp_impr_num=0;
   114 
   115 const double EPSILON=1e-8; 
   116 bool tsp_improve(Node u, Node v)
   117 {
   118   double luv=std::sqrt((coords[v]-coords[u]).normSquare());
   119   Node u2=u;
   120   Node v2=v;
   121   do {
   122     Node n;
   123     for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { }
   124     u2=v2;
   125     v2=n;
   126     if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
   127        std::sqrt((coords[u]-coords[u2]).normSquare())+
   128        std::sqrt((coords[v]-coords[v2]).normSquare()))
   129       {
   130  	g.erase(findUEdge(g,u,v));
   131  	g.erase(findUEdge(g,u2,v2));
   132 	g.addEdge(u2,u);
   133 	g.addEdge(v,v2);
   134 	tsp_impr_num++;
   135 	return true;
   136       }
   137   } while(v2!=u);
   138   return false;
   139 }
   140 
   141 bool tsp_improve(Node u)
   142 {
   143   for(IncEdgeIt e(g,u);e!=INVALID;++e)
   144     if(tsp_improve(u,g.runningNode(e))) return true;
   145   return false;
   146 }
   147 
   148 void tsp_improve()
   149 {
   150   bool b;
   151   do {
   152     b=false;
   153     for(NodeIt n(g);n!=INVALID;++n)
   154       if(tsp_improve(n)) b=true;
   155   } while(b);
   156 }
   157 
   158 void tsp()
   159 {
   160   for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
   161   tsp_improve();
   162 }
   163 
   164 class Line
   165 {
   166 public:
   167   Point a;
   168   Point b;
   169   Line(Point _a,Point _b) :a(_a),b(_b) {}
   170   Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
   171   Line(const Edge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
   172   Line(const UEdge &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
   173 };
   174   
   175 inline std::ostream& operator<<(std::ostream &os, const Line &l)
   176 {
   177   os << l.a << "->" << l.b;
   178   return os;
   179 }
   180 
   181 bool cross(Line a, Line b) 
   182 {
   183   Point ao=rot90(a.b-a.a);
   184   Point bo=rot90(b.b-b.a);
   185   return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
   186     (bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
   187 }
   188 
   189 struct Pedge
   190 {
   191   Node a;
   192   Node b;
   193   double len;
   194 };
   195 
   196 bool pedgeLess(Pedge a,Pedge b)
   197 {
   198   return a.len<b.len;
   199 }
   200 
   201 std::vector<UEdge> edges;
   202 
   203 namespace _delaunay_bits {
   204 
   205   struct Part {
   206     int prev, curr, next;
   207 
   208     Part(int p, int c, int n) : prev(p), curr(c), next(n) {} 
   209   };
   210 
   211   inline std::ostream& operator<<(std::ostream& os, const Part& part) {
   212     os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
   213     return os;
   214   }
   215 
   216   inline double circle_point(const Point& p, const Point& q, const Point& r) {
   217     double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
   218     if (a == 0) return std::numeric_limits<double>::quiet_NaN();
   219 
   220     double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
   221       (q.x * q.x + q.y * q.y) * (r.y - p.y) +
   222       (r.x * r.x + r.y * r.y) * (p.y - q.y);
   223 
   224     double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
   225       (q.x * q.x + q.y * q.y) * (r.x - p.x) +
   226       (r.x * r.x + r.y * r.y) * (p.x - q.x);
   227 
   228     double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
   229       (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
   230       (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
   231 
   232     return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a);
   233   }
   234 
   235   inline bool circle_form(const Point& p, const Point& q, const Point& r) {
   236     return rot90(q - p) * (r - q) < 0.0;
   237   }
   238 
   239   inline double intersection(const Point& p, const Point& q, double sx) {
   240     const double epsilon = 1e-8;
   241 
   242     if (p.x == q.x) return (p.y + q.y) / 2.0;
   243 
   244     if (sx < p.x + epsilon) return p.y;
   245     if (sx < q.x + epsilon) return q.y;
   246     
   247     double a = q.x - p.x;
   248     double b = (q.x - sx) * p.y - (p.x - sx) * q.y;    
   249     double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
   250     return (b - sqrt(d)) / a;
   251   }
   252 
   253   struct YLess {
   254 
   255 
   256     YLess(const std::vector<Point>& points, double& sweep) 
   257       : _points(points), _sweep(sweep) {}
   258 
   259     bool operator()(const Part& l, const Part& r) const {
   260       const double epsilon = 1e-8;
   261 
   262       //      std::cerr << l << " vs " << r << std::endl;
   263       double lbx = l.prev != -1 ?
   264 	intersection(_points[l.prev], _points[l.curr], _sweep) :
   265 	- std::numeric_limits<double>::infinity();
   266       double rbx = r.prev != -1 ?
   267 	intersection(_points[r.prev], _points[r.curr], _sweep) :
   268 	- std::numeric_limits<double>::infinity();
   269       double lex = l.next != -1 ?
   270 	intersection(_points[l.curr], _points[l.next], _sweep) :
   271 	std::numeric_limits<double>::infinity();
   272       double rex = r.next != -1 ?
   273 	intersection(_points[r.curr], _points[r.next], _sweep) :
   274 	std::numeric_limits<double>::infinity();
   275 
   276       if (lbx > lex) std::swap(lbx, lex);
   277       if (rbx > rex) std::swap(rbx, rex);
   278 
   279       if (lex < epsilon + rex && lbx + epsilon < rex) return true;
   280       if (rex < epsilon + lex && rbx + epsilon < lex) return false;
   281       return lex < rex;
   282     }
   283     
   284     const std::vector<Point>& _points;
   285     double& _sweep;
   286   };
   287   
   288   struct BeachIt;
   289   
   290   typedef std::multimap<double, BeachIt> SpikeHeap;
   291 
   292   typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
   293 
   294   struct BeachIt {
   295     Beach::iterator it;
   296 
   297     BeachIt(Beach::iterator iter) : it(iter) {}
   298   };
   299 
   300 }
   301 
   302 inline void delaunay() {
   303   Counter cnt("Number of edges added: ");
   304   
   305   using namespace _delaunay_bits;
   306 
   307   typedef _delaunay_bits::Part Part;
   308   typedef std::vector<std::pair<double, int> > SiteHeap;
   309 
   310 
   311   std::vector<Point> points;
   312   std::vector<Node> nodes;
   313 
   314   for (NodeIt it(g); it != INVALID; ++it) {
   315     nodes.push_back(it);
   316     points.push_back(coords[it]);
   317   }
   318 
   319   SiteHeap siteheap(points.size());
   320 
   321   double sweep;
   322 
   323 
   324   for (int i = 0; i < int(siteheap.size()); ++i) {
   325     siteheap[i] = std::make_pair(points[i].x, i);
   326   }
   327   
   328   std::sort(siteheap.begin(), siteheap.end());
   329   sweep = siteheap.front().first;
   330   
   331   YLess yless(points, sweep);
   332   Beach beach(yless);
   333 
   334   SpikeHeap spikeheap;
   335 
   336   std::set<std::pair<int, int> > edges;
   337 
   338   int siteindex = 0;
   339   {
   340     SiteHeap front;
   341 
   342     while (siteindex < int(siteheap.size()) &&
   343 	   siteheap[0].first == siteheap[siteindex].first) {
   344       front.push_back(std::make_pair(points[siteheap[siteindex].second].y,
   345 				     siteheap[siteindex].second));
   346       ++siteindex;
   347     }
   348     
   349     std::sort(front.begin(), front.end());
   350 
   351     for (int i = 0; i < int(front.size()); ++i) {
   352       int prev = (i == 0 ? -1 : front[i - 1].second);
   353       int curr = front[i].second;
   354       int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second);
   355 
   356       beach.insert(std::make_pair(Part(prev, curr, next), 
   357 				  spikeheap.end()));      
   358     }
   359   }
   360 
   361   while (siteindex < int(points.size()) || !spikeheap.empty()) {
   362 
   363     SpikeHeap::iterator spit = spikeheap.begin();
   364 
   365     if (siteindex < int(points.size()) && 
   366 	(spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
   367       int site = siteheap[siteindex].second;
   368       sweep = siteheap[siteindex].first;
   369           
   370       Beach::iterator bit = beach.upper_bound(Part(site, site, site));
   371       
   372       if (bit->second != spikeheap.end()) {
   373 	spikeheap.erase(bit->second);	
   374       }
   375 
   376       int prev = bit->first.prev;
   377       int curr = bit->first.curr;
   378       int next = bit->first.next;
   379 
   380       beach.erase(bit);
   381       
   382       SpikeHeap::iterator pit = spikeheap.end();
   383       if (prev != -1 && 
   384 	  circle_form(points[prev], points[curr], points[site])) {
   385 	double x = circle_point(points[prev], points[curr], points[site]);
   386 	pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   387 	pit->second.it =
   388 	  beach.insert(std::make_pair(Part(prev, curr, site), pit));
   389       } else {
   390 	beach.insert(std::make_pair(Part(prev, curr, site), pit));
   391       }
   392 
   393       beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
   394       
   395       SpikeHeap::iterator nit = spikeheap.end();
   396       if (next != -1 && 
   397 	  circle_form(points[site], points[curr],points[next])) {
   398 	double x = circle_point(points[site], points[curr], points[next]);
   399 	nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   400 	nit->second.it =
   401 	  beach.insert(std::make_pair(Part(site, curr, next), nit));
   402       } else {
   403 	beach.insert(std::make_pair(Part(site, curr, next), nit));
   404       }
   405       
   406       ++siteindex;
   407     } else {
   408       sweep = spit->first;      
   409 
   410       Beach::iterator bit = spit->second.it;
   411 
   412       int prev = bit->first.prev;
   413       int curr = bit->first.curr;
   414       int next = bit->first.next;
   415 
   416       {
   417 	std::pair<int, int> edge;
   418 
   419 	edge = prev < curr ? 
   420 	  std::make_pair(prev, curr) : std::make_pair(curr, prev);
   421 	
   422 	if (edges.find(edge) == edges.end()) {
   423 	  edges.insert(edge);
   424 	  g.addEdge(nodes[prev], nodes[curr]);
   425 	  ++cnt;
   426 	}
   427 
   428 	edge = curr < next ? 
   429 	  std::make_pair(curr, next) : std::make_pair(next, curr);
   430 	
   431 	if (edges.find(edge) == edges.end()) {
   432 	  edges.insert(edge);
   433 	  g.addEdge(nodes[curr], nodes[next]);
   434 	  ++cnt;
   435 	}
   436       }
   437       
   438       Beach::iterator pbit = bit; --pbit;
   439       int ppv = pbit->first.prev;
   440       Beach::iterator nbit = bit; ++nbit;
   441       int nnt = nbit->first.next;
   442 
   443       if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
   444       if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
   445       if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
   446 
   447       beach.erase(nbit);
   448       beach.erase(bit);
   449       beach.erase(pbit);
   450 
   451       SpikeHeap::iterator pit = spikeheap.end();
   452       if (ppv != -1 && ppv != next && 
   453 	  circle_form(points[ppv], points[prev], points[next])) {
   454 	double x = circle_point(points[ppv], points[prev], points[next]);
   455 	if (x < sweep) x = sweep;
   456 	pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   457 	pit->second.it =
   458 	  beach.insert(std::make_pair(Part(ppv, prev, next), pit));
   459       } else {
   460 	beach.insert(std::make_pair(Part(ppv, prev, next), pit));
   461       }
   462 
   463       SpikeHeap::iterator nit = spikeheap.end();
   464       if (nnt != -1 && prev != nnt &&
   465 	  circle_form(points[prev], points[next], points[nnt])) {
   466 	double x = circle_point(points[prev], points[next], points[nnt]);
   467 	if (x < sweep) x = sweep;
   468 	nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   469 	nit->second.it =
   470 	  beach.insert(std::make_pair(Part(prev, next, nnt), nit));
   471       } else {
   472 	beach.insert(std::make_pair(Part(prev, next, nnt), nit));
   473       }
   474       
   475     }
   476   }
   477 
   478   for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
   479     int curr = it->first.curr;
   480     int next = it->first.next;
   481 
   482     if (next == -1) continue;
   483 
   484     std::pair<int, int> edge;
   485 
   486     edge = curr < next ? 
   487       std::make_pair(curr, next) : std::make_pair(next, curr);
   488     
   489     if (edges.find(edge) == edges.end()) {
   490       edges.insert(edge);
   491       g.addEdge(nodes[curr], nodes[next]);
   492       ++cnt;
   493     }
   494   }
   495 }
   496 
   497 void sparse(int d) 
   498 {
   499   Counter cnt("Number of edges removed: ");
   500   Bfs<ListUGraph> bfs(g);
   501   for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
   502       ei!=edges.rend();++ei)
   503     {
   504       Node a=g.source(*ei);
   505       Node b=g.target(*ei);
   506       g.erase(*ei);
   507       bfs.run(a,b);
   508       if(bfs.predEdge(b)==INVALID || bfs.dist(b)>d)
   509 	g.addEdge(a,b);
   510       else cnt++;
   511     }
   512 }
   513 
   514 void sparse2(int d) 
   515 {
   516   Counter cnt("Number of edges removed: ");
   517   for(std::vector<UEdge>::reverse_iterator ei=edges.rbegin();
   518       ei!=edges.rend();++ei)
   519     {
   520       Node a=g.source(*ei);
   521       Node b=g.target(*ei);
   522       g.erase(*ei);
   523       ConstMap<Edge,int> cegy(1);
   524       Suurballe<ListUGraph,ConstMap<Edge,int> > sur(g,cegy,a,b);
   525       int k=sur.run(2);
   526       if(k<2 || sur.totalLength()>d)
   527 	g.addEdge(a,b);
   528       else cnt++;
   529 //       else std::cout << "Remove edge " << g.id(a) << "-" << g.id(b) << '\n';
   530     }
   531 }
   532 
   533 void sparseTriangle(int d)
   534 {
   535   Counter cnt("Number of edges added: ");
   536   std::vector<Pedge> pedges;
   537   for(NodeIt n(g);n!=INVALID;++n) 
   538     for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
   539       {
   540 	Pedge p;
   541 	p.a=n;
   542 	p.b=m;
   543 	p.len=(coords[m]-coords[n]).normSquare();
   544 	pedges.push_back(p);
   545       }
   546   std::sort(pedges.begin(),pedges.end(),pedgeLess);
   547   for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
   548     {
   549       Line li(pi->a,pi->b);
   550       UEdgeIt e(g);
   551       for(;e!=INVALID && !cross(e,li);++e) ;
   552       UEdge ne;
   553       if(e==INVALID) {
   554 	ConstMap<Edge,int> cegy(1);
   555 	Suurballe<ListUGraph,ConstMap<Edge,int> >
   556 	  sur(g,cegy,pi->a,pi->b);
   557 	int k=sur.run(2);
   558 	if(k<2 || sur.totalLength()>d)
   559 	  {
   560 	    ne=g.addEdge(pi->a,pi->b);
   561 	    edges.push_back(ne);
   562 	    cnt++;
   563 	  }
   564       }
   565     }
   566 }
   567 
   568 template <typename UGraph, typename CoordMap>
   569 class LengthSquareMap {
   570 public:
   571   typedef typename UGraph::UEdge Key;
   572   typedef typename CoordMap::Value::Value Value;
   573 
   574   LengthSquareMap(const UGraph& ugraph, const CoordMap& coords)
   575     : _ugraph(ugraph), _coords(coords) {}
   576 
   577   Value operator[](const Key& key) const {
   578     return (_coords[_ugraph.target(key)] -
   579 	    _coords[_ugraph.source(key)]).normSquare();
   580   }
   581 
   582 private:
   583 
   584   const UGraph& _ugraph;
   585   const CoordMap& _coords;
   586 };
   587 
   588 void minTree() {
   589   std::vector<Pedge> pedges;
   590   Timer T;
   591   std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
   592   delaunay();
   593   std::cout << T.realTime() << "s: Calculating spanning tree...\n";
   594   LengthSquareMap<ListUGraph, ListUGraph::NodeMap<Point> > ls(g, coords);
   595   ListUGraph::UEdgeMap<bool> tree(g);
   596   kruskal(g, ls, tree);
   597   std::cout << T.realTime() << "s: Removing non tree edges...\n";
   598   std::vector<UEdge> remove;
   599   for (UEdgeIt e(g); e != INVALID; ++e) {
   600     if (!tree[e]) remove.push_back(e);
   601   }
   602   for(int i = 0; i < int(remove.size()); ++i) {
   603     g.erase(remove[i]);
   604   }
   605   std::cout << T.realTime() << "s: Done\n";
   606 }
   607 
   608 void tsp2() 
   609 {
   610   std::cout << "Find a tree..." << std::endl;
   611 
   612   minTree();
   613 
   614   std::cout << "Total edge length (tree) : " << totalLen() << std::endl;
   615 
   616   std::cout << "Make it Euler..." << std::endl;
   617 
   618   {
   619     std::vector<Node> leafs;
   620     for(NodeIt n(g);n!=INVALID;++n)
   621       if(countIncEdges(g,n)%2==1) leafs.push_back(n);
   622 
   623 //    for(unsigned int i=0;i<leafs.size();i+=2)
   624 //       g.addEdge(leafs[i],leafs[i+1]);
   625 
   626     std::vector<Pedge> pedges;
   627     for(unsigned int i=0;i<leafs.size()-1;i++)
   628       for(unsigned int j=i+1;j<leafs.size();j++)
   629 	{
   630 	  Node n=leafs[i];
   631 	  Node m=leafs[j];
   632 	  Pedge p;
   633 	  p.a=n;
   634 	  p.b=m;
   635 	  p.len=(coords[m]-coords[n]).normSquare();
   636 	  pedges.push_back(p);
   637 	}
   638     std::sort(pedges.begin(),pedges.end(),pedgeLess);
   639     for(unsigned int i=0;i<pedges.size();i++)
   640       if(countIncEdges(g,pedges[i].a)%2 &&
   641 	 countIncEdges(g,pedges[i].b)%2)
   642 	g.addEdge(pedges[i].a,pedges[i].b);
   643   }
   644 
   645   for(NodeIt n(g);n!=INVALID;++n)
   646     if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 )
   647       std::cout << "GEBASZ!!!" << std::endl;
   648   
   649   for(UEdgeIt e(g);e!=INVALID;++e)
   650     if(g.source(e)==g.target(e))
   651       std::cout << "LOOP GEBASZ!!!" << std::endl;
   652   
   653   std::cout << "Number of edges : " << countUEdges(g) << std::endl;
   654   
   655   std::cout << "Total edge length (euler) : " << totalLen() << std::endl;
   656 
   657   ListUGraph::UEdgeMap<Edge> enext(g);
   658   {
   659     UEulerIt<ListUGraph> e(g);
   660     Edge eo=e;
   661     Edge ef=e;
   662 //     std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;      
   663     for(++e;e!=INVALID;++e)
   664       {
   665 // 	std::cout << "Tour edge: " << g.id(UEdge(e)) << std::endl;      
   666 	enext[eo]=e;
   667 	eo=e;
   668       }
   669     enext[eo]=ef;
   670   }
   671     
   672   std::cout << "Creating a tour from that..." << std::endl;
   673   
   674   int nnum = countNodes(g);
   675   int ednum = countUEdges(g);
   676   
   677   for(Edge p=enext[UEdgeIt(g)];ednum>nnum;p=enext[p]) 
   678     {
   679 //       std::cout << "Checking edge " << g.id(p) << std::endl;      
   680       Edge e=enext[p];
   681       Edge f=enext[e];
   682       Node n2=g.source(f);
   683       Node n1=g.oppositeNode(n2,e);
   684       Node n3=g.oppositeNode(n2,f);
   685       if(countIncEdges(g,n2)>2)
   686 	{
   687 // 	  std::cout << "Remove an Edge" << std::endl;
   688 	  Edge ff=enext[f];
   689 	  g.erase(e);
   690 	  g.erase(f);
   691 	  if(n1!=n3)
   692 	    {
   693 	      Edge ne=g.direct(g.addEdge(n1,n3),n1);
   694 	      enext[p]=ne;
   695 	      enext[ne]=ff;
   696 	      ednum--;
   697 	    }
   698 	  else {
   699 	    enext[p]=ff;
   700 	    ednum-=2;
   701 	  }
   702 	}
   703     }
   704 
   705   std::cout << "Total edge length (tour) : " << totalLen() << std::endl;
   706 
   707   std::cout << "2-opt the tour..." << std::endl;
   708   
   709   tsp_improve();
   710   
   711   std::cout << "Total edge length (2-opt tour) : " << totalLen() << std::endl;
   712 }
   713 
   714 
   715 int main(int argc,const char **argv) 
   716 {
   717   ArgParser ap(argc,argv);
   718 
   719 //   bool eps;
   720   bool disc_d, square_d, gauss_d;
   721 //   bool tsp_a,two_a,tree_a;
   722   int num_of_cities=1;
   723   double area=1;
   724   N=100;
   725 //   girth=10;
   726   std::string ndist("disc");
   727   ap.refOption("n", "Number of nodes (default is 100)", N)
   728     .intOption("g", "Girth parameter (default is 10)", 10)
   729     .refOption("cities", "Number of cities (default is 1)", num_of_cities)
   730     .refOption("area", "Full relative area of the cities (default is 1)", area)
   731     .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d)
   732     .optionGroup("dist", "disc")
   733     .refOption("square", "Nodes are evenly distributed on a unit square", square_d)
   734     .optionGroup("dist", "square")
   735     .refOption("gauss",
   736 	    "Nodes are located according to a two-dim gauss distribution",
   737 	    gauss_d)
   738     .optionGroup("dist", "gauss")
   739 //     .mandatoryGroup("dist")
   740     .onlyOneGroup("dist")
   741     .boolOption("eps", "Also generate .eps output (prefix.eps)")
   742     .boolOption("dir", "Directed graph is generated (each edges are replaced by two directed ones)")
   743     .boolOption("2con", "Create a two connected planar graph")
   744     .optionGroup("alg","2con")
   745     .boolOption("tree", "Create a min. cost spanning tree")
   746     .optionGroup("alg","tree")
   747     .boolOption("tsp", "Create a TSP tour")
   748     .optionGroup("alg","tsp")
   749     .boolOption("tsp2", "Create a TSP tour (tree based)")
   750     .optionGroup("alg","tsp2")
   751     .boolOption("dela", "Delaunay triangulation graph")
   752     .optionGroup("alg","dela")
   753     .onlyOneGroup("alg")
   754     .boolOption("rand", "Use time seed for random number generator")
   755     .optionGroup("rand", "rand")
   756     .intOption("seed", "Random seed", -1)
   757     .optionGroup("rand", "seed")
   758     .onlyOneGroup("rand")
   759     .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
   760     .run();
   761 
   762   if (ap["rand"]) {
   763     int seed = time(0);
   764     std::cout << "Random number seed: " << seed << std::endl;
   765     rnd = Random(seed);
   766   }
   767   if (ap.given("seed")) {
   768     int seed = ap["seed"];
   769     std::cout << "Random number seed: " << seed << std::endl;
   770     rnd = Random(seed);
   771   }
   772   
   773   std::string prefix;
   774   switch(ap.files().size()) 
   775     {
   776     case 0:
   777       prefix="lgf-gen-out";
   778       break;
   779     case 1:
   780       prefix=ap.files()[0];
   781       break;
   782     default:
   783       std::cerr << "\nAt most one prefix can be given\n\n";
   784       exit(1);
   785     }
   786   
   787   double sum_sizes=0;
   788   std::vector<double> sizes;
   789   std::vector<double> cum_sizes;
   790   for(int s=0;s<num_of_cities;s++) 
   791     {
   792       // 	sum_sizes+=rnd.exponential();
   793       double d=rnd();
   794       sum_sizes+=d;
   795       sizes.push_back(d);
   796       cum_sizes.push_back(sum_sizes);
   797     }
   798   int i=0;
   799   for(int s=0;s<num_of_cities;s++) 
   800     {
   801       Point center=(num_of_cities==1?Point(0,0):rnd.disc());
   802       if(gauss_d)
   803 	for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
   804 	  Node n=g.addNode();
   805 	  nodes.push_back(n);
   806 	  coords[n]=center+rnd.gauss2()*area*
   807 	    std::sqrt(sizes[s]/sum_sizes);
   808 	}
   809       else if(square_d)
   810 	for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
   811 	  Node n=g.addNode();
   812 	  nodes.push_back(n);
   813 	  coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area*
   814 	    std::sqrt(sizes[s]/sum_sizes);
   815 	}
   816       else if(disc_d || true)
   817 	for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
   818 	  Node n=g.addNode();
   819 	  nodes.push_back(n);
   820 	  coords[n]=center+rnd.disc()*area*
   821 	    std::sqrt(sizes[s]/sum_sizes);
   822 	}
   823     }
   824 
   825 //   for (ListUGraph::NodeIt n(g); n != INVALID; ++n) {
   826 //     std::cerr << coords[n] << std::endl;
   827 //   }
   828   
   829   if(ap["tsp"]) {
   830     tsp();
   831     std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
   832   }
   833   if(ap["tsp2"]) {
   834     tsp2();
   835     std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
   836   }
   837   else if(ap["2con"]) {
   838     std::cout << "Make triangles\n";
   839     //   triangle();
   840     sparseTriangle(ap["g"]);
   841     std::cout << "Make it sparser\n";
   842     sparse2(ap["g"]);
   843   }
   844   else if(ap["tree"]) {
   845     minTree();
   846   }
   847   else if(ap["dela"]) {
   848     delaunay();
   849   }
   850   
   851 
   852   std::cout << "Number of nodes    : " << countNodes(g) << std::endl;
   853   std::cout << "Number of edges    : " << countUEdges(g) << std::endl;
   854   double tlen=0;
   855   for(UEdgeIt e(g);e!=INVALID;++e)
   856     tlen+=sqrt((coords[g.source(e)]-coords[g.target(e)]).normSquare());
   857   std::cout << "Total edge length  : " << tlen << std::endl;
   858 
   859   if(ap["eps"])
   860     graphToEps(g,prefix+".eps").scaleToA4().
   861       scale(600).nodeScale(.2).edgeWidthScale(.001).preScale(false).
   862       coords(coords).run();
   863   
   864   if(ap["dir"])
   865     GraphWriter<ListUGraph>(prefix+".lgf",g).
   866       writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
   867       writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).
   868       run();
   869   else UGraphWriter<ListUGraph>(prefix+".lgf",g).
   870 	 writeNodeMap("coordinates_x",scaleMap(xMap(coords),600)).
   871 	 writeNodeMap("coordinates_y",scaleMap(yMap(coords),600)).
   872 	 run();
   873 }
   874