The graph adadptors can be alteration observed.
In most cases it uses the adapted graph alteration notifiers.
Only special case is now the UndirGraphAdaptor, where
we have to proxy the signals from the graph.
The SubBidirGraphAdaptor is removed, because it doest not
gives more feature than the EdgeSubGraphAdaptor<UndirGraphAdaptor<Graph>>.
The ResGraphAdaptor is based on this composition.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
21 ///\brief Minimum weight spanning tree by Kruskal algorithm (demo).
23 /// This demo program shows how to find a minimum weight spanning tree
24 /// in a graph by using the Kruskal algorithm.
26 /// \include kruskal_demo.cc
31 #include <lemon/maps.h>
32 #include <lemon/kruskal.h>
33 #include <lemon/list_graph.h>
37 using namespace lemon;
42 typedef ListGraph::Node Node;
43 typedef ListGraph::Edge Edge;
44 typedef ListGraph::NodeIt NodeIt;
45 typedef ListGraph::EdgeIt EdgeIt;
48 //Make an example graph g.
56 Edge e1 = g.addEdge(s, v1);
57 Edge e2 = g.addEdge(s, v2);
58 Edge e3 = g.addEdge(v1, v2);
59 Edge e4 = g.addEdge(v2, v1);
60 Edge e5 = g.addEdge(v1, v3);
61 Edge e6 = g.addEdge(v3, v2);
62 Edge e7 = g.addEdge(v2, v4);
63 Edge e8 = g.addEdge(v4, v3);
64 Edge e9 = g.addEdge(v3, t);
65 Edge e10 = g.addEdge(v4, t);
67 //Make the input for the kruskal.
68 typedef ListGraph::EdgeMap<int> ECostMap;
69 ECostMap edge_cost_map(g);
71 // Fill the edge_cost_map.
72 edge_cost_map.set(e1, -10);
73 edge_cost_map.set(e2, -9);
74 edge_cost_map.set(e3, -8);
75 edge_cost_map.set(e4, -7);
76 edge_cost_map.set(e5, -6);
77 edge_cost_map.set(e6, -5);
78 edge_cost_map.set(e7, -4);
79 edge_cost_map.set(e8, -3);
80 edge_cost_map.set(e9, -2);
81 edge_cost_map.set(e10, -1);
83 // Make the map or the vector, which will contain the edges of the minimum
86 typedef ListGraph::EdgeMap<bool> EBoolMap;
89 vector<Edge> tree_edge_vec;
94 //Input: a graph (g); a costmap of the graph (edge_cost_map); a
95 //boolmap (tree_map) or a vector (tree_edge_vec) to store the edges
98 //Output: it gives back the value of the minimum spanning tree, and
99 //set true for the edges of the tree in the edgemap tree_map or
100 //store the edges of the tree in the vector tree_edge_vec;
103 // Kruskal with boolmap;
104 std::cout << "The weight of the minimum spanning tree is " <<
105 kruskal(g, edge_cost_map, tree_map)<<std::endl;
108 std::cout << "The edges of the tree:" ;
109 for(EdgeIt i(g); i!=INVALID; ++i){
112 std::cout << g.id(i) <<";";
116 std::cout << std::endl;
117 std::cout << "The size of the tree is: "<< k << std::endl;
120 // Kruskal with vector;
121 std::cout << "The weight of the minimum spanning tree again is " <<
122 kruskal(g, edge_cost_map, std::back_inserter(tree_edge_vec)) <<std::endl;
126 std::cout << "The edges of the tree again: " ;
127 for(int i=tree_edge_vec.size()-1; i>=0; i--)
128 std::cout << g.id(tree_edge_vec[i]) << ";" ;
129 std::cout << std::endl;
130 std::cout << "The size of the tree again is: "<< tree_edge_vec.size()