demo/lp_demo.cc
author deba
Wed, 01 Mar 2006 10:25:30 +0000
changeset 1991 d7442141d9ef
parent 1875 98698b69a902
child 2369 6ae1a97055a2
permissions -rw-r--r--
The graph adadptors can be alteration observed.
In most cases it uses the adapted graph alteration notifiers.
Only special case is now the UndirGraphAdaptor, where
we have to proxy the signals from the graph.

The SubBidirGraphAdaptor is removed, because it doest not
gives more feature than the EdgeSubGraphAdaptor<UndirGraphAdaptor<Graph>>.

The ResGraphAdaptor is based on this composition.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 /// \ingroup demos
    20 /// \file
    21 /// \brief A program demonstrating the LEMON LP solver interface
    22 ///
    23 /// This program is a simple application of the LEMON LP solver
    24 /// interface: we formulate a linear programming (LP) problem and then
    25 /// solve it using the underlying solver (GLPK or CPLEX for
    26 /// example). For the detailed documentation of the LEMON LP solver
    27 /// interface read \ref lemon::LpSolverBase "this".
    28 ///
    29 /// \include lp_demo.cc
    30 
    31 #include <lemon/lp.h>
    32 
    33 #include <iostream>
    34 
    35 using namespace lemon;
    36 
    37 int main()
    38 {     
    39  //The following example is taken from the documentation of the GLPK library.
    40  //See it in the GLPK reference manual and among the GLPK sample files (sample.c)
    41 
    42   //A default solver is taken
    43   Lp lp;
    44   typedef Lp::Row Row;
    45   typedef Lp::Col Col;
    46   
    47 
    48   std::cout<<"A program demonstrating the LEMON LP solver interface"<<std::endl; 
    49   std::cout<<"Solver used: "<<default_solver_name<<std::endl;
    50 
    51   //This will be a maximization
    52   lp.max();
    53 
    54   //We add coloumns (variables) to our problem
    55   Col x1 = lp.addCol();
    56   Col x2 = lp.addCol();
    57   Col x3 = lp.addCol();
    58 
    59   //Constraints
    60   lp.addRow(x1+x2+x3 <=100);  
    61   lp.addRow(10*x1+4*x2+5*x3<=600);  
    62   lp.addRow(2*x1+2*x2+6*x3<=300);  
    63   //Nonnegativity of the variables
    64   lp.colLowerBound(x1, 0);
    65   lp.colLowerBound(x2, 0);
    66   lp.colLowerBound(x3, 0);
    67   //Objective function
    68   lp.setObj(10*x1+6*x2+4*x3);
    69   
    70   //Call the routine of the underlying LP solver
    71   lp.solve();
    72 
    73   //Print results
    74   if (lp.primalStatus()==LpSolverBase::OPTIMAL){
    75     std::cout<<"Optimal solution found!"<<std::endl;
    76     printf("optimum value = %g; x1 = %g; x2 = %g; x3 = %g\n", 
    77 	   lp.primalValue(), 
    78 	   lp.primal(x1), lp.primal(x2), lp.primal(x3));
    79   }
    80   else{
    81     std::cout<<"Optimal solution not found!"<<std::endl;
    82   }
    83 
    84   //End of LEMON style code
    85 
    86   //Here comes the same problem written in C using GLPK API routines
    87 
    88 //   LPX *lp;
    89 //       int ia[1+1000], ja[1+1000];
    90 //       double ar[1+1000], Z, x1, x2, x3;
    91 // s1:   lp = lpx_create_prob();
    92 // s2:   lpx_set_prob_name(lp, "sample");
    93 // s3:   lpx_set_obj_dir(lp, LPX_MAX);
    94 // s4:   lpx_add_rows(lp, 3);
    95 // s5:   lpx_set_row_name(lp, 1, "p");
    96 // s6:   lpx_set_row_bnds(lp, 1, LPX_UP, 0.0, 100.0);
    97 // s7:   lpx_set_row_name(lp, 2, "q");
    98 // s8:   lpx_set_row_bnds(lp, 2, LPX_UP, 0.0, 600.0);
    99 // s9:   lpx_set_row_name(lp, 3, "r");
   100 // s10:  lpx_set_row_bnds(lp, 3, LPX_UP, 0.0, 300.0);
   101 // s11:  lpx_add_cols(lp, 3);
   102 // s12:  lpx_set_col_name(lp, 1, "x1");
   103 // s13:  lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0);
   104 // s14:  lpx_set_obj_coef(lp, 1, 10.0);
   105 // s15:  lpx_set_col_name(lp, 2, "x2");
   106 // s16:  lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0);
   107 // s17:  lpx_set_obj_coef(lp, 2, 6.0);
   108 // s18:  lpx_set_col_name(lp, 3, "x3");
   109 // s19:  lpx_set_col_bnds(lp, 3, LPX_LO, 0.0, 0.0);
   110 // s20:  lpx_set_obj_coef(lp, 3, 4.0);
   111 // s21:  ia[1] = 1, ja[1] = 1, ar[1] =  1.0; /* a[1,1] =  1 */
   112 // s22:  ia[2] = 1, ja[2] = 2, ar[2] =  1.0; /* a[1,2] =  1 */
   113 // s23:  ia[3] = 1, ja[3] = 3, ar[3] =  1.0; /* a[1,3] =  1 */
   114 // s24:  ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
   115 // s25:  ia[5] = 3, ja[5] = 1, ar[5] =  2.0; /* a[3,1] =  2 */
   116 // s26:  ia[6] = 2, ja[6] = 2, ar[6] =  4.0; /* a[2,2] =  4 */
   117 // s27:  ia[7] = 3, ja[7] = 2, ar[7] =  2.0; /* a[3,2] =  2 */
   118 // s28:  ia[8] = 2, ja[8] = 3, ar[8] =  5.0; /* a[2,3] =  5 */
   119 // s29:  ia[9] = 3, ja[9] = 3, ar[9] =  6.0; /* a[3,3] =  6 */
   120 // s30:  lpx_load_matrix(lp, 9, ia, ja, ar);
   121 // s31:  lpx_simplex(lp);
   122 // s32:  Z = lpx_get_obj_val(lp);
   123 // s33:  x1 = lpx_get_col_prim(lp, 1);
   124 // s34:  x2 = lpx_get_col_prim(lp, 2);
   125 // s35:  x3 = lpx_get_col_prim(lp, 3);
   126 // s36:  printf("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n", Z, x1, x2, x3);
   127 // s37:  lpx_delete_prob(lp);
   128 //       return 0;
   129 
   130   return 0;
   131 }