The graph adadptors can be alteration observed.
In most cases it uses the adapted graph alteration notifiers.
Only special case is now the UndirGraphAdaptor, where
we have to proxy the signals from the graph.
The SubBidirGraphAdaptor is removed, because it doest not
gives more feature than the EdgeSubGraphAdaptor<UndirGraphAdaptor<Graph>>.
The ResGraphAdaptor is based on this composition.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
21 /// \brief A program demonstrating the simulated annealing algorithm class.
23 /// This program tries to find a maximal cut in a graph using simulated
24 /// annealing. It starts from a random solution and then in each step it
25 /// chooses a node and moves it to the other side of the cut.
27 /// \include simann_maxcut_demo.cc
32 #include <lemon/simann.h>
33 #include <lemon/list_graph.h>
34 #include <lemon/graph_reader.h>
36 using namespace lemon;
38 typedef ListGraph Graph;
39 typedef Graph::Node Node;
40 typedef Graph::Edge Edge;
41 typedef Graph::NodeIt NodeIt;
42 typedef Graph::EdgeIt EdgeIt;
43 typedef Graph::OutEdgeIt OutEdgeIt;
44 typedef Graph::InEdgeIt InEdgeIt;
46 class Entity : public EntityBase
50 Graph::EdgeMap<int>& w;
51 Graph::NodeMap<bool> a;
54 Entity(Graph& _g, Graph::EdgeMap<int>& _w) : g(_g), w(_w), a(_g) {}
56 static const int node_num = countNodes(g);
57 int i = 1 + (int) (node_num * (rand() / (RAND_MAX + 1.0)));
64 for (OutEdgeIt e(g, n); e != INVALID; ++e) {
65 if (a[n] != a[g.target(e)]) sum -= w[e];
66 if (a[n] == a[g.target(e)]) sum += w[e];
68 for (InEdgeIt e(g, n); e != INVALID; ++e) {
69 if (a[g.source(e)] != a[n]) sum -= w[e];
70 if (a[g.source(e)] == a[n]) sum += w[e];
78 for (OutEdgeIt e(g, last_moved); e != INVALID; ++e) {
79 if (a[last_moved] != a[g.target(e)]) sum -= w[e];
80 if (a[last_moved] == a[g.target(e)]) sum += w[e];
82 for (InEdgeIt e(g, last_moved); e != INVALID; ++e) {
83 if (a[g.source(e)] != a[last_moved]) sum -= w[e];
84 if (a[g.source(e)] == a[last_moved]) sum += w[e];
86 bool b = a[last_moved];
89 Entity* clone() { return new Entity(*this); }
91 for (NodeIt n(g); n != INVALID; ++n)
93 for (NodeIt n(g); n != INVALID; ++n)
94 if (rand() < 0.5) a[n] = true;
96 for (EdgeIt e(g); e != INVALID; ++e)
97 if (a[g.source(e)] != a[g.target(e)])
105 Graph::EdgeMap<int> w(g);
107 GraphReader<Graph> reader("simann_maxcut_demo.lgf", g);
108 reader.readEdgeMap("weight", w);
114 SimpleController ctrl;
115 simann.setController(ctrl);
119 Entity* be = (Entity *) simann.getBestEntity();
120 std::cout << be->sum << std::endl;
121 for (NodeIt n(g); n != INVALID; ++n)
122 if (be->a[n]) std::cout << g.id(n) << ": 1" << std::endl;
123 else std::cout << g.id(n) << ": 0" << std::endl;