src/hugo/list_graph.h
author alpar
Sun, 09 May 2004 16:20:41 +0000
changeset 589 d89575370bcb
parent 578 159f1cbf8a45
child 590 5c1465127b79
permissions -rw-r--r--
doc
     1 // -*- mode:C++ -*-
     2 
     3 #ifndef HUGO_LIST_GRAPH_H
     4 #define HUGO_LIST_GRAPH_H
     5 
     6 ///\ingroup graphs
     7 ///\file
     8 ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
     9 
    10 #include <vector>
    11 #include <limits.h>
    12 
    13 #include <hugo/invalid.h>
    14 
    15 namespace hugo {
    16 
    17 /// \addtogroup graphs
    18 /// @{
    19 
    20   class SymListGraph;
    21 
    22   ///A list graph class.
    23 
    24   ///This is a simple and fast erasable graph implementation.
    25   ///
    26   ///It conforms to the graph interface documented under
    27   ///the description of \ref GraphSkeleton.
    28   ///\sa \ref GraphSkeleton.
    29   class ListGraph {
    30 
    31     //Nodes are double linked.
    32     //The free nodes are only single linked using the "next" field.
    33     struct NodeT 
    34     {
    35       int first_in,first_out;
    36       int prev, next;
    37       //      NodeT() {}
    38     };
    39     //Edges are double linked.
    40     //The free edges are only single linked using the "next_in" field.
    41     struct EdgeT 
    42     {
    43       int head, tail;
    44       int prev_in, prev_out;
    45       int next_in, next_out;
    46       //FIXME: is this necessary?
    47       //      EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {}  
    48     };
    49 
    50     std::vector<NodeT> nodes;
    51     //The first node
    52     int first_node;
    53     //The first free node
    54     int first_free_node;
    55     std::vector<EdgeT> edges;
    56     //The first free edge
    57     int first_free_edge;
    58     
    59   protected:
    60     
    61     template <typename Key> class DynMapBase
    62     {
    63     protected:
    64       const ListGraph* G; 
    65     public:
    66       virtual void add(const Key k) = 0;
    67       virtual void erase(const Key k) = 0;
    68       DynMapBase(const ListGraph &_G) : G(&_G) {}
    69       virtual ~DynMapBase() {}
    70       friend class ListGraph;
    71     };
    72     
    73   public:
    74     template <typename T> class EdgeMap;
    75     template <typename T> class NodeMap;
    76     
    77     class Node;
    78     class Edge;
    79 
    80     //  protected:
    81     // HELPME:
    82   protected:
    83     ///\bug It must be public because of SymEdgeMap.
    84     ///
    85     mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
    86     ///\bug It must be public because of SymEdgeMap.
    87     ///
    88     mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
    89     
    90   public:
    91 
    92     class NodeIt;
    93     class EdgeIt;
    94     class OutEdgeIt;
    95     class InEdgeIt;
    96     
    97   public:
    98 
    99     ListGraph() : nodes(), first_node(-1),
   100 		  first_free_node(-1), edges(), first_free_edge(-1) {}
   101     ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
   102 				     first_free_node(_g.first_free_node),
   103 				     edges(_g.edges),
   104 				     first_free_edge(_g.first_free_edge) {}
   105     
   106     ~ListGraph()
   107     {
   108       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   109 	  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
   110       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
   111 	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
   112     }
   113 
   114     int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
   115     int edgeNum() const { return edges.size(); }  //FIXME: What is this?
   116 
   117     ///\bug This function does something different than
   118     ///its name would suggests...
   119     int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
   120     ///\bug This function does something different than
   121     ///its name would suggests...
   122     int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
   123 
   124     Node tail(Edge e) const { return edges[e.n].tail; }
   125     Node head(Edge e) const { return edges[e.n].head; }
   126 
   127     Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
   128     Node aNode(InEdgeIt e) const { return edges[e.n].head; }
   129 
   130     Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
   131     Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
   132 
   133     NodeIt& first(NodeIt& v) const { 
   134       v=NodeIt(*this); return v; }
   135     EdgeIt& first(EdgeIt& e) const { 
   136       e=EdgeIt(*this); return e; }
   137     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   138       e=OutEdgeIt(*this,v); return e; }
   139     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   140       e=InEdgeIt(*this,v); return e; }
   141 
   142 //     template< typename It >
   143 //     It first() const { It e; first(e); return e; }
   144 
   145 //     template< typename It >
   146 //     It first(Node v) const { It e; first(e,v); return e; }
   147 
   148     bool valid(Edge e) const { return e.n!=-1; }
   149     bool valid(Node n) const { return n.n!=-1; }
   150     
   151     void setInvalid(Edge &e) { e.n=-1; }
   152     void setInvalid(Node &n) { n.n=-1; }
   153     
   154     template <typename It> It getNext(It it) const
   155     { It tmp(it); return next(tmp); }
   156 
   157     NodeIt& next(NodeIt& it) const { 
   158       it.n=nodes[it.n].next; 
   159       return it; 
   160     }
   161     OutEdgeIt& next(OutEdgeIt& it) const
   162     { it.n=edges[it.n].next_out; return it; }
   163     InEdgeIt& next(InEdgeIt& it) const
   164     { it.n=edges[it.n].next_in; return it; }
   165     EdgeIt& next(EdgeIt& it) const {
   166       if(edges[it.n].next_in!=-1) { 
   167 	it.n=edges[it.n].next_in;
   168       }
   169       else {
   170 	int n;
   171 	for(n=nodes[edges[it.n].head].next;
   172 	    n!=-1 && nodes[n].first_in == -1;
   173 	    n = nodes[n].next) ;
   174 	it.n = (n==-1)?-1:nodes[n].first_in;
   175       }
   176       return it;
   177     }
   178 
   179     int id(Node v) const { return v.n; }
   180     int id(Edge e) const { return e.n; }
   181 
   182     /// Adds a new node to the graph.
   183 
   184     /// \todo It adds the nodes in a reversed order.
   185     /// (i.e. the lastly added node becomes the first.)
   186     Node addNode() {
   187       int n;
   188       
   189       if(first_free_node==-1)
   190 	{
   191 	  n = nodes.size();
   192 	  nodes.push_back(NodeT());
   193 	}
   194       else {
   195 	n = first_free_node;
   196 	first_free_node = nodes[n].next;
   197       }
   198       
   199       nodes[n].next = first_node;
   200       if(first_node != -1) nodes[first_node].prev = n;
   201       first_node = n;
   202       nodes[n].prev = -1;
   203       
   204       nodes[n].first_in = nodes[n].first_out = -1;
   205       
   206       Node nn; nn.n=n;
   207 
   208       //Update dynamic maps
   209       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   210 	  i!=dyn_node_maps.end(); ++i) (**i).add(nn);
   211 
   212       return nn;
   213     }
   214     
   215     Edge addEdge(Node u, Node v) {
   216       int n;
   217       
   218       if(first_free_edge==-1)
   219 	{
   220 	  n = edges.size();
   221 	  edges.push_back(EdgeT());
   222 	}
   223       else {
   224 	n = first_free_edge;
   225 	first_free_edge = edges[n].next_in;
   226       }
   227       
   228       edges[n].tail = u.n; edges[n].head = v.n;
   229 
   230       edges[n].next_out = nodes[u.n].first_out;
   231       if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
   232       edges[n].next_in = nodes[v.n].first_in;
   233       if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
   234       edges[n].prev_in = edges[n].prev_out = -1;
   235 	
   236       nodes[u.n].first_out = nodes[v.n].first_in = n;
   237 
   238       Edge e; e.n=n;
   239 
   240       //Update dynamic maps
   241       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
   242 	  i!=dyn_edge_maps.end(); ++i) (**i).add(e);
   243 
   244       return e;
   245     }
   246 
   247   private:
   248     void eraseEdge(int n) {
   249       
   250       if(edges[n].next_in!=-1)
   251 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   252       if(edges[n].prev_in!=-1)
   253 	edges[edges[n].prev_in].next_in = edges[n].next_in;
   254       else nodes[edges[n].head].first_in = edges[n].next_in;
   255       
   256       if(edges[n].next_out!=-1)
   257 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   258       if(edges[n].prev_out!=-1)
   259 	edges[edges[n].prev_out].next_out = edges[n].next_out;
   260       else nodes[edges[n].tail].first_out = edges[n].next_out;
   261       
   262       edges[n].next_in = first_free_edge;
   263       first_free_edge = -1;      
   264 
   265       //Update dynamic maps
   266       Edge e; e.n=n;
   267       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
   268 	  i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
   269     }
   270       
   271   public:
   272 
   273     void erase(Node nn) {
   274       int n=nn.n;
   275       
   276       int m;
   277       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
   278       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
   279 
   280       if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
   281       if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
   282       else first_node = nodes[n].next;
   283       
   284       nodes[n].next = first_free_node;
   285       first_free_node = n;
   286 
   287       //Update dynamic maps
   288       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   289 	  i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
   290     }
   291     
   292     void erase(Edge e) { eraseEdge(e.n); }
   293 
   294     ///\bug Dynamic maps must be updated!
   295     ///
   296     void clear() {
   297       nodes.clear();edges.clear();
   298       first_node=first_free_node=first_free_edge=-1;
   299     }
   300 
   301     class Node {
   302       friend class ListGraph;
   303       template <typename T> friend class NodeMap;
   304        
   305       friend class Edge;
   306       friend class OutEdgeIt;
   307       friend class InEdgeIt;
   308       friend class SymEdge;
   309 
   310     protected:
   311       int n;
   312       friend int ListGraph::id(Node v) const; 
   313       Node(int nn) {n=nn;}
   314     public:
   315       Node() {}
   316       Node (Invalid) { n=-1; }
   317       bool operator==(const Node i) const {return n==i.n;}
   318       bool operator!=(const Node i) const {return n!=i.n;}
   319       bool operator<(const Node i) const {return n<i.n;}
   320     };
   321     
   322     class NodeIt : public Node {
   323       friend class ListGraph;
   324     public:
   325       NodeIt() : Node() { }
   326       NodeIt(Invalid i) : Node(i) { }
   327       NodeIt(const ListGraph& G) : Node(G.first_node) { }
   328       ///\todo Undocumented conversion Node -\> NodeIt.
   329       NodeIt(const ListGraph& G, const Node &n) : Node(n) { }
   330     };
   331 
   332     class Edge {
   333       friend class ListGraph;
   334       template <typename T> friend class EdgeMap;
   335 
   336       //template <typename T> friend class SymListGraph::SymEdgeMap;      
   337       //friend Edge SymListGraph::opposite(Edge) const;
   338       
   339       friend class Node;
   340       friend class NodeIt;
   341     protected:
   342       int n;
   343       friend int ListGraph::id(Edge e) const;
   344 
   345       Edge(int nn) {n=nn;}
   346     public:
   347       Edge() { }
   348       Edge (Invalid) { n=-1; }
   349       bool operator==(const Edge i) const {return n==i.n;}
   350       bool operator!=(const Edge i) const {return n!=i.n;}
   351       bool operator<(const Edge i) const {return n<i.n;}
   352       ///\bug This is a workaround until somebody tells me how to
   353       ///make class \c SymListGraph::SymEdgeMap friend of Edge
   354       int &idref() {return n;}
   355       const int &idref() const {return n;}
   356     };
   357     
   358     class EdgeIt : public Edge {
   359       friend class ListGraph;
   360     public:
   361       EdgeIt(const ListGraph& G) : Edge() {
   362       	int m;
   363 	for(m=G.first_node;
   364 	    m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
   365 	n = (m==-1)?-1:G.nodes[m].first_in;
   366       }
   367       EdgeIt (Invalid i) : Edge(i) { }
   368       EdgeIt() : Edge() { }
   369       ///\bug This is a workaround until somebody tells me how to
   370       ///make class \c SymListGraph::SymEdgeMap friend of Edge
   371       int &idref() {return n;}
   372     };
   373     
   374     class OutEdgeIt : public Edge {
   375       friend class ListGraph;
   376     public: 
   377       OutEdgeIt() : Edge() { }
   378       OutEdgeIt (Invalid i) : Edge(i) { }
   379 
   380       OutEdgeIt(const ListGraph& G,const Node v)
   381 	: Edge(G.nodes[v.n].first_out) {}
   382     };
   383     
   384     class InEdgeIt : public Edge {
   385       friend class ListGraph;
   386     public: 
   387       InEdgeIt() : Edge() { }
   388       InEdgeIt (Invalid i) : Edge(i) { }
   389       InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in){}
   390     };
   391 
   392     template <typename T> class NodeMap : public DynMapBase<Node>
   393     {
   394       std::vector<T> container;
   395 
   396     public:
   397       typedef T ValueType;
   398       typedef Node KeyType;
   399 
   400       NodeMap(const ListGraph &_G) :
   401 	DynMapBase<Node>(_G), container(_G.maxNodeId())
   402       {
   403 	G->dyn_node_maps.push_back(this);
   404       }
   405       NodeMap(const ListGraph &_G,const T &t) :
   406 	DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
   407       {
   408 	G->dyn_node_maps.push_back(this);
   409       }
   410       
   411       NodeMap(const NodeMap<T> &m) :
   412  	DynMapBase<Node>(*m.G), container(m.container)
   413       {
   414  	G->dyn_node_maps.push_back(this);
   415       }
   416 
   417       template<typename TT> friend class NodeMap;
   418  
   419       ///\todo It can copy between different types.
   420       ///
   421       template<typename TT> NodeMap(const NodeMap<TT> &m) :
   422 	DynMapBase<Node>(*m.G)
   423       {
   424 	G->dyn_node_maps.push_back(this);
   425 	typename std::vector<TT>::const_iterator i;
   426 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
   427 	    i!=m.container.end();
   428 	    i++)
   429 	  container.push_back(*i);
   430       }
   431       ~NodeMap()
   432       {
   433 	if(G) {
   434 	  std::vector<DynMapBase<Node>* >::iterator i;
   435 	  for(i=G->dyn_node_maps.begin();
   436 	      i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
   437 	  //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
   438 	  //A better way to do that: (Is this really important?)
   439 	  if(*i==this) {
   440 	    *i=G->dyn_node_maps.back();
   441 	    G->dyn_node_maps.pop_back();
   442 	  }
   443 	}
   444       }
   445 
   446       void add(const Node k) 
   447       {
   448 	if(k.n>=int(container.size())) container.resize(k.n+1);
   449       }
   450 
   451       void erase(const Node) { }
   452       
   453       void set(Node n, T a) { container[n.n]=a; }
   454       //'T& operator[](Node n)' would be wrong here
   455       typename std::vector<T>::reference
   456       operator[](Node n) { return container[n.n]; }
   457       //'const T& operator[](Node n)' would be wrong here
   458       typename std::vector<T>::const_reference 
   459       operator[](Node n) const { return container[n.n]; }
   460 
   461       ///\warning There is no safety check at all!
   462       ///Using operator = between maps attached to different graph may
   463       ///cause serious problem.
   464       ///\todo Is this really so?
   465       ///\todo It can copy between different types.
   466       const NodeMap<T>& operator=(const NodeMap<T> &m)
   467       {
   468 	container = m.container;
   469 	return *this;
   470       }
   471       template<typename TT>
   472       const NodeMap<T>& operator=(const NodeMap<TT> &m)
   473       {
   474 	std::copy(m.container.begin(), m.container.end(), container.begin());
   475 	return *this;
   476       }
   477       
   478       void update() {}    //Useless for Dynamic Maps
   479       void update(T a) {}  //Useless for Dynamic Maps
   480     };
   481     
   482     template <typename T> class EdgeMap : public DynMapBase<Edge>
   483     {
   484     protected:
   485       std::vector<T> container;
   486 
   487     public:
   488       typedef T ValueType;
   489       typedef Edge KeyType;
   490 
   491       EdgeMap(const ListGraph &_G) :
   492 	DynMapBase<Edge>(_G), container(_G.maxEdgeId())
   493       {
   494 	//FIXME: What if there are empty Id's?
   495 	//FIXME: Can I use 'this' in a constructor?
   496 	G->dyn_edge_maps.push_back(this);
   497       }
   498       EdgeMap(const ListGraph &_G,const T &t) :
   499 	DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
   500       {
   501 	G->dyn_edge_maps.push_back(this);
   502       } 
   503       EdgeMap(const EdgeMap<T> &m) :
   504  	DynMapBase<Edge>(*m.G), container(m.container)
   505       {
   506  	G->dyn_edge_maps.push_back(this);
   507       }
   508 
   509       template<typename TT> friend class EdgeMap;
   510 
   511       ///\todo It can copy between different types.
   512       ///
   513       template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
   514 	DynMapBase<Edge>(*m.G)
   515       {
   516 	G->dyn_edge_maps.push_back(this);
   517 	typename std::vector<TT>::const_iterator i;
   518 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
   519 	    i!=m.container.end();
   520 	    i++)
   521 	  container.push_back(*i);
   522       }
   523       ~EdgeMap()
   524       {
   525 	if(G) {
   526 	  std::vector<DynMapBase<Edge>* >::iterator i;
   527 	  for(i=G->dyn_edge_maps.begin();
   528 	      i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
   529 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
   530 	  //A better way to do that: (Is this really important?)
   531 	  if(*i==this) {
   532 	    *i=G->dyn_edge_maps.back();
   533 	    G->dyn_edge_maps.pop_back();
   534 	  }
   535 	}
   536       }
   537       
   538       void add(const Edge k) 
   539       {
   540 	if(k.n>=int(container.size())) container.resize(k.n+1);
   541       }
   542       void erase(const Edge) { }
   543       
   544       void set(Edge n, T a) { container[n.n]=a; }
   545       //T get(Edge n) const { return container[n.n]; }
   546       typename std::vector<T>::reference
   547       operator[](Edge n) { return container[n.n]; }
   548       typename std::vector<T>::const_reference
   549       operator[](Edge n) const { return container[n.n]; }
   550 
   551       ///\warning There is no safety check at all!
   552       ///Using operator = between maps attached to different graph may
   553       ///cause serious problem.
   554       ///\todo Is this really so?
   555       ///\todo It can copy between different types.
   556       const EdgeMap<T>& operator=(const EdgeMap<T> &m)
   557       {
   558 	container = m.container;
   559 	return *this;
   560       }
   561       template<typename TT>
   562       const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
   563       {
   564 	std::copy(m.container.begin(), m.container.end(), container.begin());
   565 	return *this;
   566       }
   567       
   568       void update() {}    //Useless for DynMaps
   569       void update(T a) {}  //Useless for DynMaps
   570     };
   571 
   572   };
   573 
   574   ///Graph for bidirectional edges.
   575 
   576   ///The purpose of this graph structure is to handle graphs
   577   ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
   578   ///of oppositely directed edges.
   579   ///There is a new edge map type called
   580   ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
   581   ///that complements this
   582   ///feature by
   583   ///storing shared values for the edge pairs. The usual
   584   ///\ref GraphSkeleton::EdgeMap "EdgeMap"
   585   ///can be used
   586   ///as well.
   587   ///
   588   ///The oppositely directed edge can also be obtained easily
   589   ///using \ref opposite.
   590   ///
   591   ///Here erase(Edge) deletes a pair of edges.
   592   ///
   593   ///\todo this date structure need some reconsiderations. Maybe it
   594   ///should be implemented independently from ListGraph.
   595 
   596   class SymListGraph : public ListGraph
   597   {
   598   public:
   599     template<typename T> class SymEdgeMap;
   600     template<typename T> friend class SymEdgeMap;
   601 
   602     SymListGraph() : ListGraph() { }
   603     SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
   604     ///Adds a pair of oppositely directed edges to the graph.
   605     Edge addEdge(Node u, Node v)
   606     {
   607       Edge e = ListGraph::addEdge(u,v);
   608       ListGraph::addEdge(v,u);
   609       return e;
   610     }
   611 
   612     void erase(Node n) { ListGraph::erase(n); }
   613     ///The oppositely directed edge.
   614 
   615     ///Returns the oppositely directed
   616     ///pair of the edge \c e.
   617     Edge opposite(Edge e) const
   618     {
   619       Edge f;
   620       f.idref() = e.idref() - 2*(e.idref()%2) + 1;
   621       return f;
   622     }
   623     
   624     ///Removes a pair of oppositely directed edges to the graph.
   625     void erase(Edge e) {
   626       ListGraph::erase(opposite(e));
   627       ListGraph::erase(e);
   628     }
   629     
   630     ///Common data storage for the edge pairs.
   631 
   632     ///This map makes it possible to store data shared by the oppositely
   633     ///directed pairs of edges.
   634     template <typename T> class SymEdgeMap : public DynMapBase<Edge>
   635     {
   636       std::vector<T> container;
   637       
   638     public:
   639       typedef T ValueType;
   640       typedef Edge KeyType;
   641 
   642       SymEdgeMap(const SymListGraph &_G) :
   643 	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2)
   644       {
   645 	static_cast<const SymListGraph*>(G)->dyn_edge_maps.push_back(this);
   646       }
   647       SymEdgeMap(const SymListGraph &_G,const T &t) :
   648 	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2,t)
   649       {
   650 	G->dyn_edge_maps.push_back(this);
   651       }
   652 
   653       SymEdgeMap(const SymEdgeMap<T> &m) :
   654  	DynMapBase<SymEdge>(*m.G), container(m.container)
   655       {
   656  	G->dyn_node_maps.push_back(this);
   657       }
   658 
   659       //      template<typename TT> friend class SymEdgeMap;
   660 
   661       ///\todo It can copy between different types.
   662       ///
   663 
   664       template<typename TT> SymEdgeMap(const SymEdgeMap<TT> &m) :
   665 	DynMapBase<SymEdge>(*m.G)
   666       {
   667 	G->dyn_node_maps.push_back(this);
   668 	typename std::vector<TT>::const_iterator i;
   669 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
   670 	    i!=m.container.end();
   671 	    i++)
   672 	  container.push_back(*i);
   673       }
   674  
   675       ~SymEdgeMap()
   676       {
   677 	if(G) {
   678 	  std::vector<DynMapBase<Edge>* >::iterator i;
   679 	  for(i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.begin();
   680 	      i!=static_cast<const SymListGraph*>(G)->dyn_edge_maps.end()
   681 		&& *i!=this; ++i) ;
   682 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
   683 	  //A better way to do that: (Is this really important?)
   684 	  if(*i==this) {
   685 	    *i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.back();
   686 	    static_cast<const SymListGraph*>(G)->dyn_edge_maps.pop_back();
   687 	  }
   688 	}
   689       }
   690       
   691       void add(const Edge k) 
   692       {
   693 	if(!k.idref()%2&&k.idref()/2>=int(container.size()))
   694 	  container.resize(k.idref()/2+1);
   695       }
   696       void erase(const Edge k) { }
   697       
   698       void set(Edge n, T a) { container[n.idref()/2]=a; }
   699       //T get(Edge n) const { return container[n.idref()/2]; }
   700       typename std::vector<T>::reference
   701       operator[](Edge n) { return container[n.idref()/2]; }
   702       typename std::vector<T>::const_reference
   703       operator[](Edge n) const { return container[n.idref()/2]; }
   704 
   705       ///\warning There is no safety check at all!
   706       ///Using operator = between maps attached to different graph may
   707       ///cause serious problem.
   708       ///\todo Is this really so?
   709       ///\todo It can copy between different types.
   710       const SymEdgeMap<T>& operator=(const SymEdgeMap<T> &m)
   711       {
   712 	container = m.container;
   713 	return *this;
   714       }
   715       template<typename TT>
   716       const SymEdgeMap<T>& operator=(const SymEdgeMap<TT> &m)
   717       {
   718 	std::copy(m.container.begin(), m.container.end(), container.begin());
   719 	return *this;
   720       }
   721       
   722       void update() {}    //Useless for DynMaps
   723       void update(T a) {}  //Useless for DynMaps
   724 
   725     };
   726 
   727   };
   728   
   729 
   730   ///A graph class containing only nodes.
   731 
   732   ///This class implements a graph structure without edges.
   733   ///The most useful application of this class is to be the node set of an
   734   ///\ref EdgeSet class.
   735   ///
   736   ///It conforms to the graph interface documented under
   737   ///the description of \ref GraphSkeleton with the exception that you cannot
   738   ///add (or delete) edges. The usual edge iterators are exists, but they are
   739   ///always \ref INVALID.
   740   ///\sa \ref GraphSkeleton
   741   ///\sa \ref EdgeSet
   742   class NodeSet {
   743 
   744     //Nodes are double linked.
   745     //The free nodes are only single linked using the "next" field.
   746     struct NodeT 
   747     {
   748       int first_in,first_out;
   749       int prev, next;
   750       //      NodeT() {}
   751     };
   752 
   753     std::vector<NodeT> nodes;
   754     //The first node
   755     int first_node;
   756     //The first free node
   757     int first_free_node;
   758     
   759   protected:
   760     
   761     template <typename Key> class DynMapBase
   762     {
   763     protected:
   764       const NodeSet* G; 
   765     public:
   766       virtual void add(const Key k) = 0;
   767       virtual void erase(const Key k) = 0;
   768       DynMapBase(const NodeSet &_G) : G(&_G) {}
   769       virtual ~DynMapBase() {}
   770       friend class NodeSet;
   771     };
   772     
   773   public:
   774     template <typename T> class EdgeMap;
   775     template <typename T> class NodeMap;
   776     
   777     class Node;
   778     class Edge;
   779 
   780     //  protected:
   781     // HELPME:
   782   protected:
   783     ///\bug It must be public because of SymEdgeMap.
   784     ///
   785     mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
   786     //mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
   787     
   788   public:
   789 
   790     class NodeIt;
   791     class EdgeIt;
   792     class OutEdgeIt;
   793     class InEdgeIt;
   794     
   795     template <typename T> class NodeMap;
   796     template <typename T> class EdgeMap;
   797     
   798   public:
   799 
   800     ///Default constructor
   801     NodeSet() : nodes(), first_node(-1),
   802 		  first_free_node(-1) {}
   803     ///Copy constructor
   804     NodeSet(const NodeSet &_g) : nodes(_g.nodes), first_node(_g.first_node),
   805 				     first_free_node(_g.first_free_node) {}
   806     
   807     ~NodeSet()
   808     {
   809       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   810 	  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
   811       //for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
   812       //	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
   813     }
   814 
   815     int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
   816     int edgeNum() const { return 0; }  //FIXME: What is this?
   817 
   818     ///\bug This function does something different than
   819     ///its name would suggests...
   820     int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
   821     ///\bug This function does something different than
   822     ///its name would suggests...
   823     int maxEdgeId() const { return 0; }  //FIXME: What is this?
   824 
   825     Node tail(Edge e) const { return INVALID; }
   826     Node head(Edge e) const { return INVALID; }
   827 
   828     Node aNode(OutEdgeIt e) const { return INVALID; }
   829     Node aNode(InEdgeIt e) const { return INVALID; }
   830 
   831     Node bNode(OutEdgeIt e) const { return INVALID; }
   832     Node bNode(InEdgeIt e) const { return INVALID; }
   833 
   834     NodeIt& first(NodeIt& v) const { 
   835       v=NodeIt(*this); return v; }
   836     EdgeIt& first(EdgeIt& e) const { 
   837       e=EdgeIt(*this); return e; }
   838     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   839       e=OutEdgeIt(*this,v); return e; }
   840     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   841       e=InEdgeIt(*this,v); return e; }
   842 
   843 //     template< typename It >
   844 //     It first() const { It e; first(e); return e; }
   845 
   846 //     template< typename It >
   847 //     It first(Node v) const { It e; first(e,v); return e; }
   848 
   849     bool valid(Edge e) const { return false; }
   850     bool valid(Node n) const { return n.n!=-1; }
   851     
   852     void setInvalid(Edge &e) { }
   853     void setInvalid(Node &n) { n.n=-1; }
   854     
   855     template <typename It> It getNext(It it) const
   856     { It tmp(it); return next(tmp); }
   857 
   858     NodeIt& next(NodeIt& it) const { 
   859       it.n=nodes[it.n].next; 
   860       return it; 
   861     }
   862     OutEdgeIt& next(OutEdgeIt& it) const { return it; }
   863     InEdgeIt& next(InEdgeIt& it) const { return it; }
   864     EdgeIt& next(EdgeIt& it) const { return it; }
   865 
   866     int id(Node v) const { return v.n; }
   867     int id(Edge e) const { return -1; }
   868 
   869     /// Adds a new node to the graph.
   870 
   871     /// \todo It adds the nodes in a reversed order.
   872     /// (i.e. the lastly added node becomes the first.)
   873     Node addNode() {
   874       int n;
   875       
   876       if(first_free_node==-1)
   877 	{
   878 	  n = nodes.size();
   879 	  nodes.push_back(NodeT());
   880 	}
   881       else {
   882 	n = first_free_node;
   883 	first_free_node = nodes[n].next;
   884       }
   885       
   886       nodes[n].next = first_node;
   887       if(first_node != -1) nodes[first_node].prev = n;
   888       first_node = n;
   889       nodes[n].prev = -1;
   890       
   891       nodes[n].first_in = nodes[n].first_out = -1;
   892       
   893       Node nn; nn.n=n;
   894 
   895       //Update dynamic maps
   896       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   897 	  i!=dyn_node_maps.end(); ++i) (**i).add(nn);
   898 
   899       return nn;
   900     }
   901     
   902     void erase(Node nn) {
   903       int n=nn.n;
   904       
   905       if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
   906       if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
   907       else first_node = nodes[n].next;
   908       
   909       nodes[n].next = first_free_node;
   910       first_free_node = n;
   911 
   912       //Update dynamic maps
   913       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
   914 	  i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
   915     }
   916     
   917     ///\bug Dynamic maps must be updated!
   918     ///
   919     void clear() {
   920       nodes.clear();
   921       first_node = first_free_node = -1;
   922     }
   923 
   924     class Node {
   925       friend class NodeSet;
   926       template <typename T> friend class NodeMap;
   927       
   928       friend class Edge;
   929       friend class OutEdgeIt;
   930       friend class InEdgeIt;
   931 
   932     protected:
   933       int n;
   934       friend int NodeSet::id(Node v) const; 
   935       Node(int nn) {n=nn;}
   936     public:
   937       Node() {}
   938       Node (Invalid i) { n=-1; }
   939       bool operator==(const Node i) const {return n==i.n;}
   940       bool operator!=(const Node i) const {return n!=i.n;}
   941       bool operator<(const Node i) const {return n<i.n;}
   942     };
   943     
   944     class NodeIt : public Node {
   945       friend class NodeSet;
   946     public:
   947       NodeIt() : Node() { }
   948       NodeIt(Invalid i) : Node(i) { }
   949       NodeIt(const NodeSet& G) : Node(G.first_node) { }
   950       ///\todo Undocumented conversion Node -\> NodeIt.
   951       NodeIt(const NodeSet& G, const Node &n) : Node(n) { }
   952 
   953     };
   954 
   955     class Edge {
   956       //friend class NodeSet;
   957       //template <typename T> friend class EdgeMap;
   958 
   959       //template <typename T> friend class SymNodeSet::SymEdgeMap;      
   960       //friend Edge SymNodeSet::opposite(Edge) const;
   961       
   962       //      friend class Node;
   963       //      friend class NodeIt;
   964     protected:
   965       //friend int NodeSet::id(Edge e) const;
   966       //      Edge(int nn) {}
   967     public:
   968       Edge() { }
   969       Edge (Invalid) { }
   970       bool operator==(const Edge i) const {return true;}
   971       bool operator!=(const Edge i) const {return false;}
   972       bool operator<(const Edge i) const {return false;}
   973       ///\bug This is a workaround until somebody tells me how to
   974       ///make class \c SymNodeSet::SymEdgeMap friend of Edge
   975       //      int idref() {return -1;}
   976       //      int idref() const {return -1;}
   977     };
   978     
   979     class EdgeIt : public Edge {
   980       //friend class NodeSet;
   981     public:
   982       EdgeIt(const NodeSet& G) : Edge() { }
   983       EdgeIt (Invalid i) : Edge(i) { }
   984       EdgeIt() : Edge() { }
   985       ///\bug This is a workaround until somebody tells me how to
   986       ///make class \c SymNodeSet::SymEdgeMap friend of Edge
   987       //      int idref() {return -1;}
   988     };
   989     
   990     class OutEdgeIt : public Edge {
   991       friend class NodeSet;
   992     public: 
   993       OutEdgeIt() : Edge() { }
   994       OutEdgeIt (Invalid i) : Edge(i) { }
   995       OutEdgeIt(const NodeSet& G,const Node v)	: Edge() {}
   996     };
   997     
   998     class InEdgeIt : public Edge {
   999       friend class NodeSet;
  1000     public: 
  1001       InEdgeIt() : Edge() { }
  1002       InEdgeIt (Invalid i) : Edge(i) { }
  1003       InEdgeIt(const NodeSet& G,Node v) :Edge() {}
  1004     };
  1005 
  1006     template <typename T> class NodeMap : public DynMapBase<Node>
  1007     {
  1008       std::vector<T> container;
  1009 
  1010     public:
  1011       typedef T ValueType;
  1012       typedef Node KeyType;
  1013 
  1014       NodeMap(const NodeSet &_G) :
  1015 	DynMapBase<Node>(_G), container(_G.maxNodeId())
  1016       {
  1017 	G->dyn_node_maps.push_back(this);
  1018       }
  1019       NodeMap(const NodeSet &_G,const T &t) :
  1020 	DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
  1021       {
  1022 	G->dyn_node_maps.push_back(this);
  1023       }
  1024       
  1025       NodeMap(const NodeMap<T> &m) :
  1026  	DynMapBase<Node>(*m.G), container(m.container)
  1027       {
  1028  	G->dyn_node_maps.push_back(this);
  1029       }
  1030 
  1031       template<typename TT> friend class NodeMap;
  1032  
  1033       ///\todo It can copy between different types.
  1034       ///
  1035       template<typename TT> NodeMap(const NodeMap<TT> &m) :
  1036 	DynMapBase<Node>(*m.G)
  1037       {
  1038 	G->dyn_node_maps.push_back(this);
  1039 	typename std::vector<TT>::const_iterator i;
  1040 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
  1041 	    i!=m.container.end();
  1042 	    i++)
  1043 	  container.push_back(*i);
  1044       }
  1045       ~NodeMap()
  1046       {
  1047 	if(G) {
  1048 	  std::vector<DynMapBase<Node>* >::iterator i;
  1049 	  for(i=G->dyn_node_maps.begin();
  1050 	      i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
  1051 	  //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
  1052 	  //A better way to do that: (Is this really important?)
  1053 	  if(*i==this) {
  1054 	    *i=G->dyn_node_maps.back();
  1055 	    G->dyn_node_maps.pop_back();
  1056 	  }
  1057 	}
  1058       }
  1059 
  1060       void add(const Node k) 
  1061       {
  1062 	if(k.n>=int(container.size())) container.resize(k.n+1);
  1063       }
  1064 
  1065       void erase(const Node) { }
  1066       
  1067       void set(Node n, T a) { container[n.n]=a; }
  1068       //'T& operator[](Node n)' would be wrong here
  1069       typename std::vector<T>::reference
  1070       operator[](Node n) { return container[n.n]; }
  1071       //'const T& operator[](Node n)' would be wrong here
  1072       typename std::vector<T>::const_reference 
  1073       operator[](Node n) const { return container[n.n]; }
  1074 
  1075       ///\warning There is no safety check at all!
  1076       ///Using operator = between maps attached to different graph may
  1077       ///cause serious problem.
  1078       ///\todo Is this really so?
  1079       ///\todo It can copy between different types.
  1080       const NodeMap<T>& operator=(const NodeMap<T> &m)
  1081       {
  1082 	container = m.container;
  1083 	return *this;
  1084       }
  1085       template<typename TT>
  1086       const NodeMap<T>& operator=(const NodeMap<TT> &m)
  1087       {
  1088 	std::copy(m.container.begin(), m.container.end(), container.begin());
  1089 	return *this;
  1090       }
  1091       
  1092       void update() {}    //Useless for Dynamic Maps
  1093       void update(T a) {}  //Useless for Dynamic Maps
  1094     };
  1095     
  1096     template <typename T> class EdgeMap
  1097     {
  1098     public:
  1099       typedef T ValueType;
  1100       typedef Edge KeyType;
  1101 
  1102       EdgeMap(const NodeSet &) { }
  1103       EdgeMap(const NodeSet &,const T &) { }
  1104       EdgeMap(const EdgeMap<T> &) { }
  1105       //      template<typename TT> friend class EdgeMap;
  1106 
  1107       ///\todo It can copy between different types.
  1108       ///
  1109       template<typename TT> EdgeMap(const EdgeMap<TT> &) { }
  1110       ~EdgeMap() { }
  1111 
  1112       void add(const Edge  ) { }
  1113       void erase(const Edge) { }
  1114       
  1115       void set(Edge, T) { }
  1116       //T get(Edge n) const { return container[n.n]; }
  1117       ValueType &operator[](Edge) { return *((T*)(NULL)); }
  1118       const ValueType &operator[](Edge) const { return *((T*)(NULL)); }
  1119 
  1120       const EdgeMap<T>& operator=(const EdgeMap<T> &) { return *this; }
  1121     
  1122       template<typename TT>
  1123       const EdgeMap<T>& operator=(const EdgeMap<TT> &m) { return *this; }
  1124       
  1125       void update() {}
  1126       void update(T a) {}
  1127     };
  1128   };
  1129 
  1130 
  1131 
  1132   ///Graph structure using a node set of another graph.
  1133 
  1134   ///This structure can be used to establish another graph over a node set
  1135   /// of an existing one. The node iterator will go through the nodes of the
  1136   /// original graph, and the NodeMap's of both graphs will convert to
  1137   /// each other.
  1138   ///
  1139   ///\warning Adding or deleting nodes from the graph is not safe if an
  1140   ///\ref EdgeSet is currently attached to it!
  1141   ///
  1142   ///\todo Make it possible to add/delete edges from the base graph
  1143   ///(and from \ref EdgeSet, as well)
  1144   ///
  1145   ///\param GG The type of the graph which shares its node set with this class.
  1146   ///Its interface must conform with \ref GraphSkeleton.
  1147   ///
  1148   ///It conforms to the graph interface documented under
  1149   ///the description of \ref GraphSkeleton.
  1150   ///\sa \ref GraphSkeleton.
  1151   ///\sa \ref NodeSet.
  1152   template<typename GG>
  1153   class EdgeSet {
  1154 
  1155     typedef GG NodeGraphType;
  1156 
  1157     NodeGraphType &G;
  1158 
  1159   public:
  1160     class Node;
  1161     int id(Node v) const; 
  1162 
  1163     class Node : public NodeGraphType::Node {
  1164       friend class EdgeSet;
  1165       //      template <typename T> friend class NodeMap;
  1166       
  1167       friend class Edge;
  1168       friend class OutEdgeIt;
  1169       friend class InEdgeIt;
  1170       friend class SymEdge;
  1171 
  1172     public:
  1173       friend int EdgeSet::id(Node v) const; 
  1174       //      Node(int nn) {n=nn;}
  1175     public:
  1176       Node() : NodeGraphType::Node() {}
  1177       Node (Invalid i) : NodeGraphType::Node(i) {}
  1178       Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {}
  1179     };
  1180     
  1181     class NodeIt : public NodeGraphType::NodeIt {
  1182       friend class EdgeSet;
  1183     public:
  1184       NodeIt() : NodeGraphType::NodeIt() { }
  1185       NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {}
  1186       NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { }
  1187       NodeIt(const typename NodeGraphType::NodeIt &n)
  1188 	: NodeGraphType::NodeIt(n) {}
  1189       ///\todo Undocumented conversion Node -\> NodeIt.
  1190       NodeIt(const EdgeSet& _G, const Node &n)
  1191 	: NodeGraphType::NodeIt(_G.G,n) { }
  1192 
  1193       operator Node() { return Node(*this);}
  1194     };
  1195 
  1196   private:
  1197     //Edges are double linked.
  1198     //The free edges are only single linked using the "next_in" field.
  1199     struct NodeT 
  1200     {
  1201       int first_in,first_out;
  1202       NodeT() : first_in(-1), first_out(-1) { }
  1203     };
  1204 
  1205     struct EdgeT 
  1206     {
  1207       Node head, tail;
  1208       int prev_in, prev_out;
  1209       int next_in, next_out;
  1210     };
  1211 
  1212     
  1213     typename NodeGraphType::template NodeMap<NodeT> nodes;
  1214     
  1215     std::vector<EdgeT> edges;
  1216     //The first free edge
  1217     int first_free_edge;
  1218     
  1219   protected:
  1220     
  1221     template <typename Key> class DynMapBase
  1222     {
  1223     protected:
  1224       const EdgeSet* G; 
  1225     public:
  1226       virtual void add(const Key k) = 0;
  1227       virtual void erase(const Key k) = 0;
  1228       DynMapBase(const EdgeSet &_G) : G(&_G) {}
  1229       virtual ~DynMapBase() {}
  1230       friend class EdgeSet;
  1231     };
  1232     
  1233   public:
  1234     //template <typename T> class NodeMap;
  1235     template <typename T> class EdgeMap;
  1236     
  1237     class Node;
  1238     class Edge;
  1239 
  1240     //  protected:
  1241     // HELPME:
  1242   protected:
  1243     // mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
  1244     ///\bug It must be public because of SymEdgeMap.
  1245     ///
  1246     mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
  1247     
  1248   public:
  1249 
  1250     class NodeIt;
  1251     class EdgeIt;
  1252     class OutEdgeIt;
  1253     class InEdgeIt;
  1254     
  1255     template <typename T> class NodeMap;
  1256     template <typename T> class EdgeMap;
  1257     
  1258   public:
  1259 
  1260     ///Constructor
  1261     
  1262     ///Construates a new graph based on the nodeset of an existing one.
  1263     ///\param _G the base graph.
  1264     ///\todo It looks like a copy constructor, but it isn't.
  1265     EdgeSet(NodeGraphType &_G) : G(_G),
  1266 				 nodes(_G), edges(),
  1267 				 first_free_edge(-1) { }
  1268     ///Copy constructor
  1269 
  1270     ///Makes a copy of an EdgeSet.
  1271     ///It will be based on the same graph.
  1272     EdgeSet(const EdgeSet &_g) : G(_g.G), nodes(_g.G), edges(_g.edges),
  1273 				 first_free_edge(_g.first_free_edge) { }
  1274     
  1275     ~EdgeSet()
  1276     {
  1277       // for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
  1278       //  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
  1279       for(typename std::vector<DynMapBase<Edge> * >::iterator
  1280 	    i=dyn_edge_maps.begin();
  1281 	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
  1282     }
  1283 
  1284     int nodeNum() const { return G.nodeNum(); }  //FIXME: What is this?
  1285     int edgeNum() const { return edges.size(); }  //FIXME: What is this?
  1286 
  1287     ///\bug This function does something different than
  1288     ///its name would suggests...
  1289     int maxNodeId() const { return G.maxNodeId(); }  //FIXME: What is this?
  1290     ///\bug This function does something different than
  1291     ///its name would suggests...
  1292     int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
  1293 
  1294     Node tail(Edge e) const { return edges[e.n].tail; }
  1295     Node head(Edge e) const { return edges[e.n].head; }
  1296 
  1297     Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
  1298     Node aNode(InEdgeIt e) const { return edges[e.n].head; }
  1299 
  1300     Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
  1301     Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
  1302 
  1303     NodeIt& first(NodeIt& v) const { 
  1304       v=NodeIt(*this); return v; }
  1305     EdgeIt& first(EdgeIt& e) const { 
  1306       e=EdgeIt(*this); return e; }
  1307     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
  1308       e=OutEdgeIt(*this,v); return e; }
  1309     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
  1310       e=InEdgeIt(*this,v); return e; }
  1311 
  1312 //     template< typename It >
  1313 //     It first() const { It e; first(e); return e; }
  1314 
  1315 //     template< typename It >
  1316 //     It first(Node v) const { It e; first(e,v); return e; }
  1317 
  1318     bool valid(Edge e) const { return e.n!=-1; }
  1319     bool valid(Node n) const { return G.valid(n); }
  1320     
  1321     void setInvalid(Edge &e) { e.n=-1; }
  1322     void setInvalid(Node &n) { G.setInvalid(n); }
  1323     
  1324     template <typename It> It getNext(It it) const
  1325     { It tmp(it); return next(tmp); }
  1326 
  1327     NodeIt& next(NodeIt& it) const { G.next(it); return it; }
  1328     OutEdgeIt& next(OutEdgeIt& it) const
  1329     { it.n=edges[it.n].next_out; return it; }
  1330     InEdgeIt& next(InEdgeIt& it) const
  1331     { it.n=edges[it.n].next_in; return it; }
  1332     EdgeIt& next(EdgeIt& it) const {
  1333       if(edges[it.n].next_in!=-1) { 
  1334 	it.n=edges[it.n].next_in;
  1335       }
  1336       else {
  1337 	NodeIt n(*this,edges[it.n].head);
  1338 	for(n=next(n);
  1339 	    valid(n) && nodes[n].first_in == -1;
  1340 	    next(n)) ;
  1341 	it.n = (valid(n))?-1:nodes[n].first_in;
  1342       }
  1343       return it;
  1344     }
  1345 
  1346     int id(Edge e) const { return e.n; }
  1347 
  1348     /// Adds a new node to the graph.
  1349     Node addNode() { return G.addNode(); }
  1350     
  1351     Edge addEdge(Node u, Node v) {
  1352       int n;
  1353       
  1354       if(first_free_edge==-1)
  1355 	{
  1356 	  n = edges.size();
  1357 	  edges.push_back(EdgeT());
  1358 	}
  1359       else {
  1360 	n = first_free_edge;
  1361 	first_free_edge = edges[n].next_in;
  1362       }
  1363       
  1364       edges[n].tail = u; edges[n].head = v;
  1365 
  1366       edges[n].next_out = nodes[u].first_out;
  1367       if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n;
  1368       edges[n].next_in = nodes[v].first_in;
  1369       if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n;
  1370       edges[n].prev_in = edges[n].prev_out = -1;
  1371 	
  1372       nodes[u].first_out = nodes[v].first_in = n;
  1373 
  1374       Edge e; e.n=n;
  1375 
  1376       //Update dynamic maps
  1377       for(typename std::vector<DynMapBase<Edge> * >::iterator
  1378 	    i=dyn_edge_maps.begin();
  1379 	  i!=dyn_edge_maps.end(); ++i) (**i).add(e);
  1380 
  1381       return e;
  1382     }
  1383 
  1384   private:
  1385     void eraseEdge(int n) {
  1386       
  1387       if(edges[n].next_in!=-1)
  1388 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
  1389       if(edges[n].prev_in!=-1)
  1390 	edges[edges[n].prev_in].next_in = edges[n].next_in;
  1391       else nodes[edges[n].head].first_in = edges[n].next_in;
  1392       
  1393       if(edges[n].next_out!=-1)
  1394 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
  1395       if(edges[n].prev_out!=-1)
  1396 	edges[edges[n].prev_out].next_out = edges[n].next_out;
  1397       else nodes[edges[n].tail].first_out = edges[n].next_out;
  1398       
  1399       edges[n].next_in = first_free_edge;
  1400       first_free_edge = -1;      
  1401 
  1402       //Update dynamic maps
  1403       Edge e; e.n=n;
  1404       for(typename std::vector<DynMapBase<Edge> * >::iterator
  1405 	    i=dyn_edge_maps.begin();
  1406 	  i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
  1407     }
  1408       
  1409   public:
  1410 
  1411 //     void erase(Node nn) {
  1412 //       int n=nn.n;
  1413 //       int m;
  1414 //       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
  1415 //       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
  1416 //     }
  1417     
  1418     void erase(Edge e) { eraseEdge(e.n); }
  1419 
  1420     ///Clear all edges. (Doesn't clear the nodes!)
  1421     void clear() {
  1422       edges.clear();
  1423       first_free_edge=-1;
  1424     }
  1425 
  1426 
  1427 //     //\bug Dynamic maps must be updated!
  1428 //     //
  1429 //     void clear() {
  1430 //       nodes.clear();edges.clear();
  1431 //       first_node=first_free_node=first_free_edge=-1;
  1432 //     }
  1433 
  1434   public:
  1435     template <typename T> class EdgeMap;
  1436     
  1437     ///
  1438     class Edge {
  1439     public:
  1440       friend class EdgeSet;
  1441       template <typename T> friend class EdgeMap;
  1442 
  1443       friend class Node;
  1444       friend class NodeIt;
  1445     public:
  1446       ///\bug It shoud be at least protected
  1447       ///
  1448       int n;
  1449     protected:
  1450       friend int EdgeSet::id(Edge e) const;
  1451 
  1452       Edge(int nn) {n=nn;}
  1453     public:
  1454       Edge() { }
  1455       Edge (Invalid) { n=-1; }
  1456       bool operator==(const Edge i) const {return n==i.n;}
  1457       bool operator!=(const Edge i) const {return n!=i.n;}
  1458       bool operator<(const Edge i) const {return n<i.n;}
  1459       ///\bug This is a workaround until somebody tells me how to
  1460       ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
  1461       int &idref() {return n;}
  1462       const int &idref() const {return n;}
  1463     };
  1464     
  1465     class EdgeIt : public Edge {
  1466       friend class EdgeSet;
  1467       template <typename T> friend class EdgeMap;
  1468     
  1469       
  1470     public:
  1471       EdgeIt(const EdgeSet& G) : Edge() {
  1472 	//      	typename NodeGraphType::Node m;
  1473         NodeIt m;
  1474 	for(G.first(m);
  1475 	    G.valid(m) && G.nodes[m].first_in == -1;  G.next(m));
  1476 	//AJJAJ! This is a non sense!!!!!!!
  1477 	this->n = G.valid(m)?-1:G.nodes[m].first_in;
  1478       }
  1479       EdgeIt (Invalid i) : Edge(i) { }
  1480       EdgeIt() : Edge() { }
  1481       ///\bug This is a workaround until somebody tells me how to
  1482       ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
  1483       int &idref() {return this->n;}
  1484     };
  1485     
  1486     class OutEdgeIt : public Edge {
  1487       friend class EdgeSet;
  1488     public: 
  1489       OutEdgeIt() : Edge() { }
  1490       OutEdgeIt (Invalid i) : Edge(i) { }
  1491 
  1492       OutEdgeIt(const EdgeSet& G,const Node v) : Edge(G.nodes[v].first_out) { }
  1493     };
  1494     
  1495     class InEdgeIt : public Edge {
  1496       friend class EdgeSet;
  1497     public: 
  1498       InEdgeIt() : Edge() { }
  1499       InEdgeIt (Invalid i) : Edge(i) { }
  1500       InEdgeIt(const EdgeSet& G,Node v) :Edge(G.nodes[v].first_in) { }
  1501     };
  1502 
  1503     template <typename T> class NodeMap : 
  1504       public NodeGraphType::template NodeMap<T>
  1505     {
  1506       //This is a must, the constructors need it.
  1507       typedef typename NodeGraphType::template NodeMap<T> ParentNodeMap;
  1508     public:
  1509       NodeMap(const EdgeSet &_G) : ParentNodeMap(_G.G) { }
  1510       NodeMap(const EdgeSet &_G,const T &t) : ParentNodeMap(_G.G,t) { }
  1511       //It is unnecessary
  1512       NodeMap(const typename NodeGraphType::template NodeMap<T> &m) :
  1513 	ParentNodeMap(m) { }
  1514 
  1515       ///\todo It can copy between different types.
  1516       ///
  1517       template<typename TT>
  1518       NodeMap(const typename NodeGraphType::template NodeMap<TT> &m)
  1519 	: ParentNodeMap(m) { }
  1520     };
  1521     
  1522     ///
  1523     template <typename T> class EdgeMap : public DynMapBase<Edge>
  1524     {
  1525     protected:
  1526     public:
  1527       ///\bug It should be at least protected
  1528       ///
  1529       std::vector<T> container;
  1530 
  1531     public:
  1532       typedef T ValueType;
  1533       typedef Edge KeyType;
  1534 
  1535       EdgeMap(const EdgeSet &_G) :
  1536 	DynMapBase<Edge>(_G), container(_G.maxEdgeId())
  1537       {
  1538 	//FIXME: What if there are empty Id's?
  1539 	//FIXME: Can I use 'this' in a constructor?
  1540 	G->dyn_edge_maps.push_back(this);
  1541       }
  1542       EdgeMap(const EdgeSet &_G,const T &t) :
  1543 	DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
  1544       {
  1545 	G->dyn_edge_maps.push_back(this);
  1546       } 
  1547       EdgeMap(const EdgeMap<T> &m) :
  1548  	DynMapBase<Edge>(*m.G), container(m.container)
  1549       {
  1550  	G->dyn_edge_maps.push_back(this);
  1551       }
  1552 
  1553       template<typename TT> friend class EdgeMap;
  1554 
  1555       ///\todo It can copy between different types.
  1556       ///
  1557       template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
  1558 	DynMapBase<Edge>(*m.G)
  1559       {
  1560 	G->dyn_edge_maps.push_back(this);
  1561 	typename std::vector<TT>::const_iterator i;
  1562 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
  1563 	    i!=m.container.end();
  1564 	    i++)
  1565 	  container.push_back(*i);
  1566       }
  1567       ~EdgeMap()
  1568       {
  1569 	if(G) {
  1570 	  typename std::vector<DynMapBase<Edge>* >::iterator i;
  1571 	  for(i=G->dyn_edge_maps.begin();
  1572 	      i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
  1573 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
  1574 	  //A better way to do that: (Is this really important?)
  1575 	  if(*i==this) {
  1576 	    *i=G->dyn_edge_maps.back();
  1577 	    G->dyn_edge_maps.pop_back();
  1578 	  }
  1579 	}
  1580       }
  1581       
  1582       void add(const Edge k) 
  1583       {
  1584 	if(k.n>=int(container.size())) container.resize(k.n+1);
  1585       }
  1586       void erase(const Edge) { }
  1587       
  1588       ///\bug This doesn't work. Why?
  1589       ///      void set(Edge n, T a) { container[n.n]=a; }
  1590       void set(Edge n, T a) { container[G->id(n)]=a; }
  1591       //T get(Edge n) const { return container[n.n]; }
  1592       typename std::vector<T>::reference
  1593       ///\bug This doesn't work. Why?
  1594       ///      operator[](Edge n) { return container[n.n]; }
  1595       operator[](Edge n) { return container[G->id(n)]; }
  1596       typename std::vector<T>::const_reference
  1597       ///\bug This doesn't work. Why?
  1598       ///      operator[](Edge n) const { return container[n.n]; }
  1599       operator[](Edge n) const { return container[G->id(n)]; }
  1600 
  1601       ///\warning There is no safety check at all!
  1602       ///Using operator = between maps attached to different graph may
  1603       ///cause serious problem.
  1604       ///\todo Is this really so?
  1605       ///\todo It can copy between different types.
  1606       const EdgeMap<T>& operator=(const EdgeMap<T> &m)
  1607       {
  1608 	container = m.container;
  1609 	return *this;
  1610       }
  1611       
  1612       template<typename TT> friend class EdgeMap;
  1613 
  1614       template<typename TT>
  1615       const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
  1616       {
  1617 	std::copy(m.container.begin(), m.container.end(), container.begin());
  1618 	return *this;
  1619       }
  1620       
  1621       void update() {}    //Useless for DynMaps
  1622       void update(T a) {}  //Useless for DynMaps
  1623     };
  1624 
  1625   };
  1626 
  1627   template<typename GG>
  1628   inline int EdgeSet<GG>::id(Node v) const { return G.id(v); }
  1629 
  1630 /// @}  
  1631 
  1632 } //namespace hugo
  1633 
  1634 #endif //HUGO_LIST_GRAPH_H