3 #ifndef HUGO_LIST_GRAPH_H
4 #define HUGO_LIST_GRAPH_H
8 ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
13 #include <hugo/invalid.h>
17 /// \addtogroup graphs
22 ///A list graph class.
24 ///This is a simple and fast erasable graph implementation.
26 ///It conforms to the graph interface documented under
27 ///the description of \ref GraphSkeleton.
28 ///\sa \ref GraphSkeleton.
31 //Nodes are double linked.
32 //The free nodes are only single linked using the "next" field.
35 int first_in,first_out;
39 //Edges are double linked.
40 //The free edges are only single linked using the "next_in" field.
44 int prev_in, prev_out;
45 int next_in, next_out;
46 //FIXME: is this necessary?
47 // EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {}
50 std::vector<NodeT> nodes;
55 std::vector<EdgeT> edges;
61 template <typename Key> class DynMapBase
66 virtual void add(const Key k) = 0;
67 virtual void erase(const Key k) = 0;
68 DynMapBase(const ListGraph &_G) : G(&_G) {}
69 virtual ~DynMapBase() {}
70 friend class ListGraph;
74 template <typename T> class EdgeMap;
75 template <typename T> class NodeMap;
83 ///\bug It must be public because of SymEdgeMap.
85 mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
86 ///\bug It must be public because of SymEdgeMap.
88 mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
99 ListGraph() : nodes(), first_node(-1),
100 first_free_node(-1), edges(), first_free_edge(-1) {}
101 ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
102 first_free_node(_g.first_free_node),
104 first_free_edge(_g.first_free_edge) {}
108 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
109 i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
110 for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
111 i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
114 int nodeNum() const { return nodes.size(); } //FIXME: What is this?
115 int edgeNum() const { return edges.size(); } //FIXME: What is this?
117 ///\bug This function does something different than
118 ///its name would suggests...
119 int maxNodeId() const { return nodes.size(); } //FIXME: What is this?
120 ///\bug This function does something different than
121 ///its name would suggests...
122 int maxEdgeId() const { return edges.size(); } //FIXME: What is this?
124 Node tail(Edge e) const { return edges[e.n].tail; }
125 Node head(Edge e) const { return edges[e.n].head; }
127 Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
128 Node aNode(InEdgeIt e) const { return edges[e.n].head; }
130 Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
131 Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
133 NodeIt& first(NodeIt& v) const {
134 v=NodeIt(*this); return v; }
135 EdgeIt& first(EdgeIt& e) const {
136 e=EdgeIt(*this); return e; }
137 OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
138 e=OutEdgeIt(*this,v); return e; }
139 InEdgeIt& first(InEdgeIt& e, const Node v) const {
140 e=InEdgeIt(*this,v); return e; }
142 // template< typename It >
143 // It first() const { It e; first(e); return e; }
145 // template< typename It >
146 // It first(Node v) const { It e; first(e,v); return e; }
148 bool valid(Edge e) const { return e.n!=-1; }
149 bool valid(Node n) const { return n.n!=-1; }
151 void setInvalid(Edge &e) { e.n=-1; }
152 void setInvalid(Node &n) { n.n=-1; }
154 template <typename It> It getNext(It it) const
155 { It tmp(it); return next(tmp); }
157 NodeIt& next(NodeIt& it) const {
158 it.n=nodes[it.n].next;
161 OutEdgeIt& next(OutEdgeIt& it) const
162 { it.n=edges[it.n].next_out; return it; }
163 InEdgeIt& next(InEdgeIt& it) const
164 { it.n=edges[it.n].next_in; return it; }
165 EdgeIt& next(EdgeIt& it) const {
166 if(edges[it.n].next_in!=-1) {
167 it.n=edges[it.n].next_in;
171 for(n=nodes[edges[it.n].head].next;
172 n!=-1 && nodes[n].first_in == -1;
174 it.n = (n==-1)?-1:nodes[n].first_in;
179 int id(Node v) const { return v.n; }
180 int id(Edge e) const { return e.n; }
182 /// Adds a new node to the graph.
184 /// \todo It adds the nodes in a reversed order.
185 /// (i.e. the lastly added node becomes the first.)
189 if(first_free_node==-1)
192 nodes.push_back(NodeT());
196 first_free_node = nodes[n].next;
199 nodes[n].next = first_node;
200 if(first_node != -1) nodes[first_node].prev = n;
204 nodes[n].first_in = nodes[n].first_out = -1;
208 //Update dynamic maps
209 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
210 i!=dyn_node_maps.end(); ++i) (**i).add(nn);
215 Edge addEdge(Node u, Node v) {
218 if(first_free_edge==-1)
221 edges.push_back(EdgeT());
225 first_free_edge = edges[n].next_in;
228 edges[n].tail = u.n; edges[n].head = v.n;
230 edges[n].next_out = nodes[u.n].first_out;
231 if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
232 edges[n].next_in = nodes[v.n].first_in;
233 if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
234 edges[n].prev_in = edges[n].prev_out = -1;
236 nodes[u.n].first_out = nodes[v.n].first_in = n;
240 //Update dynamic maps
241 for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
242 i!=dyn_edge_maps.end(); ++i) (**i).add(e);
248 void eraseEdge(int n) {
250 if(edges[n].next_in!=-1)
251 edges[edges[n].next_in].prev_in = edges[n].prev_in;
252 if(edges[n].prev_in!=-1)
253 edges[edges[n].prev_in].next_in = edges[n].next_in;
254 else nodes[edges[n].head].first_in = edges[n].next_in;
256 if(edges[n].next_out!=-1)
257 edges[edges[n].next_out].prev_out = edges[n].prev_out;
258 if(edges[n].prev_out!=-1)
259 edges[edges[n].prev_out].next_out = edges[n].next_out;
260 else nodes[edges[n].tail].first_out = edges[n].next_out;
262 edges[n].next_in = first_free_edge;
263 first_free_edge = -1;
265 //Update dynamic maps
267 for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
268 i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
273 void erase(Node nn) {
277 while((m=nodes[n].first_in)!=-1) eraseEdge(m);
278 while((m=nodes[n].first_out)!=-1) eraseEdge(m);
280 if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
281 if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
282 else first_node = nodes[n].next;
284 nodes[n].next = first_free_node;
287 //Update dynamic maps
288 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
289 i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
292 void erase(Edge e) { eraseEdge(e.n); }
294 ///\bug Dynamic maps must be updated!
297 nodes.clear();edges.clear();
298 first_node=first_free_node=first_free_edge=-1;
302 friend class ListGraph;
303 template <typename T> friend class NodeMap;
306 friend class OutEdgeIt;
307 friend class InEdgeIt;
308 friend class SymEdge;
312 friend int ListGraph::id(Node v) const;
316 Node (Invalid) { n=-1; }
317 bool operator==(const Node i) const {return n==i.n;}
318 bool operator!=(const Node i) const {return n!=i.n;}
319 bool operator<(const Node i) const {return n<i.n;}
322 class NodeIt : public Node {
323 friend class ListGraph;
325 NodeIt() : Node() { }
326 NodeIt(Invalid i) : Node(i) { }
327 NodeIt(const ListGraph& G) : Node(G.first_node) { }
328 ///\todo Undocumented conversion Node -\> NodeIt.
329 NodeIt(const ListGraph& G, const Node &n) : Node(n) { }
333 friend class ListGraph;
334 template <typename T> friend class EdgeMap;
336 //template <typename T> friend class SymListGraph::SymEdgeMap;
337 //friend Edge SymListGraph::opposite(Edge) const;
343 friend int ListGraph::id(Edge e) const;
348 Edge (Invalid) { n=-1; }
349 bool operator==(const Edge i) const {return n==i.n;}
350 bool operator!=(const Edge i) const {return n!=i.n;}
351 bool operator<(const Edge i) const {return n<i.n;}
352 ///\bug This is a workaround until somebody tells me how to
353 ///make class \c SymListGraph::SymEdgeMap friend of Edge
354 int &idref() {return n;}
355 const int &idref() const {return n;}
358 class EdgeIt : public Edge {
359 friend class ListGraph;
361 EdgeIt(const ListGraph& G) : Edge() {
364 m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
365 n = (m==-1)?-1:G.nodes[m].first_in;
367 EdgeIt (Invalid i) : Edge(i) { }
368 EdgeIt() : Edge() { }
369 ///\bug This is a workaround until somebody tells me how to
370 ///make class \c SymListGraph::SymEdgeMap friend of Edge
371 int &idref() {return n;}
374 class OutEdgeIt : public Edge {
375 friend class ListGraph;
377 OutEdgeIt() : Edge() { }
378 OutEdgeIt (Invalid i) : Edge(i) { }
380 OutEdgeIt(const ListGraph& G,const Node v)
381 : Edge(G.nodes[v.n].first_out) {}
384 class InEdgeIt : public Edge {
385 friend class ListGraph;
387 InEdgeIt() : Edge() { }
388 InEdgeIt (Invalid i) : Edge(i) { }
389 InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in){}
392 template <typename T> class NodeMap : public DynMapBase<Node>
394 std::vector<T> container;
398 typedef Node KeyType;
400 NodeMap(const ListGraph &_G) :
401 DynMapBase<Node>(_G), container(_G.maxNodeId())
403 G->dyn_node_maps.push_back(this);
405 NodeMap(const ListGraph &_G,const T &t) :
406 DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
408 G->dyn_node_maps.push_back(this);
411 NodeMap(const NodeMap<T> &m) :
412 DynMapBase<Node>(*m.G), container(m.container)
414 G->dyn_node_maps.push_back(this);
417 template<typename TT> friend class NodeMap;
419 ///\todo It can copy between different types.
421 template<typename TT> NodeMap(const NodeMap<TT> &m) :
422 DynMapBase<Node>(*m.G)
424 G->dyn_node_maps.push_back(this);
425 typename std::vector<TT>::const_iterator i;
426 for(typename std::vector<TT>::const_iterator i=m.container.begin();
427 i!=m.container.end();
429 container.push_back(*i);
434 std::vector<DynMapBase<Node>* >::iterator i;
435 for(i=G->dyn_node_maps.begin();
436 i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
437 //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
438 //A better way to do that: (Is this really important?)
440 *i=G->dyn_node_maps.back();
441 G->dyn_node_maps.pop_back();
446 void add(const Node k)
448 if(k.n>=int(container.size())) container.resize(k.n+1);
451 void erase(const Node) { }
453 void set(Node n, T a) { container[n.n]=a; }
454 //'T& operator[](Node n)' would be wrong here
455 typename std::vector<T>::reference
456 operator[](Node n) { return container[n.n]; }
457 //'const T& operator[](Node n)' would be wrong here
458 typename std::vector<T>::const_reference
459 operator[](Node n) const { return container[n.n]; }
461 ///\warning There is no safety check at all!
462 ///Using operator = between maps attached to different graph may
463 ///cause serious problem.
464 ///\todo Is this really so?
465 ///\todo It can copy between different types.
466 const NodeMap<T>& operator=(const NodeMap<T> &m)
468 container = m.container;
471 template<typename TT>
472 const NodeMap<T>& operator=(const NodeMap<TT> &m)
474 std::copy(m.container.begin(), m.container.end(), container.begin());
478 void update() {} //Useless for Dynamic Maps
479 void update(T a) {} //Useless for Dynamic Maps
482 template <typename T> class EdgeMap : public DynMapBase<Edge>
485 std::vector<T> container;
489 typedef Edge KeyType;
491 EdgeMap(const ListGraph &_G) :
492 DynMapBase<Edge>(_G), container(_G.maxEdgeId())
494 //FIXME: What if there are empty Id's?
495 //FIXME: Can I use 'this' in a constructor?
496 G->dyn_edge_maps.push_back(this);
498 EdgeMap(const ListGraph &_G,const T &t) :
499 DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
501 G->dyn_edge_maps.push_back(this);
503 EdgeMap(const EdgeMap<T> &m) :
504 DynMapBase<Edge>(*m.G), container(m.container)
506 G->dyn_edge_maps.push_back(this);
509 template<typename TT> friend class EdgeMap;
511 ///\todo It can copy between different types.
513 template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
514 DynMapBase<Edge>(*m.G)
516 G->dyn_edge_maps.push_back(this);
517 typename std::vector<TT>::const_iterator i;
518 for(typename std::vector<TT>::const_iterator i=m.container.begin();
519 i!=m.container.end();
521 container.push_back(*i);
526 std::vector<DynMapBase<Edge>* >::iterator i;
527 for(i=G->dyn_edge_maps.begin();
528 i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
529 //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
530 //A better way to do that: (Is this really important?)
532 *i=G->dyn_edge_maps.back();
533 G->dyn_edge_maps.pop_back();
538 void add(const Edge k)
540 if(k.n>=int(container.size())) container.resize(k.n+1);
542 void erase(const Edge) { }
544 void set(Edge n, T a) { container[n.n]=a; }
545 //T get(Edge n) const { return container[n.n]; }
546 typename std::vector<T>::reference
547 operator[](Edge n) { return container[n.n]; }
548 typename std::vector<T>::const_reference
549 operator[](Edge n) const { return container[n.n]; }
551 ///\warning There is no safety check at all!
552 ///Using operator = between maps attached to different graph may
553 ///cause serious problem.
554 ///\todo Is this really so?
555 ///\todo It can copy between different types.
556 const EdgeMap<T>& operator=(const EdgeMap<T> &m)
558 container = m.container;
561 template<typename TT>
562 const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
564 std::copy(m.container.begin(), m.container.end(), container.begin());
568 void update() {} //Useless for DynMaps
569 void update(T a) {} //Useless for DynMaps
574 ///Graph for bidirectional edges.
576 ///The purpose of this graph structure is to handle graphs
577 ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
578 ///of oppositely directed edges.
579 ///There is a new edge map type called
580 ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
581 ///that complements this
583 ///storing shared values for the edge pairs. The usual
584 ///\ref GraphSkeleton::EdgeMap "EdgeMap"
588 ///The oppositely directed edge can also be obtained easily
589 ///using \ref opposite.
591 ///Here erase(Edge) deletes a pair of edges.
593 ///\todo this date structure need some reconsiderations. Maybe it
594 ///should be implemented independently from ListGraph.
596 class SymListGraph : public ListGraph
599 template<typename T> class SymEdgeMap;
600 template<typename T> friend class SymEdgeMap;
602 SymListGraph() : ListGraph() { }
603 SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
604 ///Adds a pair of oppositely directed edges to the graph.
605 Edge addEdge(Node u, Node v)
607 Edge e = ListGraph::addEdge(u,v);
608 ListGraph::addEdge(v,u);
612 void erase(Node n) { ListGraph::erase(n); }
613 ///The oppositely directed edge.
615 ///Returns the oppositely directed
616 ///pair of the edge \c e.
617 Edge opposite(Edge e) const
620 f.idref() = e.idref() - 2*(e.idref()%2) + 1;
624 ///Removes a pair of oppositely directed edges to the graph.
626 ListGraph::erase(opposite(e));
630 ///Common data storage for the edge pairs.
632 ///This map makes it possible to store data shared by the oppositely
633 ///directed pairs of edges.
634 template <typename T> class SymEdgeMap : public DynMapBase<Edge>
636 std::vector<T> container;
640 typedef Edge KeyType;
642 SymEdgeMap(const SymListGraph &_G) :
643 DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2)
645 static_cast<const SymListGraph*>(G)->dyn_edge_maps.push_back(this);
647 SymEdgeMap(const SymListGraph &_G,const T &t) :
648 DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2,t)
650 G->dyn_edge_maps.push_back(this);
653 SymEdgeMap(const SymEdgeMap<T> &m) :
654 DynMapBase<SymEdge>(*m.G), container(m.container)
656 G->dyn_node_maps.push_back(this);
659 // template<typename TT> friend class SymEdgeMap;
661 ///\todo It can copy between different types.
664 template<typename TT> SymEdgeMap(const SymEdgeMap<TT> &m) :
665 DynMapBase<SymEdge>(*m.G)
667 G->dyn_node_maps.push_back(this);
668 typename std::vector<TT>::const_iterator i;
669 for(typename std::vector<TT>::const_iterator i=m.container.begin();
670 i!=m.container.end();
672 container.push_back(*i);
678 std::vector<DynMapBase<Edge>* >::iterator i;
679 for(i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.begin();
680 i!=static_cast<const SymListGraph*>(G)->dyn_edge_maps.end()
682 //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
683 //A better way to do that: (Is this really important?)
685 *i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.back();
686 static_cast<const SymListGraph*>(G)->dyn_edge_maps.pop_back();
691 void add(const Edge k)
693 if(!k.idref()%2&&k.idref()/2>=int(container.size()))
694 container.resize(k.idref()/2+1);
696 void erase(const Edge k) { }
698 void set(Edge n, T a) { container[n.idref()/2]=a; }
699 //T get(Edge n) const { return container[n.idref()/2]; }
700 typename std::vector<T>::reference
701 operator[](Edge n) { return container[n.idref()/2]; }
702 typename std::vector<T>::const_reference
703 operator[](Edge n) const { return container[n.idref()/2]; }
705 ///\warning There is no safety check at all!
706 ///Using operator = between maps attached to different graph may
707 ///cause serious problem.
708 ///\todo Is this really so?
709 ///\todo It can copy between different types.
710 const SymEdgeMap<T>& operator=(const SymEdgeMap<T> &m)
712 container = m.container;
715 template<typename TT>
716 const SymEdgeMap<T>& operator=(const SymEdgeMap<TT> &m)
718 std::copy(m.container.begin(), m.container.end(), container.begin());
722 void update() {} //Useless for DynMaps
723 void update(T a) {} //Useless for DynMaps
730 ///A graph class containing only nodes.
732 ///This class implements a graph structure without edges.
733 ///The most useful application of this class is to be the node set of an
734 ///\ref EdgeSet class.
736 ///It conforms to the graph interface documented under
737 ///the description of \ref GraphSkeleton with the exception that you cannot
738 ///add (or delete) edges. The usual edge iterators are exists, but they are
739 ///always \ref INVALID.
740 ///\sa \ref GraphSkeleton
744 //Nodes are double linked.
745 //The free nodes are only single linked using the "next" field.
748 int first_in,first_out;
753 std::vector<NodeT> nodes;
756 //The first free node
761 template <typename Key> class DynMapBase
766 virtual void add(const Key k) = 0;
767 virtual void erase(const Key k) = 0;
768 DynMapBase(const NodeSet &_G) : G(&_G) {}
769 virtual ~DynMapBase() {}
770 friend class NodeSet;
774 template <typename T> class EdgeMap;
775 template <typename T> class NodeMap;
783 ///\bug It must be public because of SymEdgeMap.
785 mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
786 //mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
795 template <typename T> class NodeMap;
796 template <typename T> class EdgeMap;
800 ///Default constructor
801 NodeSet() : nodes(), first_node(-1),
802 first_free_node(-1) {}
804 NodeSet(const NodeSet &_g) : nodes(_g.nodes), first_node(_g.first_node),
805 first_free_node(_g.first_free_node) {}
809 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
810 i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
811 //for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
812 // i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
815 int nodeNum() const { return nodes.size(); } //FIXME: What is this?
816 int edgeNum() const { return 0; } //FIXME: What is this?
818 ///\bug This function does something different than
819 ///its name would suggests...
820 int maxNodeId() const { return nodes.size(); } //FIXME: What is this?
821 ///\bug This function does something different than
822 ///its name would suggests...
823 int maxEdgeId() const { return 0; } //FIXME: What is this?
825 Node tail(Edge e) const { return INVALID; }
826 Node head(Edge e) const { return INVALID; }
828 Node aNode(OutEdgeIt e) const { return INVALID; }
829 Node aNode(InEdgeIt e) const { return INVALID; }
831 Node bNode(OutEdgeIt e) const { return INVALID; }
832 Node bNode(InEdgeIt e) const { return INVALID; }
834 NodeIt& first(NodeIt& v) const {
835 v=NodeIt(*this); return v; }
836 EdgeIt& first(EdgeIt& e) const {
837 e=EdgeIt(*this); return e; }
838 OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
839 e=OutEdgeIt(*this,v); return e; }
840 InEdgeIt& first(InEdgeIt& e, const Node v) const {
841 e=InEdgeIt(*this,v); return e; }
843 // template< typename It >
844 // It first() const { It e; first(e); return e; }
846 // template< typename It >
847 // It first(Node v) const { It e; first(e,v); return e; }
849 bool valid(Edge e) const { return false; }
850 bool valid(Node n) const { return n.n!=-1; }
852 void setInvalid(Edge &e) { }
853 void setInvalid(Node &n) { n.n=-1; }
855 template <typename It> It getNext(It it) const
856 { It tmp(it); return next(tmp); }
858 NodeIt& next(NodeIt& it) const {
859 it.n=nodes[it.n].next;
862 OutEdgeIt& next(OutEdgeIt& it) const { return it; }
863 InEdgeIt& next(InEdgeIt& it) const { return it; }
864 EdgeIt& next(EdgeIt& it) const { return it; }
866 int id(Node v) const { return v.n; }
867 int id(Edge e) const { return -1; }
869 /// Adds a new node to the graph.
871 /// \todo It adds the nodes in a reversed order.
872 /// (i.e. the lastly added node becomes the first.)
876 if(first_free_node==-1)
879 nodes.push_back(NodeT());
883 first_free_node = nodes[n].next;
886 nodes[n].next = first_node;
887 if(first_node != -1) nodes[first_node].prev = n;
891 nodes[n].first_in = nodes[n].first_out = -1;
895 //Update dynamic maps
896 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
897 i!=dyn_node_maps.end(); ++i) (**i).add(nn);
902 void erase(Node nn) {
905 if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
906 if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
907 else first_node = nodes[n].next;
909 nodes[n].next = first_free_node;
912 //Update dynamic maps
913 for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
914 i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
917 ///\bug Dynamic maps must be updated!
921 first_node = first_free_node = -1;
925 friend class NodeSet;
926 template <typename T> friend class NodeMap;
929 friend class OutEdgeIt;
930 friend class InEdgeIt;
934 friend int NodeSet::id(Node v) const;
938 Node (Invalid i) { n=-1; }
939 bool operator==(const Node i) const {return n==i.n;}
940 bool operator!=(const Node i) const {return n!=i.n;}
941 bool operator<(const Node i) const {return n<i.n;}
944 class NodeIt : public Node {
945 friend class NodeSet;
947 NodeIt() : Node() { }
948 NodeIt(Invalid i) : Node(i) { }
949 NodeIt(const NodeSet& G) : Node(G.first_node) { }
950 ///\todo Undocumented conversion Node -\> NodeIt.
951 NodeIt(const NodeSet& G, const Node &n) : Node(n) { }
956 //friend class NodeSet;
957 //template <typename T> friend class EdgeMap;
959 //template <typename T> friend class SymNodeSet::SymEdgeMap;
960 //friend Edge SymNodeSet::opposite(Edge) const;
962 // friend class Node;
963 // friend class NodeIt;
965 //friend int NodeSet::id(Edge e) const;
970 bool operator==(const Edge i) const {return true;}
971 bool operator!=(const Edge i) const {return false;}
972 bool operator<(const Edge i) const {return false;}
973 ///\bug This is a workaround until somebody tells me how to
974 ///make class \c SymNodeSet::SymEdgeMap friend of Edge
975 // int idref() {return -1;}
976 // int idref() const {return -1;}
979 class EdgeIt : public Edge {
980 //friend class NodeSet;
982 EdgeIt(const NodeSet& G) : Edge() { }
983 EdgeIt (Invalid i) : Edge(i) { }
984 EdgeIt() : Edge() { }
985 ///\bug This is a workaround until somebody tells me how to
986 ///make class \c SymNodeSet::SymEdgeMap friend of Edge
987 // int idref() {return -1;}
990 class OutEdgeIt : public Edge {
991 friend class NodeSet;
993 OutEdgeIt() : Edge() { }
994 OutEdgeIt (Invalid i) : Edge(i) { }
995 OutEdgeIt(const NodeSet& G,const Node v) : Edge() {}
998 class InEdgeIt : public Edge {
999 friend class NodeSet;
1001 InEdgeIt() : Edge() { }
1002 InEdgeIt (Invalid i) : Edge(i) { }
1003 InEdgeIt(const NodeSet& G,Node v) :Edge() {}
1006 template <typename T> class NodeMap : public DynMapBase<Node>
1008 std::vector<T> container;
1011 typedef T ValueType;
1012 typedef Node KeyType;
1014 NodeMap(const NodeSet &_G) :
1015 DynMapBase<Node>(_G), container(_G.maxNodeId())
1017 G->dyn_node_maps.push_back(this);
1019 NodeMap(const NodeSet &_G,const T &t) :
1020 DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
1022 G->dyn_node_maps.push_back(this);
1025 NodeMap(const NodeMap<T> &m) :
1026 DynMapBase<Node>(*m.G), container(m.container)
1028 G->dyn_node_maps.push_back(this);
1031 template<typename TT> friend class NodeMap;
1033 ///\todo It can copy between different types.
1035 template<typename TT> NodeMap(const NodeMap<TT> &m) :
1036 DynMapBase<Node>(*m.G)
1038 G->dyn_node_maps.push_back(this);
1039 typename std::vector<TT>::const_iterator i;
1040 for(typename std::vector<TT>::const_iterator i=m.container.begin();
1041 i!=m.container.end();
1043 container.push_back(*i);
1048 std::vector<DynMapBase<Node>* >::iterator i;
1049 for(i=G->dyn_node_maps.begin();
1050 i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
1051 //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
1052 //A better way to do that: (Is this really important?)
1054 *i=G->dyn_node_maps.back();
1055 G->dyn_node_maps.pop_back();
1060 void add(const Node k)
1062 if(k.n>=int(container.size())) container.resize(k.n+1);
1065 void erase(const Node) { }
1067 void set(Node n, T a) { container[n.n]=a; }
1068 //'T& operator[](Node n)' would be wrong here
1069 typename std::vector<T>::reference
1070 operator[](Node n) { return container[n.n]; }
1071 //'const T& operator[](Node n)' would be wrong here
1072 typename std::vector<T>::const_reference
1073 operator[](Node n) const { return container[n.n]; }
1075 ///\warning There is no safety check at all!
1076 ///Using operator = between maps attached to different graph may
1077 ///cause serious problem.
1078 ///\todo Is this really so?
1079 ///\todo It can copy between different types.
1080 const NodeMap<T>& operator=(const NodeMap<T> &m)
1082 container = m.container;
1085 template<typename TT>
1086 const NodeMap<T>& operator=(const NodeMap<TT> &m)
1088 std::copy(m.container.begin(), m.container.end(), container.begin());
1092 void update() {} //Useless for Dynamic Maps
1093 void update(T a) {} //Useless for Dynamic Maps
1096 template <typename T> class EdgeMap
1099 typedef T ValueType;
1100 typedef Edge KeyType;
1102 EdgeMap(const NodeSet &) { }
1103 EdgeMap(const NodeSet &,const T &) { }
1104 EdgeMap(const EdgeMap<T> &) { }
1105 // template<typename TT> friend class EdgeMap;
1107 ///\todo It can copy between different types.
1109 template<typename TT> EdgeMap(const EdgeMap<TT> &) { }
1112 void add(const Edge ) { }
1113 void erase(const Edge) { }
1115 void set(Edge, T) { }
1116 //T get(Edge n) const { return container[n.n]; }
1117 ValueType &operator[](Edge) { return *((T*)(NULL)); }
1118 const ValueType &operator[](Edge) const { return *((T*)(NULL)); }
1120 const EdgeMap<T>& operator=(const EdgeMap<T> &) { return *this; }
1122 template<typename TT>
1123 const EdgeMap<T>& operator=(const EdgeMap<TT> &m) { return *this; }
1132 ///Graph structure using a node set of another graph.
1134 ///This structure can be used to establish another graph over a node set
1135 /// of an existing one. The node iterator will go through the nodes of the
1136 /// original graph, and the NodeMap's of both graphs will convert to
1139 ///\warning Adding or deleting nodes from the graph is not safe if an
1140 ///\ref EdgeSet is currently attached to it!
1142 ///\todo Make it possible to add/delete edges from the base graph
1143 ///(and from \ref EdgeSet, as well)
1145 ///\param GG The type of the graph which shares its node set with this class.
1146 ///Its interface must conform with \ref GraphSkeleton.
1148 ///It conforms to the graph interface documented under
1149 ///the description of \ref GraphSkeleton.
1150 ///\sa \ref GraphSkeleton.
1151 ///\sa \ref NodeSet.
1152 template<typename GG>
1155 typedef GG NodeGraphType;
1161 int id(Node v) const;
1163 class Node : public NodeGraphType::Node {
1164 friend class EdgeSet;
1165 // template <typename T> friend class NodeMap;
1168 friend class OutEdgeIt;
1169 friend class InEdgeIt;
1170 friend class SymEdge;
1173 friend int EdgeSet::id(Node v) const;
1174 // Node(int nn) {n=nn;}
1176 Node() : NodeGraphType::Node() {}
1177 Node (Invalid i) : NodeGraphType::Node(i) {}
1178 Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {}
1181 class NodeIt : public NodeGraphType::NodeIt {
1182 friend class EdgeSet;
1184 NodeIt() : NodeGraphType::NodeIt() { }
1185 NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {}
1186 NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { }
1187 NodeIt(const typename NodeGraphType::NodeIt &n)
1188 : NodeGraphType::NodeIt(n) {}
1189 ///\todo Undocumented conversion Node -\> NodeIt.
1190 NodeIt(const EdgeSet& _G, const Node &n)
1191 : NodeGraphType::NodeIt(_G.G,n) { }
1193 operator Node() { return Node(*this);}
1197 //Edges are double linked.
1198 //The free edges are only single linked using the "next_in" field.
1201 int first_in,first_out;
1202 NodeT() : first_in(-1), first_out(-1) { }
1208 int prev_in, prev_out;
1209 int next_in, next_out;
1213 typename NodeGraphType::template NodeMap<NodeT> nodes;
1215 std::vector<EdgeT> edges;
1216 //The first free edge
1217 int first_free_edge;
1221 template <typename Key> class DynMapBase
1226 virtual void add(const Key k) = 0;
1227 virtual void erase(const Key k) = 0;
1228 DynMapBase(const EdgeSet &_G) : G(&_G) {}
1229 virtual ~DynMapBase() {}
1230 friend class EdgeSet;
1234 //template <typename T> class NodeMap;
1235 template <typename T> class EdgeMap;
1243 // mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
1244 ///\bug It must be public because of SymEdgeMap.
1246 mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
1255 template <typename T> class NodeMap;
1256 template <typename T> class EdgeMap;
1262 ///Construates a new graph based on the nodeset of an existing one.
1263 ///\param _G the base graph.
1264 ///\todo It looks like a copy constructor, but it isn't.
1265 EdgeSet(NodeGraphType &_G) : G(_G),
1267 first_free_edge(-1) { }
1270 ///Makes a copy of an EdgeSet.
1271 ///It will be based on the same graph.
1272 EdgeSet(const EdgeSet &_g) : G(_g.G), nodes(_g.G), edges(_g.edges),
1273 first_free_edge(_g.first_free_edge) { }
1277 // for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
1278 // i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
1279 for(typename std::vector<DynMapBase<Edge> * >::iterator
1280 i=dyn_edge_maps.begin();
1281 i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
1284 int nodeNum() const { return G.nodeNum(); } //FIXME: What is this?
1285 int edgeNum() const { return edges.size(); } //FIXME: What is this?
1287 ///\bug This function does something different than
1288 ///its name would suggests...
1289 int maxNodeId() const { return G.maxNodeId(); } //FIXME: What is this?
1290 ///\bug This function does something different than
1291 ///its name would suggests...
1292 int maxEdgeId() const { return edges.size(); } //FIXME: What is this?
1294 Node tail(Edge e) const { return edges[e.n].tail; }
1295 Node head(Edge e) const { return edges[e.n].head; }
1297 Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
1298 Node aNode(InEdgeIt e) const { return edges[e.n].head; }
1300 Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
1301 Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
1303 NodeIt& first(NodeIt& v) const {
1304 v=NodeIt(*this); return v; }
1305 EdgeIt& first(EdgeIt& e) const {
1306 e=EdgeIt(*this); return e; }
1307 OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
1308 e=OutEdgeIt(*this,v); return e; }
1309 InEdgeIt& first(InEdgeIt& e, const Node v) const {
1310 e=InEdgeIt(*this,v); return e; }
1312 // template< typename It >
1313 // It first() const { It e; first(e); return e; }
1315 // template< typename It >
1316 // It first(Node v) const { It e; first(e,v); return e; }
1318 bool valid(Edge e) const { return e.n!=-1; }
1319 bool valid(Node n) const { return G.valid(n); }
1321 void setInvalid(Edge &e) { e.n=-1; }
1322 void setInvalid(Node &n) { G.setInvalid(n); }
1324 template <typename It> It getNext(It it) const
1325 { It tmp(it); return next(tmp); }
1327 NodeIt& next(NodeIt& it) const { G.next(it); return it; }
1328 OutEdgeIt& next(OutEdgeIt& it) const
1329 { it.n=edges[it.n].next_out; return it; }
1330 InEdgeIt& next(InEdgeIt& it) const
1331 { it.n=edges[it.n].next_in; return it; }
1332 EdgeIt& next(EdgeIt& it) const {
1333 if(edges[it.n].next_in!=-1) {
1334 it.n=edges[it.n].next_in;
1337 NodeIt n(*this,edges[it.n].head);
1339 valid(n) && nodes[n].first_in == -1;
1341 it.n = (valid(n))?-1:nodes[n].first_in;
1346 int id(Edge e) const { return e.n; }
1348 /// Adds a new node to the graph.
1349 Node addNode() { return G.addNode(); }
1351 Edge addEdge(Node u, Node v) {
1354 if(first_free_edge==-1)
1357 edges.push_back(EdgeT());
1360 n = first_free_edge;
1361 first_free_edge = edges[n].next_in;
1364 edges[n].tail = u; edges[n].head = v;
1366 edges[n].next_out = nodes[u].first_out;
1367 if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n;
1368 edges[n].next_in = nodes[v].first_in;
1369 if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n;
1370 edges[n].prev_in = edges[n].prev_out = -1;
1372 nodes[u].first_out = nodes[v].first_in = n;
1376 //Update dynamic maps
1377 for(typename std::vector<DynMapBase<Edge> * >::iterator
1378 i=dyn_edge_maps.begin();
1379 i!=dyn_edge_maps.end(); ++i) (**i).add(e);
1385 void eraseEdge(int n) {
1387 if(edges[n].next_in!=-1)
1388 edges[edges[n].next_in].prev_in = edges[n].prev_in;
1389 if(edges[n].prev_in!=-1)
1390 edges[edges[n].prev_in].next_in = edges[n].next_in;
1391 else nodes[edges[n].head].first_in = edges[n].next_in;
1393 if(edges[n].next_out!=-1)
1394 edges[edges[n].next_out].prev_out = edges[n].prev_out;
1395 if(edges[n].prev_out!=-1)
1396 edges[edges[n].prev_out].next_out = edges[n].next_out;
1397 else nodes[edges[n].tail].first_out = edges[n].next_out;
1399 edges[n].next_in = first_free_edge;
1400 first_free_edge = -1;
1402 //Update dynamic maps
1404 for(typename std::vector<DynMapBase<Edge> * >::iterator
1405 i=dyn_edge_maps.begin();
1406 i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
1411 // void erase(Node nn) {
1414 // while((m=nodes[n].first_in)!=-1) eraseEdge(m);
1415 // while((m=nodes[n].first_out)!=-1) eraseEdge(m);
1418 void erase(Edge e) { eraseEdge(e.n); }
1420 ///Clear all edges. (Doesn't clear the nodes!)
1427 // //\bug Dynamic maps must be updated!
1430 // nodes.clear();edges.clear();
1431 // first_node=first_free_node=first_free_edge=-1;
1435 template <typename T> class EdgeMap;
1440 friend class EdgeSet;
1441 template <typename T> friend class EdgeMap;
1444 friend class NodeIt;
1446 ///\bug It shoud be at least protected
1450 friend int EdgeSet::id(Edge e) const;
1452 Edge(int nn) {n=nn;}
1455 Edge (Invalid) { n=-1; }
1456 bool operator==(const Edge i) const {return n==i.n;}
1457 bool operator!=(const Edge i) const {return n!=i.n;}
1458 bool operator<(const Edge i) const {return n<i.n;}
1459 ///\bug This is a workaround until somebody tells me how to
1460 ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
1461 int &idref() {return n;}
1462 const int &idref() const {return n;}
1465 class EdgeIt : public Edge {
1466 friend class EdgeSet;
1467 template <typename T> friend class EdgeMap;
1471 EdgeIt(const EdgeSet& G) : Edge() {
1472 // typename NodeGraphType::Node m;
1475 G.valid(m) && G.nodes[m].first_in == -1; G.next(m));
1476 //AJJAJ! This is a non sense!!!!!!!
1477 this->n = G.valid(m)?-1:G.nodes[m].first_in;
1479 EdgeIt (Invalid i) : Edge(i) { }
1480 EdgeIt() : Edge() { }
1481 ///\bug This is a workaround until somebody tells me how to
1482 ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
1483 int &idref() {return this->n;}
1486 class OutEdgeIt : public Edge {
1487 friend class EdgeSet;
1489 OutEdgeIt() : Edge() { }
1490 OutEdgeIt (Invalid i) : Edge(i) { }
1492 OutEdgeIt(const EdgeSet& G,const Node v) : Edge(G.nodes[v].first_out) { }
1495 class InEdgeIt : public Edge {
1496 friend class EdgeSet;
1498 InEdgeIt() : Edge() { }
1499 InEdgeIt (Invalid i) : Edge(i) { }
1500 InEdgeIt(const EdgeSet& G,Node v) :Edge(G.nodes[v].first_in) { }
1503 template <typename T> class NodeMap :
1504 public NodeGraphType::template NodeMap<T>
1506 //This is a must, the constructors need it.
1507 typedef typename NodeGraphType::template NodeMap<T> ParentNodeMap;
1509 NodeMap(const EdgeSet &_G) : ParentNodeMap(_G.G) { }
1510 NodeMap(const EdgeSet &_G,const T &t) : ParentNodeMap(_G.G,t) { }
1512 NodeMap(const typename NodeGraphType::template NodeMap<T> &m) :
1513 ParentNodeMap(m) { }
1515 ///\todo It can copy between different types.
1517 template<typename TT>
1518 NodeMap(const typename NodeGraphType::template NodeMap<TT> &m)
1519 : ParentNodeMap(m) { }
1523 template <typename T> class EdgeMap : public DynMapBase<Edge>
1527 ///\bug It should be at least protected
1529 std::vector<T> container;
1532 typedef T ValueType;
1533 typedef Edge KeyType;
1535 EdgeMap(const EdgeSet &_G) :
1536 DynMapBase<Edge>(_G), container(_G.maxEdgeId())
1538 //FIXME: What if there are empty Id's?
1539 //FIXME: Can I use 'this' in a constructor?
1540 G->dyn_edge_maps.push_back(this);
1542 EdgeMap(const EdgeSet &_G,const T &t) :
1543 DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
1545 G->dyn_edge_maps.push_back(this);
1547 EdgeMap(const EdgeMap<T> &m) :
1548 DynMapBase<Edge>(*m.G), container(m.container)
1550 G->dyn_edge_maps.push_back(this);
1553 template<typename TT> friend class EdgeMap;
1555 ///\todo It can copy between different types.
1557 template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
1558 DynMapBase<Edge>(*m.G)
1560 G->dyn_edge_maps.push_back(this);
1561 typename std::vector<TT>::const_iterator i;
1562 for(typename std::vector<TT>::const_iterator i=m.container.begin();
1563 i!=m.container.end();
1565 container.push_back(*i);
1570 typename std::vector<DynMapBase<Edge>* >::iterator i;
1571 for(i=G->dyn_edge_maps.begin();
1572 i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
1573 //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
1574 //A better way to do that: (Is this really important?)
1576 *i=G->dyn_edge_maps.back();
1577 G->dyn_edge_maps.pop_back();
1582 void add(const Edge k)
1584 if(k.n>=int(container.size())) container.resize(k.n+1);
1586 void erase(const Edge) { }
1588 ///\bug This doesn't work. Why?
1589 /// void set(Edge n, T a) { container[n.n]=a; }
1590 void set(Edge n, T a) { container[G->id(n)]=a; }
1591 //T get(Edge n) const { return container[n.n]; }
1592 typename std::vector<T>::reference
1593 ///\bug This doesn't work. Why?
1594 /// operator[](Edge n) { return container[n.n]; }
1595 operator[](Edge n) { return container[G->id(n)]; }
1596 typename std::vector<T>::const_reference
1597 ///\bug This doesn't work. Why?
1598 /// operator[](Edge n) const { return container[n.n]; }
1599 operator[](Edge n) const { return container[G->id(n)]; }
1601 ///\warning There is no safety check at all!
1602 ///Using operator = between maps attached to different graph may
1603 ///cause serious problem.
1604 ///\todo Is this really so?
1605 ///\todo It can copy between different types.
1606 const EdgeMap<T>& operator=(const EdgeMap<T> &m)
1608 container = m.container;
1612 template<typename TT> friend class EdgeMap;
1614 template<typename TT>
1615 const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
1617 std::copy(m.container.begin(), m.container.end(), container.begin());
1621 void update() {} //Useless for DynMaps
1622 void update(T a) {} //Useless for DynMaps
1627 template<typename GG>
1628 inline int EdgeSet<GG>::id(Node v) const { return G.id(v); }
1634 #endif //HUGO_LIST_GRAPH_H