lemon/kruskal.h
author athos
Mon, 04 Jul 2005 13:08:31 +0000
changeset 1530 d99c3c84f797
parent 1435 8e85e6bbefdf
child 1547 dd57a540ff5f
permissions -rw-r--r--
Doc.
     1 /* -*- C++ -*-
     2  * lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_KRUSKAL_H
    18 #define LEMON_KRUSKAL_H
    19 
    20 #include <algorithm>
    21 #include <lemon/unionfind.h>
    22 #include<lemon/utility.h>
    23 
    24 /**
    25 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    26 @ingroup galgs
    27 \brief This group containes the algorithms for finding a minimum cost spanning
    28 tree in a graph
    29 
    30 This group containes the algorithms for finding a minimum cost spanning
    31 tree in a graph
    32 */
    33 
    34 ///\ingroup spantree
    35 ///\file
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    37 ///
    38 ///Kruskal's algorithm to compute a minimum cost tree.
    39 
    40 namespace lemon {
    41 
    42   /// \addtogroup spantree
    43   /// @{
    44 
    45   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    46 
    47   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    48   /// \param G The graph the algorithm runs on. The algorithm considers the
    49   /// graph to be undirected, the direction of the edges are not used.
    50   ///
    51   /// \param in This object is used to describe the edge costs. It must
    52   /// be an STL compatible 'Forward Container'
    53   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    54   /// where X is the type of the costs. It must contain every edge in
    55   /// cost-ascending order.
    56   ///\par
    57   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    58   /// which converts a
    59   /// simple edge map to an input of this form. Alternatively, you can use
    60   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    61   /// the edge costs are given by an edge map.
    62   ///
    63   /// \retval out This must be a writable \c bool edge map.
    64   /// After running the algorithm
    65   /// this will contain the found minimum cost spanning tree: the value of an
    66   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    67   /// be set to \c false. The value of each edge will be set exactly once.
    68   ///
    69   /// \return The cost of the found tree.
    70   ///
    71   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    72   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    73   /// people would expect. So, one should be careful not to add both of the
    74   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
    75   /// (\ref kruskalEdgeMap() and \ref KruskalMapInput are kind enough to do so.)
    76 
    77   template <class GR, class IN, class OUT>
    78   typename IN::value_type::second_type
    79   kruskal(GR const& G, IN const& in, 
    80 		 OUT& out)
    81   {
    82     typedef typename IN::value_type::second_type EdgeCost;
    83     typedef typename GR::template NodeMap<int> NodeIntMap;
    84     typedef typename GR::Node Node;
    85 
    86     NodeIntMap comp(G, -1);
    87     UnionFind<Node,NodeIntMap> uf(comp); 
    88       
    89     EdgeCost tot_cost = 0;
    90     for (typename IN::const_iterator p = in.begin(); 
    91 	 p!=in.end(); ++p ) {
    92       if ( uf.join(G.target((*p).first),
    93 		   G.source((*p).first)) ) {
    94 	out.set((*p).first, true);
    95 	tot_cost += (*p).second;
    96       }
    97       else {
    98 	out.set((*p).first, false);
    99       }
   100     }
   101     return tot_cost;
   102   }
   103 
   104   /* A work-around for running Kruskal with const-reference bool maps... */
   105 
   106   /// Helper class for calling kruskal with "constant" output map.
   107 
   108   /// Helper class for calling kruskal with output maps constructed
   109   /// on-the-fly.
   110   ///
   111   /// A typical examle is the following call:
   112   /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
   113   /// Here, the third argument is a temporary object (which wraps around an
   114   /// iterator with a writable bool map interface), and thus by rules of C++
   115   /// is a \c const object. To enable call like this exist this class and
   116   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   117   /// third argument.
   118   template<class Map>
   119   class NonConstMapWr {
   120     const Map &m;
   121   public:
   122     typedef typename Map::Value Value;
   123 
   124     NonConstMapWr(const Map &_m) : m(_m) {}
   125 
   126     template<class Key>
   127     void set(Key const& k, Value const &v) const { m.set(k,v); }
   128   };
   129 
   130   template <class GR, class IN, class OUT>
   131   inline
   132   typename IN::value_type::second_type
   133   kruskal(GR const& G, IN const& edges, OUT const& out_map)
   134   {
   135     NonConstMapWr<OUT> map_wr(out_map);
   136     return kruskal(G, edges, map_wr);
   137   }  
   138 
   139   /* ** ** Input-objects ** ** */
   140 
   141   /// Kruskal's input source.
   142 
   143   /// Kruskal's input source.
   144   ///
   145   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   146   ///
   147   /// \sa makeKruskalMapInput()
   148   ///
   149   ///\param GR The type of the graph the algorithm runs on.
   150   ///\param Map An edge map containing the cost of the edges.
   151   ///\par
   152   ///The cost type can be any type satisfying
   153   ///the STL 'LessThan comparable'
   154   ///concept if it also has an operator+() implemented. (It is necessary for
   155   ///computing the total cost of the tree).
   156   ///
   157   template<class GR, class Map>
   158   class KruskalMapInput
   159     : public std::vector< std::pair<typename GR::Edge,
   160 				    typename Map::Value> > {
   161     
   162   public:
   163     typedef std::vector< std::pair<typename GR::Edge,
   164 				   typename Map::Value> > Parent;
   165     typedef typename Parent::value_type value_type;
   166 
   167   private:
   168     class comparePair {
   169     public:
   170       bool operator()(const value_type& a,
   171 		      const value_type& b) {
   172 	return a.second < b.second;
   173       }
   174     };
   175 
   176     template<class _GR>
   177     typename enable_if<typename _GR::UndirTag,void>::type
   178     fillWithEdges(const _GR& G, const Map& m,dummy<0> = 0) 
   179     {
   180       for(typename GR::UndirEdgeIt e(G);e!=INVALID;++e) 
   181 	push_back(value_type(typename GR::Edge(e,true), m[e]));
   182     }
   183 
   184     template<class _GR>
   185     typename disable_if<typename _GR::UndirTag,void>::type
   186     fillWithEdges(const _GR& G, const Map& m,dummy<1> = 1) 
   187     {
   188       for(typename GR::EdgeIt e(G);e!=INVALID;++e) 
   189 	push_back(value_type(e, m[e]));
   190     }
   191     
   192     
   193   public:
   194 
   195     void sort() {
   196       std::sort(this->begin(), this->end(), comparePair());
   197     }
   198 
   199     KruskalMapInput(GR const& G, Map const& m) {
   200       fillWithEdges(G,m); 
   201       sort();
   202     }
   203   };
   204 
   205   /// Creates a KruskalMapInput object for \ref kruskal()
   206 
   207   /// It makes easier to use 
   208   /// \ref KruskalMapInput by making it unnecessary 
   209   /// to explicitly give the type of the parameters.
   210   ///
   211   /// In most cases you possibly
   212   /// want to use the function kruskalEdgeMap() instead.
   213   ///
   214   ///\param G The type of the graph the algorithm runs on.
   215   ///\param m An edge map containing the cost of the edges.
   216   ///\par
   217   ///The cost type can be any type satisfying the
   218   ///STL 'LessThan Comparable'
   219   ///concept if it also has an operator+() implemented. (It is necessary for
   220   ///computing the total cost of the tree).
   221   ///
   222   ///\return An appropriate input source for \ref kruskal().
   223   ///
   224   template<class GR, class Map>
   225   inline
   226   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
   227   {
   228     return KruskalMapInput<GR,Map>(G,m);
   229   }
   230   
   231   
   232 
   233   /* ** ** Output-objects: simple writable bool maps ** ** */
   234   
   235 
   236 
   237   /// A writable bool-map that makes a sequence of "true" keys
   238 
   239   /// A writable bool-map that creates a sequence out of keys that receives
   240   /// the value "true".
   241   ///
   242   /// \sa makeKruskalSequenceOutput()
   243   ///
   244   /// Very often, when looking for a min cost spanning tree, we want as
   245   /// output a container containing the edges of the found tree. For this
   246   /// purpose exist this class that wraps around an STL iterator with a
   247   /// writable bool map interface. When a key gets value "true" this key
   248   /// is added to sequence pointed by the iterator.
   249   ///
   250   /// A typical usage:
   251   /// \code
   252   /// std::vector<Graph::Edge> v;
   253   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   254   /// \endcode
   255   /// 
   256   /// For the most common case, when the input is given by a simple edge
   257   /// map and the output is a sequence of the tree edges, a special
   258   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   259   ///
   260   /// \warning Not a regular property map, as it doesn't know its Key
   261 
   262   template<class Iterator>
   263   class KruskalSequenceOutput {
   264     mutable Iterator it;
   265 
   266   public:
   267     typedef bool Value;
   268 
   269     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   270 
   271     template<typename Key>
   272     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   273   };
   274 
   275   template<class Iterator>
   276   inline
   277   KruskalSequenceOutput<Iterator>
   278   makeKruskalSequenceOutput(Iterator it) {
   279     return KruskalSequenceOutput<Iterator>(it);
   280   }
   281 
   282 
   283 
   284   /* ** ** Wrapper funtions ** ** */
   285 
   286 
   287 
   288   /// \brief Wrapper function to kruskal().
   289   /// Input is from an edge map, output is a plain bool map.
   290   ///
   291   /// Wrapper function to kruskal().
   292   /// Input is from an edge map, output is a plain bool map.
   293   ///
   294   ///\param G The type of the graph the algorithm runs on.
   295   ///\param in An edge map containing the cost of the edges.
   296   ///\par
   297   ///The cost type can be any type satisfying the
   298   ///STL 'LessThan Comparable'
   299   ///concept if it also has an operator+() implemented. (It is necessary for
   300   ///computing the total cost of the tree).
   301   ///
   302   /// \retval out This must be a writable \c bool edge map.
   303   /// After running the algorithm
   304   /// this will contain the found minimum cost spanning tree: the value of an
   305   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   306   /// be set to \c false. The value of each edge will be set exactly once.
   307   ///
   308   /// \return The cost of the found tree.
   309 
   310   template <class GR, class IN, class RET>
   311   inline
   312   typename IN::Value
   313   kruskalEdgeMap(GR const& G,
   314 		 IN const& in,
   315 		 RET &out) {
   316     return kruskal(G,
   317 		   KruskalMapInput<GR,IN>(G,in),
   318 		   out);
   319   }
   320 
   321   /// \brief Wrapper function to kruskal().
   322   /// Input is from an edge map, output is an STL Sequence.
   323   ///
   324   /// Wrapper function to kruskal().
   325   /// Input is from an edge map, output is an STL Sequence.
   326   ///
   327   ///\param G The type of the graph the algorithm runs on.
   328   ///\param in An edge map containing the cost of the edges.
   329   ///\par
   330   ///The cost type can be any type satisfying the
   331   ///STL 'LessThan Comparable'
   332   ///concept if it also has an operator+() implemented. (It is necessary for
   333   ///computing the total cost of the tree).
   334   ///
   335   /// \retval out This must be an iteraror of an STL Container with
   336   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   337   /// The algorithm copies the elements of the found tree into this sequence.
   338   /// For example, if we know that the spanning tree of the graph \c G has
   339   /// say 53 edges then
   340   /// we can put its edges into a STL vector \c tree with a code like this.
   341   /// \code
   342   /// std::vector<Edge> tree(53);
   343   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   344   /// \endcode
   345   /// Or if we don't know in advance the size of the tree, we can write this.
   346   /// \code
   347   /// std::vector<Edge> tree;
   348   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   349   /// \endcode
   350   ///
   351   /// \return The cost of the found tree.
   352   ///
   353   /// \bug its name does not follow the coding style.
   354 
   355   template <class GR, class IN, class RET>
   356   inline
   357   typename IN::Value
   358   kruskalEdgeMap_IteratorOut(const GR& G,
   359 			     const IN& in,
   360 			     RET out)
   361   {
   362     KruskalSequenceOutput<RET> _out(out);
   363     return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
   364   }
   365 
   366   /// @}
   367 
   368 } //namespace lemon
   369 
   370 #endif //LEMON_KRUSKAL_H