lemon/kruskal.h
author deba
Fri, 14 Apr 2006 18:05:02 +0000
changeset 2050 d9a221218ea4
parent 1979 c2992fd74dad
child 2084 59769591eb60
permissions -rw-r--r--
Changing the mining of the clear in heaps
It does not touch the heap cross ref. It is
sometimes more clean useable and more efficient
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    22 #include <algorithm>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    27 
    28 /**
    29 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    30 @ingroup galgs
    31 \brief This group containes the algorithms for finding a minimum cost spanning
    32 tree in a graph
    33 
    34 This group containes the algorithms for finding a minimum cost spanning
    35 tree in a graph
    36 */
    37 
    38 ///\ingroup spantree
    39 ///\file
    40 ///\brief Kruskal's algorithm to compute a minimum cost tree
    41 ///
    42 ///Kruskal's algorithm to compute a minimum cost tree.
    43 ///
    44 ///\todo The file still needs some clean-up.
    45 
    46 namespace lemon {
    47 
    48   /// \addtogroup spantree
    49   /// @{
    50 
    51   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    52 
    53   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    54   /// Due to hard C++ hacking, it accepts various input and output types.
    55   ///
    56   /// \param g The graph the algorithm runs on.
    57   /// It can be either \ref concept::StaticGraph "directed" or 
    58   /// \ref concept::UGraph "undirected".
    59   /// If the graph is directed, the algorithm consider it to be 
    60   /// undirected by disregarding the direction of the edges.
    61   ///
    62   /// \param in This object is used to describe the edge costs. It can be one
    63   /// of the following choices.
    64   /// - An STL compatible 'Forward Container'
    65   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    66   /// where \c X is the type of the costs. The pairs indicates the edges along
    67   /// with the assigned cost. <em>They must be in a
    68   /// cost-ascending order.</em>
    69   /// - Any readable Edge map. The values of the map indicate the edge costs.
    70   ///
    71   /// \retval out Here we also have a choise.
    72   /// - Is can be a writable \c bool edge map. 
    73   /// After running the algorithm
    74   /// this will contain the found minimum cost spanning tree: the value of an
    75   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    76   /// be set to \c false. The value of each edge will be set exactly once.
    77   /// - It can also be an iteraror of an STL Container with
    78   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
    79   /// The algorithm copies the elements of the found tree into this sequence.
    80   /// For example, if we know that the spanning tree of the graph \c g has
    81   /// say 53 edges, then
    82   /// we can put its edges into a STL vector \c tree with a code like this.
    83   ///\code
    84   /// std::vector<Edge> tree(53);
    85   /// kruskal(g,cost,tree.begin());
    86   ///\endcode
    87   /// Or if we don't know in advance the size of the tree, we can write this.
    88   ///\code
    89   /// std::vector<Edge> tree;
    90   /// kruskal(g,cost,std::back_inserter(tree));
    91   ///\endcode
    92   ///
    93   /// \return The cost of the found tree.
    94   ///
    95   /// \warning If kruskal is run on an
    96   /// \ref lemon::concept::UGraph "undirected graph", be sure that the
    97   /// map storing the tree is also undirected
    98   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
    99   /// half of the edges will not be set.
   100   ///
   101   /// \todo Discuss the case of undirected graphs: In this case the algorithm
   102   /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
   103   /// people would expect. So, one should be careful not to add both of the
   104   /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
   105   /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
   106 
   107 #ifdef DOXYGEN
   108   template <class GR, class IN, class OUT>
   109   typename IN::value_type::second_type
   110   kruskal(GR const& g, IN const& in, 
   111 	  OUT& out)
   112 #else
   113   template <class GR, class IN, class OUT>
   114   typename IN::value_type::second_type
   115   kruskal(GR const& g, IN const& in, 
   116 	  OUT& out,
   117 // 	  typename IN::value_type::first_type = typename GR::Edge()
   118 // 	  ,typename OUT::Key = OUT::Key()
   119 // 	  //,typename OUT::Key = typename GR::Edge()
   120 	  const typename IN::value_type::first_type * = 
   121 	  (const typename IN::value_type::first_type *)(0),
   122 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   123 	  )
   124 #endif
   125   {
   126     typedef typename IN::value_type::second_type EdgeCost;
   127     typedef typename GR::template NodeMap<int> NodeIntMap;
   128     typedef typename GR::Node Node;
   129 
   130     NodeIntMap comp(g, -1);
   131     UnionFind<Node,NodeIntMap> uf(comp); 
   132       
   133     EdgeCost tot_cost = 0;
   134     for (typename IN::const_iterator p = in.begin(); 
   135 	 p!=in.end(); ++p ) {
   136       if ( uf.join(g.target((*p).first),
   137 		   g.source((*p).first)) ) {
   138 	out.set((*p).first, true);
   139 	tot_cost += (*p).second;
   140       }
   141       else {
   142 	out.set((*p).first, false);
   143       }
   144     }
   145     return tot_cost;
   146   }
   147 
   148  
   149   /// @}
   150 
   151   
   152   /* A work-around for running Kruskal with const-reference bool maps... */
   153 
   154   /// Helper class for calling kruskal with "constant" output map.
   155 
   156   /// Helper class for calling kruskal with output maps constructed
   157   /// on-the-fly.
   158   ///
   159   /// A typical examle is the following call:
   160   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
   161   /// Here, the third argument is a temporary object (which wraps around an
   162   /// iterator with a writable bool map interface), and thus by rules of C++
   163   /// is a \c const object. To enable call like this exist this class and
   164   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
   165   /// third argument.
   166   template<class Map>
   167   class NonConstMapWr {
   168     const Map &m;
   169   public:
   170     typedef typename Map::Key Key;
   171     typedef typename Map::Value Value;
   172 
   173     NonConstMapWr(const Map &_m) : m(_m) {}
   174 
   175     template<class Key>
   176     void set(Key const& k, Value const &v) const { m.set(k,v); }
   177   };
   178 
   179   template <class GR, class IN, class OUT>
   180   inline
   181   typename IN::value_type::second_type
   182   kruskal(GR const& g, IN const& edges, OUT const& out_map,
   183 // 	  typename IN::value_type::first_type = typename GR::Edge(),
   184 // 	  typename OUT::Key = GR::Edge()
   185 	  const typename IN::value_type::first_type * = 
   186 	  (const typename IN::value_type::first_type *)(0),
   187 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
   188 	  )
   189   {
   190     NonConstMapWr<OUT> map_wr(out_map);
   191     return kruskal(g, edges, map_wr);
   192   }  
   193 
   194   /* ** ** Input-objects ** ** */
   195 
   196   /// Kruskal's input source.
   197  
   198   /// Kruskal's input source.
   199   ///
   200   /// In most cases you possibly want to use the \ref kruskal() instead.
   201   ///
   202   /// \sa makeKruskalMapInput()
   203   ///
   204   ///\param GR The type of the graph the algorithm runs on.
   205   ///\param Map An edge map containing the cost of the edges.
   206   ///\par
   207   ///The cost type can be any type satisfying
   208   ///the STL 'LessThan comparable'
   209   ///concept if it also has an operator+() implemented. (It is necessary for
   210   ///computing the total cost of the tree).
   211   ///
   212   template<class GR, class Map>
   213   class KruskalMapInput
   214     : public std::vector< std::pair<typename GR::Edge,
   215 				    typename Map::Value> > {
   216     
   217   public:
   218     typedef std::vector< std::pair<typename GR::Edge,
   219 				   typename Map::Value> > Parent;
   220     typedef typename Parent::value_type value_type;
   221 
   222   private:
   223     class comparePair {
   224     public:
   225       bool operator()(const value_type& a,
   226 		      const value_type& b) {
   227 	return a.second < b.second;
   228       }
   229     };
   230 
   231     template<class _GR>
   232     typename enable_if<UndirectedTagIndicator<_GR>,void>::type
   233     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
   234     {
   235       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
   236 	push_back(value_type(g.direct(e, true), m[e]));
   237     }
   238 
   239     template<class _GR>
   240     typename disable_if<UndirectedTagIndicator<_GR>,void>::type
   241     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
   242     {
   243       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
   244 	push_back(value_type(e, m[e]));
   245     }
   246     
   247     
   248   public:
   249 
   250     void sort() {
   251       std::sort(this->begin(), this->end(), comparePair());
   252     }
   253 
   254     KruskalMapInput(GR const& g, Map const& m) {
   255       fillWithEdges(g,m); 
   256       sort();
   257     }
   258   };
   259 
   260   /// Creates a KruskalMapInput object for \ref kruskal()
   261 
   262   /// It makes easier to use 
   263   /// \ref KruskalMapInput by making it unnecessary 
   264   /// to explicitly give the type of the parameters.
   265   ///
   266   /// In most cases you possibly
   267   /// want to use \ref kruskal() instead.
   268   ///
   269   ///\param g The type of the graph the algorithm runs on.
   270   ///\param m An edge map containing the cost of the edges.
   271   ///\par
   272   ///The cost type can be any type satisfying the
   273   ///STL 'LessThan Comparable'
   274   ///concept if it also has an operator+() implemented. (It is necessary for
   275   ///computing the total cost of the tree).
   276   ///
   277   ///\return An appropriate input source for \ref kruskal().
   278   ///
   279   template<class GR, class Map>
   280   inline
   281   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
   282   {
   283     return KruskalMapInput<GR,Map>(g,m);
   284   }
   285   
   286   
   287 
   288   /* ** ** Output-objects: simple writable bool maps ** ** */
   289   
   290 
   291 
   292   /// A writable bool-map that makes a sequence of "true" keys
   293 
   294   /// A writable bool-map that creates a sequence out of keys that receives
   295   /// the value "true".
   296   ///
   297   /// \sa makeKruskalSequenceOutput()
   298   ///
   299   /// Very often, when looking for a min cost spanning tree, we want as
   300   /// output a container containing the edges of the found tree. For this
   301   /// purpose exist this class that wraps around an STL iterator with a
   302   /// writable bool map interface. When a key gets value "true" this key
   303   /// is added to sequence pointed by the iterator.
   304   ///
   305   /// A typical usage:
   306   ///\code
   307   /// std::vector<Graph::Edge> v;
   308   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
   309   ///\endcode
   310   /// 
   311   /// For the most common case, when the input is given by a simple edge
   312   /// map and the output is a sequence of the tree edges, a special
   313   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
   314   ///
   315   /// \warning Not a regular property map, as it doesn't know its Key
   316 
   317   template<class Iterator>
   318   class KruskalSequenceOutput {
   319     mutable Iterator it;
   320 
   321   public:
   322     typedef typename std::iterator_traits<Iterator>::value_type Key;
   323     typedef bool Value;
   324 
   325     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   326 
   327     template<typename Key>
   328     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
   329   };
   330 
   331   template<class Iterator>
   332   inline
   333   KruskalSequenceOutput<Iterator>
   334   makeKruskalSequenceOutput(Iterator it) {
   335     return KruskalSequenceOutput<Iterator>(it);
   336   }
   337 
   338 
   339 
   340   /* ** ** Wrapper funtions ** ** */
   341 
   342 //   \brief Wrapper function to kruskal().
   343 //   Input is from an edge map, output is a plain bool map.
   344 //  
   345 //   Wrapper function to kruskal().
   346 //   Input is from an edge map, output is a plain bool map.
   347 //  
   348 //   \param g The type of the graph the algorithm runs on.
   349 //   \param in An edge map containing the cost of the edges.
   350 //   \par
   351 //   The cost type can be any type satisfying the
   352 //   STL 'LessThan Comparable'
   353 //   concept if it also has an operator+() implemented. (It is necessary for
   354 //   computing the total cost of the tree).
   355 //  
   356 //   \retval out This must be a writable \c bool edge map.
   357 //   After running the algorithm
   358 //   this will contain the found minimum cost spanning tree: the value of an
   359 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   360 //   be set to \c false. The value of each edge will be set exactly once.
   361 //  
   362 //   \return The cost of the found tree.
   363 
   364   template <class GR, class IN, class RET>
   365   inline
   366   typename IN::Value
   367   kruskal(GR const& g,
   368 	  IN const& in,
   369 	  RET &out,
   370 	  //	  typename IN::Key = typename GR::Edge(),
   371 	  //typename IN::Key = typename IN::Key (),
   372 	  //	  typename RET::Key = typename GR::Edge()
   373 	  const typename IN::Key *  = (const typename IN::Key *)(0),
   374 	  const typename RET::Key * = (const typename RET::Key *)(0)
   375 	  )
   376   {
   377     return kruskal(g,
   378 		   KruskalMapInput<GR,IN>(g,in),
   379 		   out);
   380   }
   381 
   382 //   \brief Wrapper function to kruskal().
   383 //   Input is from an edge map, output is an STL Sequence.
   384 //  
   385 //   Wrapper function to kruskal().
   386 //   Input is from an edge map, output is an STL Sequence.
   387 //  
   388 //   \param g The type of the graph the algorithm runs on.
   389 //   \param in An edge map containing the cost of the edges.
   390 //   \par
   391 //   The cost type can be any type satisfying the
   392 //   STL 'LessThan Comparable'
   393 //   concept if it also has an operator+() implemented. (It is necessary for
   394 //   computing the total cost of the tree).
   395 //  
   396 //   \retval out This must be an iteraror of an STL Container with
   397 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   398 //   The algorithm copies the elements of the found tree into this sequence.
   399 //   For example, if we know that the spanning tree of the graph \c g has
   400 //   say 53 edges, then
   401 //   we can put its edges into a STL vector \c tree with a code like this.
   402 //\code
   403 //   std::vector<Edge> tree(53);
   404 //   kruskal(g,cost,tree.begin());
   405 //\endcode
   406 //   Or if we don't know in advance the size of the tree, we can write this.
   407 //\code
   408 //   std::vector<Edge> tree;
   409 //   kruskal(g,cost,std::back_inserter(tree));
   410 //\endcode
   411 //  
   412 //   \return The cost of the found tree.
   413 //  
   414 //   \bug its name does not follow the coding style.
   415 
   416   template <class GR, class IN, class RET>
   417   inline
   418   typename IN::Value
   419   kruskal(const GR& g,
   420 	  const IN& in,
   421 	  RET out,
   422 	  const typename RET::value_type * = 
   423 	  (const typename RET::value_type *)(0)
   424 	  )
   425   {
   426     KruskalSequenceOutput<RET> _out(out);
   427     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   428   }
   429  
   430   template <class GR, class IN, class RET>
   431   inline
   432   typename IN::Value
   433   kruskal(const GR& g,
   434 	  const IN& in,
   435 	  RET *out
   436 	  )
   437   {
   438     KruskalSequenceOutput<RET*> _out(out);
   439     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   440   }
   441  
   442   /// @}
   443 
   444 } //namespace lemon
   445 
   446 #endif //LEMON_KRUSKAL_H