src/work/marci/augmenting_flow.h
author alpar
Mon, 21 Feb 2005 09:28:00 +0000
changeset 1160 d9c32f713cad
parent 986 e997802b855c
permissions -rw-r--r--
We have UndirGraph, so BidirGraph has been removed.
     1 // -*- C++ -*-
     2 #ifndef LEMON_AUGMENTING_FLOW_H
     3 #define LEMON_AUGMENTING_FLOW_H
     4 
     5 #include <vector>
     6 #include <iostream>
     7 
     8 #include <lemon/graph_wrapper.h>
     9 //#include <bfs_dfs.h>
    10 #include <bfs_mm.h>
    11 #include <lemon/invalid.h>
    12 #include <lemon/maps.h>
    13 #include <demo/tight_edge_filter_map.h>
    14 
    15 /// \file
    16 /// \brief Maximum flow algorithms.
    17 /// \ingroup galgs
    18 
    19 namespace lemon {
    20   using lemon::marci::BfsIterator;
    21   using lemon::marci::DfsIterator;
    22 
    23   /// \addtogroup galgs
    24   /// @{                                                                                                                                        
    25   /// Class for augmenting path flow algorithms.
    26 
    27   /// This class provides various algorithms for finding a flow of
    28   /// maximum value in a directed graph. The \e source node, the \e
    29   /// target node, the \e capacity of the edges and the \e starting \e
    30   /// flow value of the edges should be passed to the algorithm through the
    31   /// constructor. 
    32 //   /// It is possible to change these quantities using the
    33 //   /// functions \ref resetSource, \ref resetTarget, \ref resetCap and
    34 //   /// \ref resetFlow. Before any subsequent runs of any algorithm of
    35 //   /// the class \ref resetFlow should be called. 
    36 
    37   /// After running an algorithm of the class, the actual flow value 
    38   /// can be obtained by calling \ref flowValue(). The minimum
    39   /// value cut can be written into a \c node map of \c bools by
    40   /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    41   /// the inclusionwise minimum and maximum of the minimum value
    42   /// cuts, resp.)                                                                                                                               
    43   ///\param Graph The directed graph type the algorithm runs on.
    44   ///\param Num The number type of the capacities and the flow values.
    45   ///\param CapMap The capacity map type.
    46   ///\param FlowMap The flow map type.                                                                                                           
    47   ///\author Marton Makai
    48   template <typename Graph, typename Num,
    49 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    50             typename FlowMap=typename Graph::template EdgeMap<Num> >
    51   class AugmentingFlow {
    52   protected:
    53     typedef typename Graph::Node Node;
    54     typedef typename Graph::NodeIt NodeIt;
    55     typedef typename Graph::EdgeIt EdgeIt;
    56     typedef typename Graph::OutEdgeIt OutEdgeIt;
    57     typedef typename Graph::InEdgeIt InEdgeIt;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64 //    int n;      //the number of nodes of G
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    70     typedef typename Graph::template NodeMap<int> ReachedMap;
    71 
    72     //level works as a bool map in augmenting path algorithms and is
    73     //used by bfs for storing reached information.  In preflow, it
    74     //shows the levels of nodes.     
    75     ReachedMap level;
    76 
    77   public:
    78     ///Indicates the property of the starting flow.
    79 
    80     ///Indicates the property of the starting flow. The meanings are as follows:
    81     ///- \c ZERO_FLOW: constant zero flow
    82     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    83     ///the sum of the out-flows in every node except the \e source and
    84     ///the \e target.
    85     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    86     ///least the sum of the out-flows in every node except the \e source.
    87     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    88     ///set to the constant zero flow in the beginning of the algorithm in this case.
    89     enum FlowEnum{
    90       ZERO_FLOW,
    91       GEN_FLOW,
    92       PRE_FLOW,
    93       NO_FLOW
    94     };
    95 
    96     enum StatusEnum {
    97       AFTER_NOTHING,
    98       AFTER_AUGMENTING,
    99       AFTER_FAST_AUGMENTING, 
   100       AFTER_PRE_FLOW_PHASE_1,      
   101       AFTER_PRE_FLOW_PHASE_2
   102     };
   103 
   104     /// Don not needle this flag only if necessary.
   105     StatusEnum status;
   106     int number_of_augmentations;
   107 
   108 
   109     template<typename IntMap>
   110     class TrickyReachedMap {
   111     protected:
   112       IntMap* map;
   113       int* number_of_augmentations;
   114     public:
   115       typedef Node Key;
   116       typedef bool Value;
   117       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   118 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   119       void set(const Node& n, bool b) {
   120 	if (b)
   121 	  map->set(n, *number_of_augmentations);
   122 	else 
   123 	  map->set(n, *number_of_augmentations-1);
   124       }
   125       bool operator[](const Node& n) const { 
   126 	return (*map)[n]==*number_of_augmentations; 
   127       }
   128     };
   129     
   130     AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   131 		   FlowMap& _flow) :
   132       g(&_G), s(_s), t(_t), capacity(&_capacity),
   133       flow(&_flow), //n(_G.nodeNum()), 
   134       level(_G), //excess(_G,0), 
   135       status(AFTER_NOTHING), number_of_augmentations(0) { }
   136 
   137     /// Starting from a flow, this method searches for an augmenting path
   138     /// according to the Edmonds-Karp algorithm
   139     /// and augments the flow on if any.
   140     /// The return value shows if the augmentation was succesful.
   141     bool augmentOnShortestPath();
   142     bool augmentOnShortestPath2();
   143 
   144     /// Starting from a flow, this method searches for an augmenting blocking
   145     /// flow according to Dinits' algorithm and augments the flow on if any.
   146     /// The blocking flow is computed in a physically constructed
   147     /// residual graph of type \c Mutablegraph.
   148     /// The return value show sif the augmentation was succesful.
   149     template<typename MutableGraph> bool augmentOnBlockingFlow();
   150 
   151     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   152     /// residual graph is not constructed physically.
   153     /// The return value shows if the augmentation was succesful.
   154     bool augmentOnBlockingFlow2();
   155 
   156     template<typename _CutMap>
   157     void actMinCut(_CutMap& M) const {
   158       NodeIt v;
   159       switch (status) {
   160 	case AFTER_PRE_FLOW_PHASE_1:
   161 //	std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
   162 // 	for(g->first(v); g->valid(v); g->next(v)) {
   163 // 	  if (level[v] < n) {
   164 // 	    M.set(v, false);
   165 // 	  } else {
   166 // 	    M.set(v, true);
   167 // 	  }
   168 // 	}
   169 	break;
   170       case AFTER_PRE_FLOW_PHASE_2:
   171 //	std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
   172 	break;
   173       case AFTER_NOTHING:
   174 //	std::cout << "AFTER_NOTHING" << std::endl;
   175 	minMinCut(M);
   176 	break;
   177       case AFTER_AUGMENTING:
   178 //	std::cout << "AFTER_AUGMENTING" << std::endl;
   179 	for(g->first(v); v!=INVALID; ++v) {
   180 	  if (level[v]) {
   181 	    M.set(v, true);
   182 	  } else {
   183 	    M.set(v, false);
   184 	  }
   185 	}
   186 	break;
   187       case AFTER_FAST_AUGMENTING:
   188 //	std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
   189 	for(g->first(v); v!=INVALID; ++v) {
   190 	  if (level[v]==number_of_augmentations) {
   191 	    M.set(v, true);
   192 	  } else {
   193 	    M.set(v, false);
   194 	  }
   195 	}
   196 	break;
   197       }
   198     }
   199 
   200     template<typename _CutMap>
   201     void minMinCut(_CutMap& M) const {
   202       std::queue<Node> queue;
   203 
   204       M.set(s,true);
   205       queue.push(s);
   206 
   207       while (!queue.empty()) {
   208         Node w=queue.front();
   209 	queue.pop();
   210 
   211 	OutEdgeIt e;
   212 	for(g->first(e,w) ; e!=INVALID; ++e) {
   213 	  Node v=g->target(e);
   214 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   215 	    queue.push(v);
   216 	    M.set(v, true);
   217 	  }
   218 	}
   219 
   220 	InEdgeIt f;
   221 	for(g->first(f,w) ; f!=INVALID; ++f) {
   222 	  Node v=g->source(f);
   223 	  if (!M[v] && (*flow)[f] > 0 ) {
   224 	    queue.push(v);
   225 	    M.set(v, true);
   226 	  }
   227 	}
   228       }
   229     }
   230 
   231     template<typename _CutMap>
   232     void minMinCut2(_CutMap& M) const {
   233       ResGW res_graph(*g, *capacity, *flow);
   234       BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
   235       bfs.pushAndSetReached(s);
   236       while (!bfs.finished()) ++bfs;
   237     }
   238 
   239     Num flowValue() const {
   240       Num a=0;
   241       for (InEdgeIt e(*g, t); e!=INVALID; ++e) a+=(*flow)[e];
   242       for (OutEdgeIt e(*g, t); e!=INVALID; ++e) a-=(*flow)[e];
   243       return a;
   244       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   245     }
   246 
   247   };
   248 
   249 
   250 
   251   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   252   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   253   {
   254     ResGW res_graph(*g, *capacity, *flow);
   255     typename ResGW::ResCap res_cap(res_graph);
   256 
   257     bool _augment=false;
   258 
   259     //ReachedMap level(res_graph);
   260     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
   261     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   262     bfs.pushAndSetReached(s);
   263 
   264     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   265     pred.set(s, INVALID);
   266 
   267     typename ResGW::template NodeMap<Num> free(res_graph);
   268 
   269     //searching for augmenting path
   270     while ( !bfs.finished() ) {
   271       ResGWEdge e=bfs;
   272       if (e!=INVALID && bfs.isBNodeNewlyReached()) {
   273 	Node v=res_graph.source(e);
   274 	Node w=res_graph.target(e);
   275 	pred.set(w, e);
   276 	if (pred[v]!=INVALID) {
   277 	  free.set(w, std::min(free[v], res_cap[e]));
   278 	} else {
   279 	  free.set(w, res_cap[e]);
   280 	}
   281 	if (res_graph.target(e)==t) { _augment=true; break; }
   282       }
   283 
   284       ++bfs;
   285     } //end of searching augmenting path
   286 
   287     if (_augment) {
   288       Node n=t;
   289       Num augment_value=free[t];
   290       while (pred[n]!=INVALID) {
   291 	ResGWEdge e=pred[n];
   292 	res_graph.augment(e, augment_value);
   293 	n=res_graph.source(e);
   294       }
   295     }
   296 
   297     status=AFTER_AUGMENTING;
   298     return _augment;
   299   }
   300 
   301   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   302   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
   303   {
   304     ResGW res_graph(*g, *capacity, *flow);
   305     typename ResGW::ResCap res_cap(res_graph);
   306 
   307     bool _augment=false;
   308 
   309     if (status!=AFTER_FAST_AUGMENTING) {
   310       for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); 
   311       number_of_augmentations=1;
   312     } else {
   313       ++number_of_augmentations;
   314     }
   315     TrickyReachedMap<ReachedMap> 
   316       tricky_reached_map(level, number_of_augmentations);
   317     //ReachedMap level(res_graph);
   318 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   319     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
   320       bfs(res_graph, tricky_reached_map);
   321     bfs.pushAndSetReached(s);
   322 
   323     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   324     pred.set(s, INVALID);
   325 
   326     typename ResGW::template NodeMap<Num> free(res_graph);
   327 
   328     //searching for augmenting path
   329     while ( !bfs.finished() ) {
   330       ResGWEdge e=bfs;
   331       if (e!=INVALID && bfs.isBNodeNewlyReached()) {
   332 	Node v=res_graph.source(e);
   333 	Node w=res_graph.target(e);
   334 	pred.set(w, e);
   335 	if (pred[v]!=INVALID) {
   336 	  free.set(w, std::min(free[v], res_cap[e]));
   337 	} else {
   338 	  free.set(w, res_cap[e]);
   339 	}
   340 	if (res_graph.target(e)==t) { _augment=true; break; }
   341       }
   342 
   343       ++bfs;
   344     } //end of searching augmenting path
   345 
   346     if (_augment) {
   347       Node n=t;
   348       Num augment_value=free[t];
   349       while (pred[n]!=INVALID) {
   350 	ResGWEdge e=pred[n];
   351 	res_graph.augment(e, augment_value);
   352 	n=res_graph.source(e);
   353       }
   354     }
   355 
   356     status=AFTER_FAST_AUGMENTING;
   357     return _augment;
   358   }
   359 
   360 
   361   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   362   template<typename MutableGraph>
   363   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
   364   {
   365     typedef MutableGraph MG;
   366     bool _augment=false;
   367 
   368     ResGW res_graph(*g, *capacity, *flow);
   369     typename ResGW::ResCap res_cap(res_graph);
   370 
   371     //bfs for distances on the residual graph
   372     //ReachedMap level(res_graph);
   373     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
   374     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   375     bfs.pushAndSetReached(s);
   376     typename ResGW::template NodeMap<int>
   377       dist(res_graph); //filled up with 0's
   378 
   379     //F will contain the physical copy of the residual graph
   380     //with the set of edges which are on shortest paths
   381     MG F;
   382     typename ResGW::template NodeMap<typename MG::Node>
   383       res_graph_to_F(res_graph);
   384     {
   385       for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n) 
   386 	res_graph_to_F.set(n, F.addNode());
   387     }
   388 
   389     typename MG::Node sF=res_graph_to_F[s];
   390     typename MG::Node tF=res_graph_to_F[t];
   391     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
   392     typename MG::template EdgeMap<Num> residual_capacity(F);
   393 
   394     while ( !bfs.finished() ) {
   395       ResGWEdge e=bfs;
   396       if (e!=INVALID) {
   397 	if (bfs.isBNodeNewlyReached()) {
   398 	  dist.set(res_graph.target(e), dist[res_graph.source(e)]+1);
   399 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)],
   400 					res_graph_to_F[res_graph.target(e)]);
   401 	  //original_edge.update();
   402 	  original_edge.set(f, e);
   403 	  //residual_capacity.update();
   404 	  residual_capacity.set(f, res_cap[e]);
   405 	} else {
   406 	  if (dist[res_graph.target(e)]==(dist[res_graph.source(e)]+1)) {
   407 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)],
   408 					  res_graph_to_F[res_graph.target(e)]);
   409 	    //original_edge.update();
   410 	    original_edge.set(f, e);
   411 	    //residual_capacity.update();
   412 	    residual_capacity.set(f, res_cap[e]);
   413 	  }
   414 	}
   415       }
   416       ++bfs;
   417     } //computing distances from s in the residual graph
   418 
   419     bool __augment=true;
   420 
   421     while (__augment) {
   422       __augment=false;
   423       //computing blocking flow with dfs
   424       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
   425       typename MG::template NodeMap<typename MG::Edge> pred(F);
   426       pred.set(sF, INVALID);
   427       //invalid iterators for sources
   428 
   429       typename MG::template NodeMap<Num> free(F);
   430 
   431       dfs.pushAndSetReached(sF);
   432       while (!dfs.finished()) {
   433 	++dfs;
   434 	if (typename MG::Edge(dfs)!=INVALID) {
   435 	  if (dfs.isBNodeNewlyReached()) {
   436 	    typename MG::Node v=F.source(dfs);
   437 	    typename MG::Node w=F.target(dfs);
   438 	    pred.set(w, dfs);
   439 	    if (pred[v]!=INVALID) {
   440 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
   441 	    } else {
   442 	      free.set(w, residual_capacity[dfs]);
   443 	    }
   444 	    if (w==tF) {
   445 	      __augment=true;
   446 	      _augment=true;
   447 	      break;
   448 	    }
   449 
   450 	  } else {
   451 	    F.erase(typename MG::Edge(dfs));
   452 	  }
   453 	}
   454       }
   455 
   456       if (__augment) {
   457 	typename MG::Node n=tF;
   458 	Num augment_value=free[tF];
   459 	while (pred[n]!=INVALID) {
   460 	  typename MG::Edge e=pred[n];
   461 	  res_graph.augment(original_edge[e], augment_value);
   462 	  n=F.source(e);
   463 	  if (residual_capacity[e]==augment_value)
   464 	    F.erase(e);
   465 	  else
   466 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
   467 	}
   468       }
   469 
   470     }
   471 
   472     status=AFTER_AUGMENTING;
   473     return _augment;
   474   }
   475 
   476   /// Blocking flow augmentation without constructing the layered 
   477   /// graph physically in which the blocking flow is computed.
   478   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   479   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
   480   {
   481     bool _augment=false;
   482 
   483     ResGW res_graph(*g, *capacity, *flow);
   484     typename ResGW::ResCap res_cap(res_graph);
   485 
   486     //Potential map, for distances from s
   487     typename ResGW::template NodeMap<int> potential(res_graph, 0);
   488     typedef ConstMap<typename ResGW::Edge, int> Const1Map; 
   489     Const1Map const_1_map(1);
   490     TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
   491       Const1Map> tight_edge_filter(res_graph, potential, const_1_map);
   492 
   493     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
   494     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   495     bfs.pushAndSetReached(s);
   496 
   497     //computing distances from s in the residual graph
   498     while ( !bfs.finished() ) {
   499       ResGWEdge e=bfs;
   500       if (e!=INVALID && bfs.isBNodeNewlyReached())
   501 	potential.set(res_graph.target(e), potential[res_graph.source(e)]+1);
   502       ++bfs;
   503     } 
   504 
   505     //Subgraph containing the edges on some shortest paths 
   506     //(i.e. tight edges)
   507     ConstMap<typename ResGW::Node, bool> true_map(true);
   508     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
   509       TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, 
   510       Const1Map> > FilterResGW;
   511     FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter);
   512 
   513     //Subgraph, which is able to delete edges which are already
   514     //met by the dfs
   515     typename FilterResGW::template NodeMap<typename FilterResGW::Edge>
   516       first_out_edges(filter_res_graph);
   517     for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v)
   518       first_out_edges.set
   519 	(v, typename FilterResGW::OutEdgeIt(filter_res_graph, v));
   520 
   521     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
   522       template NodeMap<typename FilterResGW::Edge> > ErasingResGW;
   523     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
   524 
   525     bool __augment=true;
   526 
   527     while (__augment) {
   528 
   529       __augment=false;
   530       //computing blocking flow with dfs
   531       DfsIterator< ErasingResGW,
   532 	typename ErasingResGW::template NodeMap<bool> >
   533 	dfs(erasing_res_graph);
   534       typename ErasingResGW::
   535 	template NodeMap<typename ErasingResGW::Edge> pred(erasing_res_graph);
   536       pred.set(s, INVALID);
   537       //invalid iterators for sources
   538 
   539       typename ErasingResGW::template NodeMap<Num>
   540 	free1(erasing_res_graph);
   541 
   542       dfs.pushAndSetReached
   543 	/// \bug lemon 0.2
   544 	(typename ErasingResGW::Node
   545 	 (typename FilterResGW::Node
   546 	  (typename ResGW::Node(s)
   547 	   )
   548 	  )
   549 	 );
   550 	
   551       while (!dfs.finished()) {
   552 	++dfs;
   553 	if (typename ErasingResGW::Edge(dfs)!=INVALID) {
   554 	  if (dfs.isBNodeNewlyReached()) {
   555 	    
   556 	    typename ErasingResGW::Node v=erasing_res_graph.source(dfs);
   557 	    typename ErasingResGW::Node w=erasing_res_graph.target(dfs);
   558 
   559 	    pred.set(w, typename ErasingResGW::Edge(dfs));
   560 	    if (pred[v]!=INVALID) {
   561 	      free1.set
   562 		(w, std::min(free1[v], res_cap
   563 			     [typename ErasingResGW::Edge(dfs)]));
   564 	    } else {
   565 	      free1.set
   566 		(w, res_cap
   567 		 [typename ErasingResGW::Edge(dfs)]);
   568 	    }
   569 
   570 	    if (w==t) {
   571 	      __augment=true;
   572 	      _augment=true;
   573 	      break;
   574 	    }
   575 	  } else {
   576 	    erasing_res_graph.erase(dfs);
   577 	  }
   578 	}
   579       }
   580 
   581       if (__augment) {
   582 	typename ErasingResGW::Node
   583 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
   584 	Num augment_value=free1[n];
   585 	while (pred[n]!=INVALID) {
   586 	  typename ErasingResGW::Edge e=pred[n];
   587 	  res_graph.augment(e, augment_value);
   588 	  n=erasing_res_graph.source(e);
   589 	  if (res_cap[e]==0)
   590 	    erasing_res_graph.erase(e);
   591 	}
   592       }
   593 
   594     } //while (__augment)
   595 
   596     status=AFTER_AUGMENTING;
   597     return _augment;
   598   }
   599 
   600 
   601 } //namespace lemon
   602 
   603 #endif //LEMON_AUGMENTING_FLOW_H
   604 
   605