lemon/dfs.h
author deba
Tue, 09 Oct 2007 09:36:54 +0000
changeset 2488 da94e3b332f3
parent 2443 14abfa02bf42
child 2490 31a93dd6f714
permissions -rw-r--r--
Bug fix in MaxMatching
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DFS_H
    20 #define LEMON_DFS_H
    21 
    22 ///\ingroup search
    23 ///\file
    24 ///\brief Dfs algorithm.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/bits/path_dump.h>
    29 #include <lemon/bits/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <lemon/concept_check.h>
    34 
    35 namespace lemon {
    36 
    37   
    38   ///Default traits class of Dfs class.
    39 
    40   ///Default traits class of Dfs class.
    41   ///\param GR Graph type.
    42   template<class GR>
    43   struct DfsDefaultTraits
    44   {
    45     ///The graph type the algorithm runs on. 
    46     typedef GR Graph;
    47     ///\brief The type of the map that stores the last
    48     ///edges of the %DFS paths.
    49     /// 
    50     ///The type of the map that stores the last
    51     ///edges of the %DFS paths.
    52     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    53     ///
    54     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    55     ///Instantiates a PredMap.
    56  
    57     ///This function instantiates a \ref PredMap. 
    58     ///\param G is the graph, to which we would like to define the PredMap.
    59     ///\todo The graph alone may be insufficient to initialize
    60     static PredMap *createPredMap(const GR &G) 
    61     {
    62       return new PredMap(G);
    63     }
    64 
    65     ///The type of the map that indicates which nodes are processed.
    66  
    67     ///The type of the map that indicates which nodes are processed.
    68     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    69     ///\todo named parameter to set this type, function to read and write.
    70     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
    71     ///Instantiates a ProcessedMap.
    72  
    73     ///This function instantiates a \ref ProcessedMap. 
    74     ///\param g is the graph, to which
    75     ///we would like to define the \ref ProcessedMap
    76 #ifdef DOXYGEN
    77     static ProcessedMap *createProcessedMap(const GR &g)
    78 #else
    79     static ProcessedMap *createProcessedMap(const GR &)
    80 #endif
    81     {
    82       return new ProcessedMap();
    83     }
    84     ///The type of the map that indicates which nodes are reached.
    85  
    86     ///The type of the map that indicates which nodes are reached.
    87     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    88     ///\todo named parameter to set this type, function to read and write.
    89     typedef typename Graph::template NodeMap<bool> ReachedMap;
    90     ///Instantiates a ReachedMap.
    91  
    92     ///This function instantiates a \ref ReachedMap. 
    93     ///\param G is the graph, to which
    94     ///we would like to define the \ref ReachedMap.
    95     static ReachedMap *createReachedMap(const GR &G)
    96     {
    97       return new ReachedMap(G);
    98     }
    99     ///The type of the map that stores the dists of the nodes.
   100  
   101     ///The type of the map that stores the dists of the nodes.
   102     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   103     ///
   104     typedef typename Graph::template NodeMap<int> DistMap;
   105     ///Instantiates a DistMap.
   106  
   107     ///This function instantiates a \ref DistMap. 
   108     ///\param G is the graph, to which we would like to define the \ref DistMap
   109     static DistMap *createDistMap(const GR &G)
   110     {
   111       return new DistMap(G);
   112     }
   113   };
   114   
   115   ///%DFS algorithm class.
   116   
   117   ///\ingroup search
   118   ///This class provides an efficient implementation of the %DFS algorithm.
   119   ///
   120   ///\param GR The graph type the algorithm runs on. The default value is
   121   ///\ref ListGraph. The value of GR is not used directly by Dfs, it
   122   ///is only passed to \ref DfsDefaultTraits.
   123   ///\param TR Traits class to set various data types used by the algorithm.
   124   ///The default traits class is
   125   ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
   126   ///See \ref DfsDefaultTraits for the documentation of
   127   ///a Dfs traits class.
   128   ///
   129   ///\author Jacint Szabo and Alpar Juttner
   130 #ifdef DOXYGEN
   131   template <typename GR,
   132 	    typename TR>
   133 #else
   134   template <typename GR=ListGraph,
   135 	    typename TR=DfsDefaultTraits<GR> >
   136 #endif
   137   class Dfs {
   138   public:
   139     /**
   140      * \brief \ref Exception for uninitialized parameters.
   141      *
   142      * This error represents problems in the initialization
   143      * of the parameters of the algorithms.
   144      */
   145     class UninitializedParameter : public lemon::UninitializedParameter {
   146     public:
   147       virtual const char* what() const throw() {
   148 	return "lemon::Dfs::UninitializedParameter";
   149       }
   150     };
   151 
   152     typedef TR Traits;
   153     ///The type of the underlying graph.
   154     typedef typename TR::Graph Graph;
   155     ///\e
   156     typedef typename Graph::Node Node;
   157     ///\e
   158     typedef typename Graph::NodeIt NodeIt;
   159     ///\e
   160     typedef typename Graph::Edge Edge;
   161     ///\e
   162     typedef typename Graph::OutEdgeIt OutEdgeIt;
   163     
   164     ///\brief The type of the map that stores the last
   165     ///edges of the %DFS paths.
   166     typedef typename TR::PredMap PredMap;
   167     ///The type of the map indicating which nodes are reached.
   168     typedef typename TR::ReachedMap ReachedMap;
   169     ///The type of the map indicating which nodes are processed.
   170     typedef typename TR::ProcessedMap ProcessedMap;
   171     ///The type of the map that stores the dists of the nodes.
   172     typedef typename TR::DistMap DistMap;
   173   private:
   174     /// Pointer to the underlying graph.
   175     const Graph *G;
   176     ///Pointer to the map of predecessors edges.
   177     PredMap *_pred;
   178     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   179     bool local_pred;
   180     ///Pointer to the map of distances.
   181     DistMap *_dist;
   182     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   183     bool local_dist;
   184     ///Pointer to the map of reached status of the nodes.
   185     ReachedMap *_reached;
   186     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   187     bool local_reached;
   188     ///Pointer to the map of processed status of the nodes.
   189     ProcessedMap *_processed;
   190     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   191     bool local_processed;
   192 
   193     std::vector<typename Graph::OutEdgeIt> _stack;
   194     int _stack_head;
   195 
   196     ///Creates the maps if necessary.
   197     
   198     ///\todo Better memory allocation (instead of new).
   199     void create_maps() 
   200     {
   201       if(!_pred) {
   202 	local_pred = true;
   203 	_pred = Traits::createPredMap(*G);
   204       }
   205       if(!_dist) {
   206 	local_dist = true;
   207 	_dist = Traits::createDistMap(*G);
   208       }
   209       if(!_reached) {
   210 	local_reached = true;
   211 	_reached = Traits::createReachedMap(*G);
   212       }
   213       if(!_processed) {
   214 	local_processed = true;
   215 	_processed = Traits::createProcessedMap(*G);
   216       }
   217     }
   218 
   219   protected:
   220 
   221     Dfs() {}
   222     
   223   public:
   224 
   225     typedef Dfs Create;
   226 
   227     ///\name Named template parameters
   228 
   229     ///@{
   230 
   231     template <class T>
   232     struct DefPredMapTraits : public Traits {
   233       typedef T PredMap;
   234       static PredMap *createPredMap(const Graph &G) 
   235       {
   236 	throw UninitializedParameter();
   237       }
   238     };
   239     ///\ref named-templ-param "Named parameter" for setting PredMap type
   240 
   241     ///\ref named-templ-param "Named parameter" for setting PredMap type
   242     ///
   243     template <class T>
   244     struct DefPredMap : public Dfs<Graph, DefPredMapTraits<T> > {
   245       typedef Dfs<Graph, DefPredMapTraits<T> > Create;
   246     };
   247     
   248     
   249     template <class T>
   250     struct DefDistMapTraits : public Traits {
   251       typedef T DistMap;
   252       static DistMap *createDistMap(const Graph &) 
   253       {
   254 	throw UninitializedParameter();
   255       }
   256     };
   257     ///\ref named-templ-param "Named parameter" for setting DistMap type
   258 
   259     ///\ref named-templ-param "Named parameter" for setting DistMap type
   260     ///
   261     template <class T>
   262     struct DefDistMap {
   263       typedef Dfs<Graph, DefDistMapTraits<T> > Create;
   264     };
   265     
   266     template <class T>
   267     struct DefReachedMapTraits : public Traits {
   268       typedef T ReachedMap;
   269       static ReachedMap *createReachedMap(const Graph &) 
   270       {
   271 	throw UninitializedParameter();
   272       }
   273     };
   274     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   275 
   276     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   277     ///
   278     template <class T>
   279     struct DefReachedMap : public Dfs< Graph, DefReachedMapTraits<T> > {
   280       typedef Dfs< Graph, DefReachedMapTraits<T> > Create;
   281     };
   282 
   283     template <class T>
   284     struct DefProcessedMapTraits : public Traits {
   285       typedef T ProcessedMap;
   286       static ProcessedMap *createProcessedMap(const Graph &) 
   287       {
   288 	throw UninitializedParameter();
   289       }
   290     };
   291     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   292 
   293     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   294     ///
   295     template <class T>
   296     struct DefProcessedMap : public Dfs< Graph, DefProcessedMapTraits<T> > { 
   297       typedef Dfs< Graph, DefProcessedMapTraits<T> > Create;
   298     };
   299     
   300     struct DefGraphProcessedMapTraits : public Traits {
   301       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   302       static ProcessedMap *createProcessedMap(const Graph &G) 
   303       {
   304 	return new ProcessedMap(G);
   305       }
   306     };
   307     ///\brief \ref named-templ-param "Named parameter"
   308     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   309     ///
   310     ///\ref named-templ-param "Named parameter"
   311     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   312     ///If you don't set it explicitely, it will be automatically allocated.
   313     template <class T>
   314     class DefProcessedMapToBeDefaultMap :
   315       public Dfs< Graph, DefGraphProcessedMapTraits> { 
   316       typedef Dfs< Graph, DefGraphProcessedMapTraits> Create;
   317     };
   318     
   319     ///@}
   320 
   321   public:      
   322     
   323     ///Constructor.
   324     
   325     ///\param _G the graph the algorithm will run on.
   326     ///
   327     Dfs(const Graph& _G) :
   328       G(&_G),
   329       _pred(NULL), local_pred(false),
   330       _dist(NULL), local_dist(false),
   331       _reached(NULL), local_reached(false),
   332       _processed(NULL), local_processed(false)
   333     { }
   334     
   335     ///Destructor.
   336     ~Dfs() 
   337     {
   338       if(local_pred) delete _pred;
   339       if(local_dist) delete _dist;
   340       if(local_reached) delete _reached;
   341       if(local_processed) delete _processed;
   342     }
   343 
   344     ///Sets the map storing the predecessor edges.
   345 
   346     ///Sets the map storing the predecessor edges.
   347     ///If you don't use this function before calling \ref run(),
   348     ///it will allocate one. The destuctor deallocates this
   349     ///automatically allocated map, of course.
   350     ///\return <tt> (*this) </tt>
   351     Dfs &predMap(PredMap &m) 
   352     {
   353       if(local_pred) {
   354 	delete _pred;
   355 	local_pred=false;
   356       }
   357       _pred = &m;
   358       return *this;
   359     }
   360 
   361     ///Sets the map storing the distances calculated by the algorithm.
   362 
   363     ///Sets the map storing the distances calculated by the algorithm.
   364     ///If you don't use this function before calling \ref run(),
   365     ///it will allocate one. The destuctor deallocates this
   366     ///automatically allocated map, of course.
   367     ///\return <tt> (*this) </tt>
   368     Dfs &distMap(DistMap &m) 
   369     {
   370       if(local_dist) {
   371 	delete _dist;
   372 	local_dist=false;
   373       }
   374       _dist = &m;
   375       return *this;
   376     }
   377 
   378     ///Sets the map indicating if a node is reached.
   379 
   380     ///Sets the map indicating if a node is reached.
   381     ///If you don't use this function before calling \ref run(),
   382     ///it will allocate one. The destuctor deallocates this
   383     ///automatically allocated map, of course.
   384     ///\return <tt> (*this) </tt>
   385     Dfs &reachedMap(ReachedMap &m) 
   386     {
   387       if(local_reached) {
   388 	delete _reached;
   389 	local_reached=false;
   390       }
   391       _reached = &m;
   392       return *this;
   393     }
   394 
   395     ///Sets the map indicating if a node is processed.
   396 
   397     ///Sets the map indicating if a node is processed.
   398     ///If you don't use this function before calling \ref run(),
   399     ///it will allocate one. The destuctor deallocates this
   400     ///automatically allocated map, of course.
   401     ///\return <tt> (*this) </tt>
   402     Dfs &processedMap(ProcessedMap &m) 
   403     {
   404       if(local_processed) {
   405 	delete _processed;
   406 	local_processed=false;
   407       }
   408       _processed = &m;
   409       return *this;
   410     }
   411 
   412   public:
   413     ///\name Execution control
   414     ///The simplest way to execute the algorithm is to use
   415     ///one of the member functions called \c run(...).
   416     ///\n
   417     ///If you need more control on the execution,
   418     ///first you must call \ref init(), then you can add a source node
   419     ///with \ref addSource().
   420     ///Finally \ref start() will perform the actual path
   421     ///computation.
   422 
   423     ///@{
   424 
   425     ///Initializes the internal data structures.
   426 
   427     ///Initializes the internal data structures.
   428     ///
   429     void init()
   430     {
   431       create_maps();
   432       _stack.resize(countNodes(*G));
   433       _stack_head=-1;
   434       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   435 	_pred->set(u,INVALID);
   436 	// _predNode->set(u,INVALID);
   437 	_reached->set(u,false);
   438 	_processed->set(u,false);
   439       }
   440     }
   441     
   442     ///Adds a new source node.
   443 
   444     ///Adds a new source node to the set of nodes to be processed.
   445     ///
   446     ///\warning dists are wrong (or at least strange)
   447     ///in case of multiple sources.
   448     void addSource(Node s)
   449     {
   450       if(!(*_reached)[s])
   451 	{
   452 	  _reached->set(s,true);
   453 	  _pred->set(s,INVALID);
   454 	  OutEdgeIt e(*G,s);
   455 	  if(e!=INVALID) {
   456 	    _stack[++_stack_head]=e;
   457 	    _dist->set(s,_stack_head);
   458 	  }
   459 	  else {
   460 	    _processed->set(s,true);
   461 	    _dist->set(s,0);
   462 	  }
   463 	}
   464     }
   465     
   466     ///Processes the next edge.
   467 
   468     ///Processes the next edge.
   469     ///
   470     ///\return The processed edge.
   471     ///
   472     ///\pre The stack must not be empty!
   473     Edge processNextEdge()
   474     { 
   475       Node m;
   476       Edge e=_stack[_stack_head];
   477       if(!(*_reached)[m=G->target(e)]) {
   478 	_pred->set(m,e);
   479 	_reached->set(m,true);
   480 	++_stack_head;
   481 	_stack[_stack_head] = OutEdgeIt(*G, m);
   482 	_dist->set(m,_stack_head);
   483       }
   484       else {
   485 	m=G->source(e);
   486 	++_stack[_stack_head];
   487       }
   488       while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
   489 	_processed->set(m,true);
   490 	--_stack_head;
   491 	if(_stack_head>=0) {
   492 	  m=G->source(_stack[_stack_head]);
   493 	  ++_stack[_stack_head];
   494 	}
   495       }
   496       return e;
   497     }
   498     ///Next edge to be processed.
   499 
   500     ///Next edge to be processed.
   501     ///
   502     ///\return The next edge to be processed or INVALID if the stack is
   503     /// empty.
   504     OutEdgeIt nextEdge()
   505     { 
   506       return _stack_head>=0?_stack[_stack_head]:INVALID;
   507     }
   508 
   509     ///\brief Returns \c false if there are nodes
   510     ///to be processed in the queue
   511     ///
   512     ///Returns \c false if there are nodes
   513     ///to be processed in the queue
   514     bool emptyQueue() { return _stack_head<0; }
   515     ///Returns the number of the nodes to be processed.
   516     
   517     ///Returns the number of the nodes to be processed in the queue.
   518     int queueSize() { return _stack_head+1; }
   519     
   520     ///Executes the algorithm.
   521 
   522     ///Executes the algorithm.
   523     ///
   524     ///\pre init() must be called and at least one node should be added
   525     ///with addSource() before using this function.
   526     ///
   527     ///This method runs the %DFS algorithm from the root node(s)
   528     ///in order to
   529     ///compute the
   530     ///%DFS path to each node. The algorithm computes
   531     ///- The %DFS tree.
   532     ///- The distance of each node from the root(s) in the %DFS tree.
   533     ///
   534     void start()
   535     {
   536       while ( !emptyQueue() ) processNextEdge();
   537     }
   538     
   539     ///Executes the algorithm until \c dest is reached.
   540 
   541     ///Executes the algorithm until \c dest is reached.
   542     ///
   543     ///\pre init() must be called and at least one node should be added
   544     ///with addSource() before using this function.
   545     ///
   546     ///This method runs the %DFS algorithm from the root node(s)
   547     ///in order to
   548     ///compute the
   549     ///%DFS path to \c dest. The algorithm computes
   550     ///- The %DFS path to \c  dest.
   551     ///- The distance of \c dest from the root(s) in the %DFS tree.
   552     ///
   553     void start(Node dest)
   554     {
   555       while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) 
   556 	processNextEdge();
   557     }
   558     
   559     ///Executes the algorithm until a condition is met.
   560 
   561     ///Executes the algorithm until a condition is met.
   562     ///
   563     ///\pre init() must be called and at least one node should be added
   564     ///with addSource() before using this function.
   565     ///
   566     ///\param em must be a bool (or convertible) edge map. The algorithm
   567     ///will stop when it reaches an edge \c e with <tt>em[e]</tt> true.
   568     ///
   569     ///\return The reached edge \c e with <tt>em[e]</tt> true or
   570     ///\c INVALID if no such edge was found.
   571     ///
   572     ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an edge map,
   573     ///not a node map.
   574     template<class EM>
   575     Edge start(const EM &em)
   576     {
   577       while ( !emptyQueue() && !em[_stack[_stack_head]] )
   578         processNextEdge();
   579       return emptyQueue() ? INVALID : _stack[_stack_head];
   580     }
   581 
   582     ///Runs %DFS algorithm to visit all nodes in the graph.
   583     
   584     ///This method runs the %DFS algorithm in order to
   585     ///compute the
   586     ///%DFS path to each node. The algorithm computes
   587     ///- The %DFS tree.
   588     ///- The distance of each node from the root in the %DFS tree.
   589     ///
   590     ///\note d.run() is just a shortcut of the following code.
   591     ///\code
   592     ///  d.init();
   593     ///  for (NodeIt it(graph); it != INVALID; ++it) {
   594     ///    if (!d.reached(it)) {
   595     ///      d.addSource(it);
   596     ///      d.start();
   597     ///    }
   598     ///  }
   599     ///\endcode
   600     void run() {
   601       init();
   602       for (NodeIt it(*G); it != INVALID; ++it) {
   603         if (!reached(it)) {
   604           addSource(it);
   605           start();
   606         }
   607       }
   608     }
   609 
   610     ///Runs %DFS algorithm from node \c s.
   611     
   612     ///This method runs the %DFS algorithm from a root node \c s
   613     ///in order to
   614     ///compute the
   615     ///%DFS path to each node. The algorithm computes
   616     ///- The %DFS tree.
   617     ///- The distance of each node from the root in the %DFS tree.
   618     ///
   619     ///\note d.run(s) is just a shortcut of the following code.
   620     ///\code
   621     ///  d.init();
   622     ///  d.addSource(s);
   623     ///  d.start();
   624     ///\endcode
   625     void run(Node s) {
   626       init();
   627       addSource(s);
   628       start();
   629     }
   630     
   631     ///Finds the %DFS path between \c s and \c t.
   632     
   633     ///Finds the %DFS path between \c s and \c t.
   634     ///
   635     ///\return The length of the %DFS s---t path if there exists one,
   636     ///0 otherwise.
   637     ///\note Apart from the return value, d.run(s,t) is
   638     ///just a shortcut of the following code.
   639     ///\code
   640     ///  d.init();
   641     ///  d.addSource(s);
   642     ///  d.start(t);
   643     ///\endcode
   644     int run(Node s,Node t) {
   645       init();
   646       addSource(s);
   647       start(t);
   648       return reached(t)?_stack_head+1:0;
   649     }
   650     
   651     ///@}
   652 
   653     ///\name Query Functions
   654     ///The result of the %DFS algorithm can be obtained using these
   655     ///functions.\n
   656     ///Before the use of these functions,
   657     ///either run() or start() must be called.
   658     
   659     ///@{
   660 
   661     typedef PredMapPath<Graph, PredMap> Path;
   662 
   663     ///Gives back the shortest path.
   664     
   665     ///Gives back the shortest path.
   666     ///\pre The \c t should be reachable from the source.
   667     Path path(Node t) 
   668     {
   669       return Path(*G, *_pred, t);
   670     }
   671 
   672     ///The distance of a node from the root(s).
   673 
   674     ///Returns the distance of a node from the root(s).
   675     ///\pre \ref run() must be called before using this function.
   676     ///\warning If node \c v is unreachable from the root(s) then the return 
   677     ///value of this funcion is undefined.
   678     int dist(Node v) const { return (*_dist)[v]; }
   679 
   680     ///Returns the 'previous edge' of the %DFS tree.
   681 
   682     ///For a node \c v it returns the 'previous edge'
   683     ///of the %DFS path,
   684     ///i.e. it returns the last edge of a %DFS path from the root(s) to \c
   685     ///v. It is \ref INVALID
   686     ///if \c v is unreachable from the root(s) or \c v is a root. The
   687     ///%DFS tree used here is equal to the %DFS tree used in
   688     ///\ref predNode().
   689     ///\pre Either \ref run() or \ref start() must be called before using
   690     ///this function.
   691     Edge predEdge(Node v) const { return (*_pred)[v];}
   692 
   693     ///Returns the 'previous node' of the %DFS tree.
   694 
   695     ///For a node \c v it returns the 'previous node'
   696     ///of the %DFS tree,
   697     ///i.e. it returns the last but one node from a %DFS path from the
   698     ///root(s) to \c v.
   699     ///It is INVALID if \c v is unreachable from the root(s) or
   700     ///if \c v itself a root.
   701     ///The %DFS tree used here is equal to the %DFS
   702     ///tree used in \ref predEdge().
   703     ///\pre Either \ref run() or \ref start() must be called before
   704     ///using this function.
   705     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   706 				  G->source((*_pred)[v]); }
   707     
   708     ///Returns a reference to the NodeMap of distances.
   709 
   710     ///Returns a reference to the NodeMap of distances.
   711     ///\pre Either \ref run() or \ref init() must
   712     ///be called before using this function.
   713     const DistMap &distMap() const { return *_dist;}
   714  
   715     ///Returns a reference to the %DFS edge-tree map.
   716 
   717     ///Returns a reference to the NodeMap of the edges of the
   718     ///%DFS tree.
   719     ///\pre Either \ref run() or \ref init()
   720     ///must be called before using this function.
   721     const PredMap &predMap() const { return *_pred;}
   722  
   723     ///Checks if a node is reachable from the root.
   724 
   725     ///Returns \c true if \c v is reachable from the root(s).
   726     ///\warning The source nodes are inditated as unreachable.
   727     ///\pre Either \ref run() or \ref start()
   728     ///must be called before using this function.
   729     ///
   730     bool reached(Node v) { return (*_reached)[v]; }
   731     
   732     ///@}
   733   };
   734 
   735   ///Default traits class of Dfs function.
   736 
   737   ///Default traits class of Dfs function.
   738   ///\param GR Graph type.
   739   template<class GR>
   740   struct DfsWizardDefaultTraits
   741   {
   742     ///The graph type the algorithm runs on. 
   743     typedef GR Graph;
   744     ///\brief The type of the map that stores the last
   745     ///edges of the %DFS paths.
   746     /// 
   747     ///The type of the map that stores the last
   748     ///edges of the %DFS paths.
   749     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   750     ///
   751     typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
   752     ///Instantiates a PredMap.
   753  
   754     ///This function instantiates a \ref PredMap. 
   755     ///\param g is the graph, to which we would like to define the PredMap.
   756     ///\todo The graph alone may be insufficient to initialize
   757 #ifdef DOXYGEN
   758     static PredMap *createPredMap(const GR &g) 
   759 #else
   760     static PredMap *createPredMap(const GR &) 
   761 #endif
   762     {
   763       return new PredMap();
   764     }
   765 
   766     ///The type of the map that indicates which nodes are processed.
   767  
   768     ///The type of the map that indicates which nodes are processed.
   769     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   770     ///\todo named parameter to set this type, function to read and write.
   771     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   772     ///Instantiates a ProcessedMap.
   773  
   774     ///This function instantiates a \ref ProcessedMap. 
   775     ///\param g is the graph, to which
   776     ///we would like to define the \ref ProcessedMap
   777 #ifdef DOXYGEN
   778     static ProcessedMap *createProcessedMap(const GR &g)
   779 #else
   780     static ProcessedMap *createProcessedMap(const GR &)
   781 #endif
   782     {
   783       return new ProcessedMap();
   784     }
   785     ///The type of the map that indicates which nodes are reached.
   786  
   787     ///The type of the map that indicates which nodes are reached.
   788     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   789     ///\todo named parameter to set this type, function to read and write.
   790     typedef typename Graph::template NodeMap<bool> ReachedMap;
   791     ///Instantiates a ReachedMap.
   792  
   793     ///This function instantiates a \ref ReachedMap. 
   794     ///\param G is the graph, to which
   795     ///we would like to define the \ref ReachedMap.
   796     static ReachedMap *createReachedMap(const GR &G)
   797     {
   798       return new ReachedMap(G);
   799     }
   800     ///The type of the map that stores the dists of the nodes.
   801  
   802     ///The type of the map that stores the dists of the nodes.
   803     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   804     ///
   805     typedef NullMap<typename Graph::Node,int> DistMap;
   806     ///Instantiates a DistMap.
   807  
   808     ///This function instantiates a \ref DistMap. 
   809     ///\param g is the graph, to which we would like to define the \ref DistMap
   810 #ifdef DOXYGEN
   811     static DistMap *createDistMap(const GR &g)
   812 #else
   813     static DistMap *createDistMap(const GR &)
   814 #endif
   815     {
   816       return new DistMap();
   817     }
   818   };
   819   
   820   /// Default traits used by \ref DfsWizard
   821 
   822   /// To make it easier to use Dfs algorithm
   823   ///we have created a wizard class.
   824   /// This \ref DfsWizard class needs default traits,
   825   ///as well as the \ref Dfs class.
   826   /// The \ref DfsWizardBase is a class to be the default traits of the
   827   /// \ref DfsWizard class.
   828   template<class GR>
   829   class DfsWizardBase : public DfsWizardDefaultTraits<GR>
   830   {
   831 
   832     typedef DfsWizardDefaultTraits<GR> Base;
   833   protected:
   834     /// Type of the nodes in the graph.
   835     typedef typename Base::Graph::Node Node;
   836 
   837     /// Pointer to the underlying graph.
   838     void *_g;
   839     ///Pointer to the map of reached nodes.
   840     void *_reached;
   841     ///Pointer to the map of processed nodes.
   842     void *_processed;
   843     ///Pointer to the map of predecessors edges.
   844     void *_pred;
   845     ///Pointer to the map of distances.
   846     void *_dist;
   847     ///Pointer to the source node.
   848     Node _source;
   849     
   850     public:
   851     /// Constructor.
   852     
   853     /// This constructor does not require parameters, therefore it initiates
   854     /// all of the attributes to default values (0, INVALID).
   855     DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   856 			   _dist(0), _source(INVALID) {}
   857 
   858     /// Constructor.
   859     
   860     /// This constructor requires some parameters,
   861     /// listed in the parameters list.
   862     /// Others are initiated to 0.
   863     /// \param g is the initial value of  \ref _g
   864     /// \param s is the initial value of  \ref _source
   865     DfsWizardBase(const GR &g, Node s=INVALID) :
   866       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
   867       _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
   868 
   869   };
   870   
   871   /// A class to make the usage of the Dfs algorithm easier
   872 
   873   /// This class is created to make it easier to use the Dfs algorithm.
   874   /// It uses the functions and features of the plain \ref Dfs,
   875   /// but it is much simpler to use it.
   876   ///
   877   /// Simplicity means that the way to change the types defined
   878   /// in the traits class is based on functions that returns the new class
   879   /// and not on templatable built-in classes.
   880   /// When using the plain \ref Dfs
   881   /// the new class with the modified type comes from
   882   /// the original class by using the ::
   883   /// operator. In the case of \ref DfsWizard only
   884   /// a function have to be called and it will
   885   /// return the needed class.
   886   ///
   887   /// It does not have own \ref run method. When its \ref run method is called
   888   /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run
   889   /// method of it.
   890   template<class TR>
   891   class DfsWizard : public TR
   892   {
   893     typedef TR Base;
   894 
   895     ///The type of the underlying graph.
   896     typedef typename TR::Graph Graph;
   897     //\e
   898     typedef typename Graph::Node Node;
   899     //\e
   900     typedef typename Graph::NodeIt NodeIt;
   901     //\e
   902     typedef typename Graph::Edge Edge;
   903     //\e
   904     typedef typename Graph::OutEdgeIt OutEdgeIt;
   905     
   906     ///\brief The type of the map that stores
   907     ///the reached nodes
   908     typedef typename TR::ReachedMap ReachedMap;
   909     ///\brief The type of the map that stores
   910     ///the processed nodes
   911     typedef typename TR::ProcessedMap ProcessedMap;
   912     ///\brief The type of the map that stores the last
   913     ///edges of the %DFS paths.
   914     typedef typename TR::PredMap PredMap;
   915     ///The type of the map that stores the distances of the nodes.
   916     typedef typename TR::DistMap DistMap;
   917 
   918   public:
   919     /// Constructor.
   920     DfsWizard() : TR() {}
   921 
   922     /// Constructor that requires parameters.
   923 
   924     /// Constructor that requires parameters.
   925     /// These parameters will be the default values for the traits class.
   926     DfsWizard(const Graph &g, Node s=INVALID) :
   927       TR(g,s) {}
   928 
   929     ///Copy constructor
   930     DfsWizard(const TR &b) : TR(b) {}
   931 
   932     ~DfsWizard() {}
   933 
   934     ///Runs Dfs algorithm from a given node.
   935     
   936     ///Runs Dfs algorithm from a given node.
   937     ///The node can be given by the \ref source function.
   938     void run()
   939     {
   940       if(Base::_source==INVALID) throw UninitializedParameter();
   941       Dfs<Graph,TR> alg(*reinterpret_cast<const Graph*>(Base::_g));
   942       if(Base::_reached) 
   943         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
   944       if(Base::_processed) 
   945         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
   946       if(Base::_pred) 
   947         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   948       if(Base::_dist) 
   949         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   950       alg.run(Base::_source);
   951     }
   952 
   953     ///Runs Dfs algorithm from the given node.
   954 
   955     ///Runs Dfs algorithm from the given node.
   956     ///\param s is the given source.
   957     void run(Node s)
   958     {
   959       Base::_source=s;
   960       run();
   961     }
   962 
   963     template<class T>
   964     struct DefPredMapBase : public Base {
   965       typedef T PredMap;
   966       static PredMap *createPredMap(const Graph &) { return 0; };
   967       DefPredMapBase(const TR &b) : TR(b) {}
   968     };
   969     
   970     ///\brief \ref named-templ-param "Named parameter"
   971     ///function for setting PredMap type
   972     ///
   973     /// \ref named-templ-param "Named parameter"
   974     ///function for setting PredMap type
   975     ///
   976     template<class T>
   977     DfsWizard<DefPredMapBase<T> > predMap(const T &t) 
   978     {
   979       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
   980       return DfsWizard<DefPredMapBase<T> >(*this);
   981     }
   982     
   983  
   984     template<class T>
   985     struct DefReachedMapBase : public Base {
   986       typedef T ReachedMap;
   987       static ReachedMap *createReachedMap(const Graph &) { return 0; };
   988       DefReachedMapBase(const TR &b) : TR(b) {}
   989     };
   990     
   991     ///\brief \ref named-templ-param "Named parameter"
   992     ///function for setting ReachedMap
   993     ///
   994     /// \ref named-templ-param "Named parameter"
   995     ///function for setting ReachedMap
   996     ///
   997     template<class T>
   998     DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
   999     {
  1000       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1001       return DfsWizard<DefReachedMapBase<T> >(*this);
  1002     }
  1003     
  1004 
  1005     template<class T>
  1006     struct DefProcessedMapBase : public Base {
  1007       typedef T ProcessedMap;
  1008       static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
  1009       DefProcessedMapBase(const TR &b) : TR(b) {}
  1010     };
  1011     
  1012     ///\brief \ref named-templ-param "Named parameter"
  1013     ///function for setting ProcessedMap
  1014     ///
  1015     /// \ref named-templ-param "Named parameter"
  1016     ///function for setting ProcessedMap
  1017     ///
  1018     template<class T>
  1019     DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
  1020     {
  1021       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1022       return DfsWizard<DefProcessedMapBase<T> >(*this);
  1023     }
  1024     
  1025     template<class T>
  1026     struct DefDistMapBase : public Base {
  1027       typedef T DistMap;
  1028       static DistMap *createDistMap(const Graph &) { return 0; };
  1029       DefDistMapBase(const TR &b) : TR(b) {}
  1030     };
  1031     
  1032     ///\brief \ref named-templ-param "Named parameter"
  1033     ///function for setting DistMap type
  1034     ///
  1035     /// \ref named-templ-param "Named parameter"
  1036     ///function for setting DistMap type
  1037     ///
  1038     template<class T>
  1039     DfsWizard<DefDistMapBase<T> > distMap(const T &t) 
  1040     {
  1041       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1042       return DfsWizard<DefDistMapBase<T> >(*this);
  1043     }
  1044     
  1045     /// Sets the source node, from which the Dfs algorithm runs.
  1046 
  1047     /// Sets the source node, from which the Dfs algorithm runs.
  1048     /// \param s is the source node.
  1049     DfsWizard<TR> &source(Node s) 
  1050     {
  1051       Base::_source=s;
  1052       return *this;
  1053     }
  1054     
  1055   };
  1056   
  1057   ///Function type interface for Dfs algorithm.
  1058 
  1059   ///\ingroup search
  1060   ///Function type interface for Dfs algorithm.
  1061   ///
  1062   ///This function also has several
  1063   ///\ref named-templ-func-param "named parameters",
  1064   ///they are declared as the members of class \ref DfsWizard.
  1065   ///The following
  1066   ///example shows how to use these parameters.
  1067   ///\code
  1068   ///  dfs(g,source).predMap(preds).run();
  1069   ///\endcode
  1070   ///\warning Don't forget to put the \ref DfsWizard::run() "run()"
  1071   ///to the end of the parameter list.
  1072   ///\sa DfsWizard
  1073   ///\sa Dfs
  1074   template<class GR>
  1075   DfsWizard<DfsWizardBase<GR> >
  1076   dfs(const GR &g,typename GR::Node s=INVALID)
  1077   {
  1078     return DfsWizard<DfsWizardBase<GR> >(g,s);
  1079   }
  1080 
  1081 #ifdef DOXYGEN
  1082   /// \brief Visitor class for dfs.
  1083   ///  
  1084   /// It gives a simple interface for a functional interface for dfs 
  1085   /// traversal. The traversal on a linear data structure. 
  1086   template <typename _Graph>
  1087   struct DfsVisitor {
  1088     typedef _Graph Graph;
  1089     typedef typename Graph::Edge Edge;
  1090     typedef typename Graph::Node Node;
  1091     /// \brief Called when the edge reach a node.
  1092     /// 
  1093     /// It is called when the dfs find an edge which target is not
  1094     /// reached yet.
  1095     void discover(const Edge& edge) {}
  1096     /// \brief Called when the node reached first time.
  1097     /// 
  1098     /// It is Called when the node reached first time.
  1099     void reach(const Node& node) {}
  1100     /// \brief Called when we step back on an edge.
  1101     /// 
  1102     /// It is called when the dfs should step back on the edge.
  1103     void backtrack(const Edge& edge) {}
  1104     /// \brief Called when we step back from the node.
  1105     /// 
  1106     /// It is called when we step back from the node.
  1107     void leave(const Node& node) {}
  1108     /// \brief Called when the edge examined but target of the edge 
  1109     /// already discovered.
  1110     /// 
  1111     /// It called when the edge examined but the target of the edge 
  1112     /// already discovered.
  1113     void examine(const Edge& edge) {}
  1114     /// \brief Called for the source node of the dfs.
  1115     /// 
  1116     /// It is called for the source node of the dfs.
  1117     void start(const Node& node) {}
  1118     /// \brief Called when we leave the source node of the dfs.
  1119     /// 
  1120     /// It is called when we leave the source node of the dfs.
  1121     void stop(const Node& node) {}
  1122 
  1123   };
  1124 #else
  1125   template <typename _Graph>
  1126   struct DfsVisitor {
  1127     typedef _Graph Graph;
  1128     typedef typename Graph::Edge Edge;
  1129     typedef typename Graph::Node Node;
  1130     void discover(const Edge&) {}
  1131     void reach(const Node&) {}
  1132     void backtrack(const Edge&) {}
  1133     void leave(const Node&) {}
  1134     void examine(const Edge&) {}
  1135     void start(const Node&) {}
  1136     void stop(const Node&) {}
  1137 
  1138     template <typename _Visitor>
  1139     struct Constraints {
  1140       void constraints() {
  1141 	Edge edge;
  1142 	Node node;
  1143 	visitor.discover(edge);
  1144 	visitor.reach(node);
  1145 	visitor.backtrack(edge);
  1146 	visitor.leave(node);
  1147 	visitor.examine(edge);
  1148 	visitor.start(node);
  1149 	visitor.stop(edge);
  1150       }
  1151       _Visitor& visitor;
  1152     };
  1153   };
  1154 #endif
  1155 
  1156   /// \brief Default traits class of DfsVisit class.
  1157   ///
  1158   /// Default traits class of DfsVisit class.
  1159   /// \param _Graph Graph type.
  1160   template<class _Graph>
  1161   struct DfsVisitDefaultTraits {
  1162 
  1163     /// \brief The graph type the algorithm runs on. 
  1164     typedef _Graph Graph;
  1165 
  1166     /// \brief The type of the map that indicates which nodes are reached.
  1167     /// 
  1168     /// The type of the map that indicates which nodes are reached.
  1169     /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1170     /// \todo named parameter to set this type, function to read and write.
  1171     typedef typename Graph::template NodeMap<bool> ReachedMap;
  1172 
  1173     /// \brief Instantiates a ReachedMap.
  1174     ///
  1175     /// This function instantiates a \ref ReachedMap. 
  1176     /// \param graph is the graph, to which
  1177     /// we would like to define the \ref ReachedMap.
  1178     static ReachedMap *createReachedMap(const Graph &graph) {
  1179       return new ReachedMap(graph);
  1180     }
  1181 
  1182   };
  1183   
  1184   /// %DFS Visit algorithm class.
  1185   
  1186   /// \ingroup search
  1187   /// This class provides an efficient implementation of the %DFS algorithm
  1188   /// with visitor interface.
  1189   ///
  1190   /// The %DfsVisit class provides an alternative interface to the Dfs
  1191   /// class. It works with callback mechanism, the DfsVisit object calls
  1192   /// on every dfs event the \c Visitor class member functions. 
  1193   ///
  1194   /// \param _Graph The graph type the algorithm runs on. The default value is
  1195   /// \ref ListGraph. The value of _Graph is not used directly by Dfs, it
  1196   /// is only passed to \ref DfsDefaultTraits.
  1197   /// \param _Visitor The Visitor object for the algorithm. The 
  1198   /// \ref DfsVisitor "DfsVisitor<_Graph>" is an empty Visitor which
  1199   /// does not observe the Dfs events. If you want to observe the dfs
  1200   /// events you should implement your own Visitor class.
  1201   /// \param _Traits Traits class to set various data types used by the 
  1202   /// algorithm. The default traits class is
  1203   /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Graph>".
  1204   /// See \ref DfsVisitDefaultTraits for the documentation of
  1205   /// a Dfs visit traits class.
  1206   ///
  1207   /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
  1208 #ifdef DOXYGEN
  1209   template <typename _Graph, typename _Visitor, typename _Traits>
  1210 #else
  1211   template <typename _Graph = ListGraph,
  1212 	    typename _Visitor = DfsVisitor<_Graph>,
  1213 	    typename _Traits = DfsDefaultTraits<_Graph> >
  1214 #endif
  1215   class DfsVisit {
  1216   public:
  1217     
  1218     /// \brief \ref Exception for uninitialized parameters.
  1219     ///
  1220     /// This error represents problems in the initialization
  1221     /// of the parameters of the algorithms.
  1222     class UninitializedParameter : public lemon::UninitializedParameter {
  1223     public:
  1224       virtual const char* what() const throw() 
  1225       {
  1226 	return "lemon::DfsVisit::UninitializedParameter";
  1227       }
  1228     };
  1229 
  1230     typedef _Traits Traits;
  1231 
  1232     typedef typename Traits::Graph Graph;
  1233 
  1234     typedef _Visitor Visitor;
  1235 
  1236     ///The type of the map indicating which nodes are reached.
  1237     typedef typename Traits::ReachedMap ReachedMap;
  1238 
  1239   private:
  1240 
  1241     typedef typename Graph::Node Node;
  1242     typedef typename Graph::NodeIt NodeIt;
  1243     typedef typename Graph::Edge Edge;
  1244     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1245 
  1246     /// Pointer to the underlying graph.
  1247     const Graph *_graph;
  1248     /// Pointer to the visitor object.
  1249     Visitor *_visitor;
  1250     ///Pointer to the map of reached status of the nodes.
  1251     ReachedMap *_reached;
  1252     ///Indicates if \ref _reached is locally allocated (\c true) or not.
  1253     bool local_reached;
  1254 
  1255     std::vector<typename Graph::Edge> _stack;
  1256     int _stack_head;
  1257 
  1258     /// \brief Creates the maps if necessary.
  1259     ///
  1260     /// Creates the maps if necessary.
  1261     void create_maps() {
  1262       if(!_reached) {
  1263 	local_reached = true;
  1264 	_reached = Traits::createReachedMap(*_graph);
  1265       }
  1266     }
  1267 
  1268   protected:
  1269 
  1270     DfsVisit() {}
  1271     
  1272   public:
  1273 
  1274     typedef DfsVisit Create;
  1275 
  1276     /// \name Named template parameters
  1277 
  1278     ///@{
  1279     template <class T>
  1280     struct DefReachedMapTraits : public Traits {
  1281       typedef T ReachedMap;
  1282       static ReachedMap *createReachedMap(const Graph &graph) {
  1283 	throw UninitializedParameter();
  1284       }
  1285     };
  1286     /// \brief \ref named-templ-param "Named parameter" for setting 
  1287     /// ReachedMap type
  1288     ///
  1289     /// \ref named-templ-param "Named parameter" for setting ReachedMap type
  1290     template <class T>
  1291     struct DefReachedMap : public DfsVisit< Graph, Visitor,
  1292 					    DefReachedMapTraits<T> > {
  1293       typedef DfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
  1294     };
  1295     ///@}
  1296 
  1297   public:      
  1298     
  1299     /// \brief Constructor.
  1300     ///
  1301     /// Constructor.
  1302     ///
  1303     /// \param graph the graph the algorithm will run on.
  1304     /// \param visitor The visitor of the algorithm.
  1305     ///
  1306     DfsVisit(const Graph& graph, Visitor& visitor) 
  1307       : _graph(&graph), _visitor(&visitor),
  1308 	_reached(0), local_reached(false) {}
  1309     
  1310     /// \brief Destructor.
  1311     ///
  1312     /// Destructor.
  1313     ~DfsVisit() {
  1314       if(local_reached) delete _reached;
  1315     }
  1316 
  1317     /// \brief Sets the map indicating if a node is reached.
  1318     ///
  1319     /// Sets the map indicating if a node is reached.
  1320     /// If you don't use this function before calling \ref run(),
  1321     /// it will allocate one. The destuctor deallocates this
  1322     /// automatically allocated map, of course.
  1323     /// \return <tt> (*this) </tt>
  1324     DfsVisit &reachedMap(ReachedMap &m) {
  1325       if(local_reached) {
  1326 	delete _reached;
  1327 	local_reached=false;
  1328       }
  1329       _reached = &m;
  1330       return *this;
  1331     }
  1332 
  1333   public:
  1334     /// \name Execution control
  1335     /// The simplest way to execute the algorithm is to use
  1336     /// one of the member functions called \c run(...).
  1337     /// \n
  1338     /// If you need more control on the execution,
  1339     /// first you must call \ref init(), then you can adda source node
  1340     /// with \ref addSource().
  1341     /// Finally \ref start() will perform the actual path
  1342     /// computation.
  1343 
  1344     /// @{
  1345     /// \brief Initializes the internal data structures.
  1346     ///
  1347     /// Initializes the internal data structures.
  1348     ///
  1349     void init() {
  1350       create_maps();
  1351       _stack.resize(countNodes(*_graph));
  1352       _stack_head = -1;
  1353       for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
  1354 	_reached->set(u, false);
  1355       }
  1356     }
  1357     
  1358     /// \brief Adds a new source node.
  1359     ///
  1360     /// Adds a new source node to the set of nodes to be processed.
  1361     void addSource(Node s) {
  1362       if(!(*_reached)[s]) {
  1363 	  _reached->set(s,true);
  1364 	  _visitor->start(s);
  1365 	  _visitor->reach(s);
  1366 	  Edge e; 
  1367 	  _graph->firstOut(e, s);
  1368 	  if (e != INVALID) {
  1369 	    _stack[++_stack_head] = e;
  1370 	  } else {
  1371 	    _visitor->leave(s);
  1372 	  }
  1373 	}
  1374     }
  1375     
  1376     /// \brief Processes the next edge.
  1377     ///
  1378     /// Processes the next edge.
  1379     ///
  1380     /// \return The processed edge.
  1381     ///
  1382     /// \pre The stack must not be empty!
  1383     Edge processNextEdge() { 
  1384       Edge e = _stack[_stack_head];
  1385       Node m = _graph->target(e);
  1386       if(!(*_reached)[m]) {
  1387 	_visitor->discover(e);
  1388 	_visitor->reach(m);
  1389 	_reached->set(m, true);
  1390 	_graph->firstOut(_stack[++_stack_head], m);
  1391       } else {
  1392 	_visitor->examine(e);
  1393 	m = _graph->source(e);
  1394 	_graph->nextOut(_stack[_stack_head]);
  1395       }
  1396       while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
  1397 	_visitor->leave(m);
  1398 	--_stack_head;
  1399 	if (_stack_head >= 0) {
  1400 	  _visitor->backtrack(_stack[_stack_head]);
  1401 	  m = _graph->source(_stack[_stack_head]);
  1402 	  _graph->nextOut(_stack[_stack_head]);
  1403 	} else {
  1404 	  _visitor->stop(m);	  
  1405 	}
  1406       }
  1407       return e;
  1408     }
  1409 
  1410     /// \brief Next edge to be processed.
  1411     ///
  1412     /// Next edge to be processed.
  1413     ///
  1414     /// \return The next edge to be processed or INVALID if the stack is
  1415     /// empty.
  1416     Edge nextEdge() { 
  1417       return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
  1418     }
  1419 
  1420     /// \brief Returns \c false if there are nodes
  1421     /// to be processed in the queue
  1422     ///
  1423     /// Returns \c false if there are nodes
  1424     /// to be processed in the queue
  1425     bool emptyQueue() { return _stack_head < 0; }
  1426 
  1427     /// \brief Returns the number of the nodes to be processed.
  1428     ///
  1429     /// Returns the number of the nodes to be processed in the queue.
  1430     int queueSize() { return _stack_head + 1; }
  1431     
  1432     /// \brief Executes the algorithm.
  1433     ///
  1434     /// Executes the algorithm.
  1435     ///
  1436     /// \pre init() must be called and at least one node should be added
  1437     /// with addSource() before using this function.
  1438     void start() {
  1439       while ( !emptyQueue() ) processNextEdge();
  1440     }
  1441     
  1442     /// \brief Executes the algorithm until \c dest is reached.
  1443     ///
  1444     /// Executes the algorithm until \c dest is reached.
  1445     ///
  1446     /// \pre init() must be called and at least one node should be added
  1447     /// with addSource() before using this function.
  1448     void start(Node dest) {
  1449       while ( !emptyQueue() && _graph->target(_stack[_stack_head]) != dest ) 
  1450 	processNextEdge();
  1451     }
  1452     
  1453     /// \brief Executes the algorithm until a condition is met.
  1454     ///
  1455     /// Executes the algorithm until a condition is met.
  1456     ///
  1457     /// \pre init() must be called and at least one node should be added
  1458     /// with addSource() before using this function.
  1459     ///
  1460     /// \param em must be a bool (or convertible) edge map. The algorithm
  1461     /// will stop when it reaches an edge \c e with <tt>em[e]</tt> true.
  1462     ///
  1463     ///\return The reached edge \c e with <tt>em[e]</tt> true or
  1464     ///\c INVALID if no such edge was found.
  1465     ///
  1466     /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an edge map,
  1467     /// not a node map.
  1468     template <typename EM>
  1469     Edge start(const EM &em) {
  1470       while ( !emptyQueue() && !em[_stack[_stack_head]] )
  1471         processNextEdge();
  1472       return emptyQueue() ? INVALID : _stack[_stack_head];
  1473     }
  1474 
  1475     /// \brief Runs %DFSVisit algorithm from node \c s.
  1476     ///
  1477     /// This method runs the %DFS algorithm from a root node \c s.
  1478     /// \note d.run(s) is just a shortcut of the following code.
  1479     ///\code
  1480     ///   d.init();
  1481     ///   d.addSource(s);
  1482     ///   d.start();
  1483     ///\endcode
  1484     void run(Node s) {
  1485       init();
  1486       addSource(s);
  1487       start();
  1488     }
  1489 
  1490     /// \brief Runs %DFSVisit algorithm to visit all nodes in the graph.
  1491     
  1492     /// This method runs the %DFS algorithm in order to
  1493     /// compute the %DFS path to each node. The algorithm computes
  1494     /// - The %DFS tree.
  1495     /// - The distance of each node from the root in the %DFS tree.
  1496     ///
  1497     ///\note d.run() is just a shortcut of the following code.
  1498     ///\code
  1499     ///  d.init();
  1500     ///  for (NodeIt it(graph); it != INVALID; ++it) {
  1501     ///    if (!d.reached(it)) {
  1502     ///      d.addSource(it);
  1503     ///      d.start();
  1504     ///    }
  1505     ///  }
  1506     ///\endcode
  1507     void run() {
  1508       init();
  1509       for (NodeIt it(*_graph); it != INVALID; ++it) {
  1510         if (!reached(it)) {
  1511           addSource(it);
  1512           start();
  1513         }
  1514       }
  1515     }
  1516     ///@}
  1517 
  1518     /// \name Query Functions
  1519     /// The result of the %DFS algorithm can be obtained using these
  1520     /// functions.\n
  1521     /// Before the use of these functions,
  1522     /// either run() or start() must be called.
  1523     ///@{
  1524     /// \brief Checks if a node is reachable from the root.
  1525     ///
  1526     /// Returns \c true if \c v is reachable from the root(s).
  1527     /// \warning The source nodes are inditated as unreachable.
  1528     /// \pre Either \ref run() or \ref start()
  1529     /// must be called before using this function.
  1530     ///
  1531     bool reached(Node v) { return (*_reached)[v]; }
  1532     ///@}
  1533   };
  1534 
  1535 
  1536 } //END OF NAMESPACE LEMON
  1537 
  1538 #endif
  1539