lemon/topology.h
author deba
Wed, 29 Nov 2006 17:32:03 +0000
changeset 2314 dbbd5c514163
parent 2260 4274224f8a7d
child 2391 14a343be7a5a
permissions -rw-r--r--
checking soplex
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_TOPOLOGY_H
    20 #define LEMON_TOPOLOGY_H
    21 
    22 #include <lemon/dfs.h>
    23 #include <lemon/bfs.h>
    24 #include <lemon/graph_utils.h>
    25 #include <lemon/graph_adaptor.h>
    26 #include <lemon/maps.h>
    27 
    28 #include <lemon/concepts/graph.h>
    29 #include <lemon/concepts/ugraph.h>
    30 #include <lemon/concept_check.h>
    31 
    32 #include <lemon/bin_heap.h>
    33 #include <lemon/bucket_heap.h>
    34 
    35 #include <stack>
    36 #include <functional>
    37 
    38 /// \ingroup topology
    39 /// \file
    40 /// \brief Topology related algorithms
    41 ///
    42 /// Topology related algorithms
    43 
    44 namespace lemon {
    45 
    46   /// \ingroup topology
    47   ///
    48   /// \brief Check that the given undirected graph is connected.
    49   ///
    50   /// Check that the given undirected graph connected.
    51   /// \param graph The undirected graph.
    52   /// \return %True when there is path between any two nodes in the graph.
    53   /// \note By definition, the empty graph is connected.
    54   template <typename UGraph>
    55   bool connected(const UGraph& graph) {
    56     checkConcept<concepts::UGraph, UGraph>();
    57     typedef typename UGraph::NodeIt NodeIt;
    58     if (NodeIt(graph) == INVALID) return true;
    59     Dfs<UGraph> dfs(graph);
    60     dfs.run(NodeIt(graph));
    61     for (NodeIt it(graph); it != INVALID; ++it) {
    62       if (!dfs.reached(it)) {
    63 	return false;
    64       }
    65     }
    66     return true;
    67   }
    68 
    69   /// \ingroup topology
    70   ///
    71   /// \brief Count the number of connected components of an undirected graph
    72   ///
    73   /// Count the number of connected components of an undirected graph
    74   ///
    75   /// \param graph The graph. It should be undirected.
    76   /// \return The number of components
    77   /// \note By definition, the empty graph consists
    78   /// of zero connected components.
    79   template <typename UGraph>
    80   int countConnectedComponents(const UGraph &graph) {
    81     checkConcept<concepts::UGraph, UGraph>();
    82     typedef typename UGraph::Node Node;
    83     typedef typename UGraph::Edge Edge;
    84 
    85     typedef NullMap<Node, Edge> PredMap;
    86     typedef NullMap<Node, int> DistMap;
    87 
    88     int compNum = 0;
    89     typename Bfs<UGraph>::
    90       template DefPredMap<PredMap>::
    91       template DefDistMap<DistMap>::
    92       Create bfs(graph);
    93 
    94     PredMap predMap;
    95     bfs.predMap(predMap);
    96 
    97     DistMap distMap;
    98     bfs.distMap(distMap);
    99 
   100     bfs.init();
   101     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   102       if (!bfs.reached(n)) {
   103 	bfs.addSource(n);
   104 	bfs.start();
   105 	++compNum;
   106       }
   107     }
   108     return compNum;
   109   }
   110 
   111   /// \ingroup topology
   112   ///
   113   /// \brief Find the connected components of an undirected graph
   114   ///
   115   /// Find the connected components of an undirected graph.
   116   ///
   117   /// \image html connected_components.png
   118   /// \image latex connected_components.eps "Connected components" width=\textwidth
   119   ///
   120   /// \param graph The graph. It should be undirected.
   121   /// \retval compMap A writable node map. The values will be set from 0 to
   122   /// the number of the connected components minus one. Each values of the map
   123   /// will be set exactly once, the values of a certain component will be
   124   /// set continuously.
   125   /// \return The number of components
   126   ///
   127   template <class UGraph, class NodeMap>
   128   int connectedComponents(const UGraph &graph, NodeMap &compMap) {
   129     checkConcept<concepts::UGraph, UGraph>();
   130     typedef typename UGraph::Node Node;
   131     typedef typename UGraph::Edge Edge;
   132     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   133 
   134     typedef NullMap<Node, Edge> PredMap;
   135     typedef NullMap<Node, int> DistMap;
   136 
   137     int compNum = 0;
   138     typename Bfs<UGraph>::
   139       template DefPredMap<PredMap>::
   140       template DefDistMap<DistMap>::
   141       Create bfs(graph);
   142 
   143     PredMap predMap;
   144     bfs.predMap(predMap);
   145 
   146     DistMap distMap;
   147     bfs.distMap(distMap);
   148     
   149     bfs.init();
   150     for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) {
   151       if(!bfs.reached(n)) {
   152 	bfs.addSource(n);
   153 	while (!bfs.emptyQueue()) {
   154 	  compMap.set(bfs.nextNode(), compNum);
   155 	  bfs.processNextNode();
   156 	}
   157 	++compNum;
   158       }
   159     }
   160     return compNum;
   161   }
   162 
   163   namespace _topology_bits {
   164 
   165     template <typename Graph, typename Iterator >
   166     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   167     public:
   168       typedef typename Graph::Node Node;
   169       LeaveOrderVisitor(Iterator it) : _it(it) {}
   170 
   171       void leave(const Node& node) {
   172 	*(_it++) = node;
   173       }
   174 
   175     private:
   176       Iterator _it;
   177     };
   178 
   179     template <typename Graph, typename Map>
   180     struct FillMapVisitor : public DfsVisitor<Graph> {
   181     public:
   182       typedef typename Graph::Node Node;
   183       typedef typename Map::Value Value;
   184 
   185       FillMapVisitor(Map& map, Value& value) 
   186 	: _map(map), _value(value) {}
   187 
   188       void reach(const Node& node) {
   189 	_map.set(node, _value);
   190       }
   191     private:
   192       Map& _map;
   193       Value& _value;
   194     };
   195 
   196     template <typename Graph, typename EdgeMap>
   197     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   198     public:
   199       typedef typename Graph::Node Node;
   200       typedef typename Graph::Edge Edge;
   201 
   202       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   203 				       int& cutNum) 
   204 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   205 	  _compMap(graph), _num(0) {
   206       }
   207 
   208       void stop(const Node&) {
   209 	++_num;
   210       }
   211 
   212       void reach(const Node& node) {
   213 	_compMap.set(node, _num);
   214       }
   215 
   216       void examine(const Edge& edge) {
   217  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   218  	  _cutMap.set(edge, true);
   219  	  ++_cutNum;
   220  	}
   221       }
   222     private:
   223       const Graph& _graph;
   224       EdgeMap& _cutMap;
   225       int& _cutNum;
   226 
   227       typename Graph::template NodeMap<int> _compMap;
   228       int _num;
   229     };
   230 
   231   }
   232 
   233 
   234   /// \ingroup topology
   235   ///
   236   /// \brief Check that the given directed graph is strongly connected.
   237   ///
   238   /// Check that the given directed graph is strongly connected. The
   239   /// graph is strongly connected when any two nodes of the graph are
   240   /// connected with directed paths in both direction.
   241   /// \return %False when the graph is not strongly connected.
   242   /// \see connected
   243   ///
   244   /// \note By definition, the empty graph is strongly connected.
   245   template <typename Graph>
   246   bool stronglyConnected(const Graph& graph) {
   247     checkConcept<concepts::Graph, Graph>();
   248 
   249     typedef typename Graph::Node Node;
   250     typedef typename Graph::NodeIt NodeIt;
   251 
   252     if (NodeIt(graph) == INVALID) return true;
   253 
   254     using namespace _topology_bits;
   255 
   256     typedef DfsVisitor<Graph> Visitor;
   257     Visitor visitor;
   258 
   259     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   260     dfs.init();
   261     dfs.addSource(NodeIt(graph));
   262     dfs.start();
   263 
   264     for (NodeIt it(graph); it != INVALID; ++it) {
   265       if (!dfs.reached(it)) {
   266 	return false;
   267       }
   268     }
   269 
   270     typedef RevGraphAdaptor<const Graph> RGraph;
   271     RGraph rgraph(graph);
   272 
   273     typedef DfsVisitor<Graph> RVisitor;
   274     RVisitor rvisitor;
   275 
   276     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   277     rdfs.init();    
   278     rdfs.addSource(NodeIt(graph));
   279     rdfs.start();
   280 
   281     for (NodeIt it(graph); it != INVALID; ++it) {
   282       if (!rdfs.reached(it)) {
   283 	return false;
   284       }
   285     }
   286 
   287     return true;
   288   }
   289 
   290   /// \ingroup topology
   291   ///
   292   /// \brief Count the strongly connected components of a directed graph
   293   ///
   294   /// Count the strongly connected components of a directed graph.
   295   /// The strongly connected components are the classes of an equivalence
   296   /// relation on the nodes of the graph. Two nodes are connected with
   297   /// directed paths in both direction.
   298   ///
   299   /// \param graph The graph.
   300   /// \return The number of components
   301   /// \note By definition, the empty graph has zero
   302   /// strongly connected components.
   303   template <typename Graph>
   304   int countStronglyConnectedComponents(const Graph& graph) {
   305     checkConcept<concepts::Graph, Graph>();
   306 
   307     using namespace _topology_bits;
   308 
   309     typedef typename Graph::Node Node;
   310     typedef typename Graph::Edge Edge;
   311     typedef typename Graph::NodeIt NodeIt;
   312     typedef typename Graph::EdgeIt EdgeIt;
   313     
   314     typedef std::vector<Node> Container;
   315     typedef typename Container::iterator Iterator;
   316 
   317     Container nodes(countNodes(graph));
   318     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   319     Visitor visitor(nodes.begin());
   320       
   321     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   322     dfs.init();
   323     for (NodeIt it(graph); it != INVALID; ++it) {
   324       if (!dfs.reached(it)) {
   325 	dfs.addSource(it);
   326 	dfs.start();
   327       }
   328     }
   329 
   330     typedef typename Container::reverse_iterator RIterator;
   331     typedef RevGraphAdaptor<const Graph> RGraph;
   332 
   333     RGraph rgraph(graph);
   334 
   335     typedef DfsVisitor<Graph> RVisitor;
   336     RVisitor rvisitor;
   337 
   338     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   339 
   340     int compNum = 0;
   341 
   342     rdfs.init();
   343     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   344       if (!rdfs.reached(*it)) {
   345 	rdfs.addSource(*it);
   346 	rdfs.start();
   347 	++compNum;
   348       }
   349     }
   350     return compNum;
   351   }
   352 
   353   /// \ingroup topology
   354   ///
   355   /// \brief Find the strongly connected components of a directed graph
   356   ///
   357   /// Find the strongly connected components of a directed graph.
   358   /// The strongly connected components are the classes of an equivalence
   359   /// relation on the nodes of the graph. Two nodes are in relationship
   360   /// when there are directed paths between them in both direction.
   361   ///
   362   /// \image html strongly_connected_components.png
   363   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   364   ///
   365   /// \param graph The graph.
   366   /// \retval compMap A writable node map. The values will be set from 0 to
   367   /// the number of the strongly connected components minus one. Each values 
   368   /// of the map will be set exactly once, the values of a certain component 
   369   /// will be set continuously.
   370   /// \return The number of components
   371   ///
   372   template <typename Graph, typename NodeMap>
   373   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   374     checkConcept<concepts::Graph, Graph>();
   375     typedef typename Graph::Node Node;
   376     typedef typename Graph::NodeIt NodeIt;
   377     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   378 
   379     using namespace _topology_bits;
   380     
   381     typedef std::vector<Node> Container;
   382     typedef typename Container::iterator Iterator;
   383 
   384     Container nodes(countNodes(graph));
   385     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   386     Visitor visitor(nodes.begin());
   387       
   388     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   389     dfs.init();
   390     for (NodeIt it(graph); it != INVALID; ++it) {
   391       if (!dfs.reached(it)) {
   392 	dfs.addSource(it);
   393 	dfs.start();
   394       }
   395     }
   396 
   397     typedef typename Container::reverse_iterator RIterator;
   398     typedef RevGraphAdaptor<const Graph> RGraph;
   399 
   400     RGraph rgraph(graph);
   401 
   402     int compNum = 0;
   403 
   404     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   405     RVisitor rvisitor(compMap, compNum);
   406 
   407     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   408 
   409     rdfs.init();
   410     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   411       if (!rdfs.reached(*it)) {
   412 	rdfs.addSource(*it);
   413 	rdfs.start();
   414 	++compNum;
   415       }
   416     }
   417     return compNum;
   418   }
   419 
   420   /// \ingroup topology
   421   ///
   422   /// \brief Find the cut edges of the strongly connected components.
   423   ///
   424   /// Find the cut edges of the strongly connected components.
   425   /// The strongly connected components are the classes of an equivalence
   426   /// relation on the nodes of the graph. Two nodes are in relationship
   427   /// when there are directed paths between them in both direction.
   428   /// The strongly connected components are separated by the cut edges.
   429   ///
   430   /// \param graph The graph.
   431   /// \retval cutMap A writable node map. The values will be set true when the
   432   /// edge is a cut edge.
   433   ///
   434   /// \return The number of cut edges
   435   template <typename Graph, typename EdgeMap>
   436   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   437     checkConcept<concepts::Graph, Graph>();
   438     typedef typename Graph::Node Node;
   439     typedef typename Graph::Edge Edge;
   440     typedef typename Graph::NodeIt NodeIt;
   441     checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
   442 
   443     using namespace _topology_bits;
   444     
   445     typedef std::vector<Node> Container;
   446     typedef typename Container::iterator Iterator;
   447 
   448     Container nodes(countNodes(graph));
   449     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   450     Visitor visitor(nodes.begin());
   451       
   452     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   453     dfs.init();
   454     for (NodeIt it(graph); it != INVALID; ++it) {
   455       if (!dfs.reached(it)) {
   456 	dfs.addSource(it);
   457 	dfs.start();
   458       }
   459     }
   460 
   461     typedef typename Container::reverse_iterator RIterator;
   462     typedef RevGraphAdaptor<const Graph> RGraph;
   463 
   464     RGraph rgraph(graph);
   465 
   466     int cutNum = 0;
   467 
   468     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   469     RVisitor rvisitor(rgraph, cutMap, cutNum);
   470 
   471     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   472 
   473     rdfs.init();
   474     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   475       if (!rdfs.reached(*it)) {
   476 	rdfs.addSource(*it);
   477 	rdfs.start();
   478       }
   479     }
   480     return cutNum;
   481   }
   482 
   483   namespace _topology_bits {
   484     
   485     template <typename Graph>
   486     class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   487     public:
   488       typedef typename Graph::Node Node;
   489       typedef typename Graph::Edge Edge;
   490       typedef typename Graph::UEdge UEdge;
   491 
   492       CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   493 	: _graph(graph), _compNum(compNum), 
   494 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   495 
   496       void start(const Node& node) {
   497 	_predMap.set(node, INVALID);
   498       }
   499       
   500       void reach(const Node& node) {
   501 	_numMap.set(node, _num);
   502 	_retMap.set(node, _num);
   503 	++_num;
   504       }
   505 
   506       void discover(const Edge& edge) {
   507 	_predMap.set(_graph.target(edge), _graph.source(edge));
   508       }
   509 
   510       void examine(const Edge& edge) {
   511 	if (_graph.source(edge) == _graph.target(edge) && 
   512 	    _graph.direction(edge)) {
   513 	  ++_compNum;
   514 	  return;
   515 	}
   516 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   517 	  return;
   518 	}
   519 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   520 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   521 	}
   522       }
   523 
   524       void backtrack(const Edge& edge) {
   525 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   526 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   527 	}  
   528 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   529 	  ++_compNum;
   530 	}
   531       }
   532       
   533     private:
   534       const Graph& _graph;
   535       int& _compNum; 
   536 
   537       typename Graph::template NodeMap<int> _numMap;
   538       typename Graph::template NodeMap<int> _retMap;
   539       typename Graph::template NodeMap<Node> _predMap;
   540       int _num;
   541     };
   542 
   543     template <typename Graph, typename EdgeMap>
   544     class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   545     public:
   546       typedef typename Graph::Node Node;
   547       typedef typename Graph::Edge Edge;
   548       typedef typename Graph::UEdge UEdge;
   549 
   550       BiNodeConnectedComponentsVisitor(const Graph& graph, 
   551 				       EdgeMap& compMap, int &compNum) 
   552 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   553 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   554 
   555       void start(const Node& node) {
   556 	_predMap.set(node, INVALID);
   557       }
   558       
   559       void reach(const Node& node) {
   560 	_numMap.set(node, _num);
   561 	_retMap.set(node, _num);
   562 	++_num;
   563       }
   564 
   565       void discover(const Edge& edge) {
   566 	Node target = _graph.target(edge);
   567 	_predMap.set(target, edge);
   568 	_edgeStack.push(edge);
   569       }
   570 
   571       void examine(const Edge& edge) {
   572 	Node source = _graph.source(edge);
   573 	Node target = _graph.target(edge);
   574 	if (source == target && _graph.direction(edge)) {
   575 	  _compMap.set(edge, _compNum);
   576 	  ++_compNum;
   577 	  return;
   578 	}
   579 	if (_numMap[target] < _numMap[source]) {
   580 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   581 	    _edgeStack.push(edge);
   582 	  }
   583 	}
   584 	if (_predMap[source] != INVALID && 
   585 	    target == _graph.source(_predMap[source])) {
   586 	  return;
   587 	}
   588 	if (_retMap[source] > _numMap[target]) {
   589 	  _retMap.set(source, _numMap[target]);
   590 	}
   591       }
   592 
   593       void backtrack(const Edge& edge) {
   594 	Node source = _graph.source(edge);
   595 	Node target = _graph.target(edge);
   596 	if (_retMap[source] > _retMap[target]) {
   597 	  _retMap.set(source, _retMap[target]);
   598 	}  
   599 	if (_numMap[source] <= _retMap[target]) {
   600 	  while (_edgeStack.top() != edge) {
   601 	    _compMap.set(_edgeStack.top(), _compNum);
   602 	    _edgeStack.pop();
   603 	  }
   604 	  _compMap.set(edge, _compNum);
   605 	  _edgeStack.pop();
   606 	  ++_compNum;
   607 	}
   608       }
   609       
   610     private:
   611       const Graph& _graph;
   612       EdgeMap& _compMap;
   613       int& _compNum; 
   614 
   615       typename Graph::template NodeMap<int> _numMap;
   616       typename Graph::template NodeMap<int> _retMap;
   617       typename Graph::template NodeMap<Edge> _predMap;
   618       std::stack<UEdge> _edgeStack;
   619       int _num;
   620     };
   621 
   622 
   623     template <typename Graph, typename NodeMap>
   624     class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> {
   625     public:
   626       typedef typename Graph::Node Node;
   627       typedef typename Graph::Edge Edge;
   628       typedef typename Graph::UEdge UEdge;
   629 
   630       BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   631 				     int& cutNum) 
   632 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   633 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   634 
   635       void start(const Node& node) {
   636 	_predMap.set(node, INVALID);
   637 	rootCut = false;
   638       }
   639       
   640       void reach(const Node& node) {
   641 	_numMap.set(node, _num);
   642 	_retMap.set(node, _num);
   643 	++_num;
   644       }
   645 
   646       void discover(const Edge& edge) {
   647 	_predMap.set(_graph.target(edge), _graph.source(edge));
   648       }
   649 
   650       void examine(const Edge& edge) {
   651 	if (_graph.source(edge) == _graph.target(edge) && 
   652 	    _graph.direction(edge)) {
   653 	  if (!_cutMap[_graph.source(edge)]) {
   654 	    _cutMap.set(_graph.source(edge), true);
   655 	    ++_cutNum;
   656 	  }
   657 	  return;
   658 	}
   659 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   660 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   661 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   662 	}
   663       }
   664 
   665       void backtrack(const Edge& edge) {
   666 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   667 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   668 	}  
   669 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   670 	  if (_predMap[_graph.source(edge)] != INVALID) {
   671 	    if (!_cutMap[_graph.source(edge)]) {
   672 	      _cutMap.set(_graph.source(edge), true);
   673 	      ++_cutNum;
   674 	    }
   675 	  } else if (rootCut) {
   676 	    if (!_cutMap[_graph.source(edge)]) {
   677 	      _cutMap.set(_graph.source(edge), true);
   678 	      ++_cutNum;
   679 	    }
   680 	  } else {
   681 	    rootCut = true;
   682 	  }
   683 	}
   684       }
   685       
   686     private:
   687       const Graph& _graph;
   688       NodeMap& _cutMap;
   689       int& _cutNum; 
   690 
   691       typename Graph::template NodeMap<int> _numMap;
   692       typename Graph::template NodeMap<int> _retMap;
   693       typename Graph::template NodeMap<Node> _predMap;
   694       std::stack<UEdge> _edgeStack;
   695       int _num;
   696       bool rootCut;
   697     };
   698 
   699   }
   700 
   701   template <typename UGraph>
   702   int countBiNodeConnectedComponents(const UGraph& graph);
   703 
   704   /// \ingroup topology
   705   ///
   706   /// \brief Checks the graph is bi-node-connected.
   707   ///
   708   /// This function checks that the undirected graph is bi-node-connected  
   709   /// graph. The graph is bi-node-connected if any two undirected edge is 
   710   /// on same circle.
   711   ///
   712   /// \param graph The graph.
   713   /// \return %True when the graph bi-node-connected.
   714   /// \todo Make it faster.
   715   template <typename UGraph>
   716   bool biNodeConnected(const UGraph& graph) {
   717     return countBiNodeConnectedComponents(graph) == 1;
   718   }
   719 
   720   /// \ingroup topology
   721   ///
   722   /// \brief Count the biconnected components.
   723   ///
   724   /// This function finds the bi-node-connected components in an undirected 
   725   /// graph. The biconnected components are the classes of an equivalence 
   726   /// relation on the undirected edges. Two undirected edge is in relationship
   727   /// when they are on same circle.
   728   ///
   729   /// \param graph The graph.
   730   /// \return The number of components.
   731   template <typename UGraph>
   732   int countBiNodeConnectedComponents(const UGraph& graph) {
   733     checkConcept<concepts::UGraph, UGraph>();
   734     typedef typename UGraph::NodeIt NodeIt;
   735 
   736     using namespace _topology_bits;
   737 
   738     typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor;
   739 
   740     int compNum = 0;
   741     Visitor visitor(graph, compNum);
   742 
   743     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   744     dfs.init();
   745     
   746     for (NodeIt it(graph); it != INVALID; ++it) {
   747       if (!dfs.reached(it)) {
   748 	dfs.addSource(it);
   749 	dfs.start();
   750       }
   751     }
   752     return compNum;
   753   }
   754 
   755   /// \ingroup topology
   756   ///
   757   /// \brief Find the bi-node-connected components.
   758   ///
   759   /// This function finds the bi-node-connected components in an undirected 
   760   /// graph. The bi-node-connected components are the classes of an equivalence
   761   /// relation on the undirected edges. Two undirected edge are in relationship
   762   /// when they are on same circle.
   763   ///
   764   /// \image html node_biconnected_components.png
   765   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   766   ///
   767   /// \param graph The graph.
   768   /// \retval compMap A writable uedge map. The values will be set from 0
   769   /// to the number of the biconnected components minus one. Each values 
   770   /// of the map will be set exactly once, the values of a certain component 
   771   /// will be set continuously.
   772   /// \return The number of components.
   773   ///
   774   template <typename UGraph, typename UEdgeMap>
   775   int biNodeConnectedComponents(const UGraph& graph, 
   776 				UEdgeMap& compMap) {
   777     checkConcept<concepts::UGraph, UGraph>();
   778     typedef typename UGraph::NodeIt NodeIt;
   779     typedef typename UGraph::UEdge UEdge;
   780     checkConcept<concepts::WriteMap<UEdge, int>, UEdgeMap>();
   781 
   782     using namespace _topology_bits;
   783 
   784     typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor;
   785     
   786     int compNum = 0;
   787     Visitor visitor(graph, compMap, compNum);
   788 
   789     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   790     dfs.init();
   791     
   792     for (NodeIt it(graph); it != INVALID; ++it) {
   793       if (!dfs.reached(it)) {
   794 	dfs.addSource(it);
   795 	dfs.start();
   796       }
   797     }
   798     return compNum;
   799   }
   800 
   801   /// \ingroup topology
   802   ///
   803   /// \brief Find the bi-node-connected cut nodes.
   804   ///
   805   /// This function finds the bi-node-connected cut nodes in an undirected 
   806   /// graph. The bi-node-connected components are the classes of an equivalence
   807   /// relation on the undirected edges. Two undirected edges are in 
   808   /// relationship when they are on same circle. The biconnected components 
   809   /// are separted by nodes which are the cut nodes of the components.
   810   ///
   811   /// \param graph The graph.
   812   /// \retval cutMap A writable edge map. The values will be set true when
   813   /// the node separate two or more components.
   814   /// \return The number of the cut nodes.
   815   template <typename UGraph, typename NodeMap>
   816   int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) {
   817     checkConcept<concepts::UGraph, UGraph>();
   818     typedef typename UGraph::Node Node;
   819     typedef typename UGraph::NodeIt NodeIt;
   820     checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
   821 
   822     using namespace _topology_bits;
   823 
   824     typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor;
   825     
   826     int cutNum = 0;
   827     Visitor visitor(graph, cutMap, cutNum);
   828 
   829     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
   830     dfs.init();
   831     
   832     for (NodeIt it(graph); it != INVALID; ++it) {
   833       if (!dfs.reached(it)) {
   834 	dfs.addSource(it);
   835 	dfs.start();
   836       }
   837     }
   838     return cutNum;
   839   }
   840 
   841   namespace _topology_bits {
   842     
   843     template <typename Graph>
   844     class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   845     public:
   846       typedef typename Graph::Node Node;
   847       typedef typename Graph::Edge Edge;
   848       typedef typename Graph::UEdge UEdge;
   849 
   850       CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) 
   851 	: _graph(graph), _compNum(compNum), 
   852 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   853 
   854       void start(const Node& node) {
   855 	_predMap.set(node, INVALID);
   856       }
   857       
   858       void reach(const Node& node) {
   859 	_numMap.set(node, _num);
   860 	_retMap.set(node, _num);
   861 	++_num;
   862       }
   863       
   864       void leave(const Node& node) {
   865 	if (_numMap[node] <= _retMap[node]) {
   866 	  ++_compNum;
   867 	}	
   868       }
   869 
   870       void discover(const Edge& edge) {
   871 	_predMap.set(_graph.target(edge), edge);
   872       }
   873 
   874       void examine(const Edge& edge) {
   875 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   876 	  return;
   877 	}
   878 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   879 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   880 	}
   881       }
   882 
   883       void backtrack(const Edge& edge) {
   884 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   885 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   886 	}  
   887       }
   888       
   889     private:
   890       const Graph& _graph;
   891       int& _compNum; 
   892 
   893       typename Graph::template NodeMap<int> _numMap;
   894       typename Graph::template NodeMap<int> _retMap;
   895       typename Graph::template NodeMap<Edge> _predMap;
   896       int _num;
   897     };
   898 
   899     template <typename Graph, typename NodeMap>
   900     class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> {
   901     public:
   902       typedef typename Graph::Node Node;
   903       typedef typename Graph::Edge Edge;
   904       typedef typename Graph::UEdge UEdge;
   905 
   906       BiEdgeConnectedComponentsVisitor(const Graph& graph, 
   907 				       NodeMap& compMap, int &compNum) 
   908 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   909 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   910 
   911       void start(const Node& node) {
   912 	_predMap.set(node, INVALID);
   913       }
   914       
   915       void reach(const Node& node) {
   916 	_numMap.set(node, _num);
   917 	_retMap.set(node, _num);
   918 	_nodeStack.push(node);
   919 	++_num;
   920       }
   921       
   922       void leave(const Node& node) {
   923 	if (_numMap[node] <= _retMap[node]) {
   924 	  while (_nodeStack.top() != node) {
   925 	    _compMap.set(_nodeStack.top(), _compNum);
   926 	    _nodeStack.pop();
   927 	  }
   928 	  _compMap.set(node, _compNum);
   929 	  _nodeStack.pop();
   930 	  ++_compNum;
   931 	}	
   932       }
   933 
   934       void discover(const Edge& edge) {
   935 	_predMap.set(_graph.target(edge), edge);
   936       }
   937 
   938       void examine(const Edge& edge) {
   939 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   940 	  return;
   941 	}
   942 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   943 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   944 	}
   945       }
   946 
   947       void backtrack(const Edge& edge) {
   948 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   949 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   950 	}  
   951       }
   952       
   953     private:
   954       const Graph& _graph;
   955       NodeMap& _compMap;
   956       int& _compNum; 
   957 
   958       typename Graph::template NodeMap<int> _numMap;
   959       typename Graph::template NodeMap<int> _retMap;
   960       typename Graph::template NodeMap<Edge> _predMap;
   961       std::stack<Node> _nodeStack;
   962       int _num;
   963     };
   964 
   965 
   966     template <typename Graph, typename EdgeMap>
   967     class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   968     public:
   969       typedef typename Graph::Node Node;
   970       typedef typename Graph::Edge Edge;
   971       typedef typename Graph::UEdge UEdge;
   972 
   973       BiEdgeConnectedCutEdgesVisitor(const Graph& graph, 
   974 				     EdgeMap& cutMap, int &cutNum) 
   975 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   976 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   977 
   978       void start(const Node& node) {
   979 	_predMap[node] = INVALID;
   980       }
   981       
   982       void reach(const Node& node) {
   983 	_numMap.set(node, _num);
   984 	_retMap.set(node, _num);
   985 	++_num;
   986       }
   987       
   988       void leave(const Node& node) {
   989 	if (_numMap[node] <= _retMap[node]) {
   990 	  if (_predMap[node] != INVALID) {
   991 	    _cutMap.set(_predMap[node], true);
   992 	    ++_cutNum;
   993 	  }
   994 	}	
   995       }
   996 
   997       void discover(const Edge& edge) {
   998 	_predMap.set(_graph.target(edge), edge);
   999       }
  1000 
  1001       void examine(const Edge& edge) {
  1002 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
  1003 	  return;
  1004 	}
  1005 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1006 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1007 	}
  1008       }
  1009 
  1010       void backtrack(const Edge& edge) {
  1011 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1012 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1013 	}  
  1014       }
  1015       
  1016     private:
  1017       const Graph& _graph;
  1018       EdgeMap& _cutMap;
  1019       int& _cutNum; 
  1020 
  1021       typename Graph::template NodeMap<int> _numMap;
  1022       typename Graph::template NodeMap<int> _retMap;
  1023       typename Graph::template NodeMap<Edge> _predMap;
  1024       int _num;
  1025     };
  1026   }
  1027 
  1028   template <typename UGraph>
  1029   int countbiEdgeConnectedComponents(const UGraph& graph);
  1030 
  1031   /// \ingroup topology
  1032   ///
  1033   /// \brief Checks that the graph is bi-edge-connected.
  1034   ///
  1035   /// This function checks that the graph is bi-edge-connected. The undirected
  1036   /// graph is bi-edge-connected when any two nodes are connected with two
  1037   /// edge-disjoint paths.
  1038   ///
  1039   /// \param graph The undirected graph.
  1040   /// \return The number of components.
  1041   /// \todo Make it faster.
  1042   template <typename UGraph>
  1043   bool biEdgeConnected(const UGraph& graph) { 
  1044     return countBiEdgeConnectedComponents(graph) == 1;
  1045   }
  1046 
  1047   /// \ingroup topology
  1048   ///
  1049   /// \brief Count the bi-edge-connected components.
  1050   ///
  1051   /// This function count the bi-edge-connected components in an undirected 
  1052   /// graph. The bi-edge-connected components are the classes of an equivalence
  1053   /// relation on the nodes. Two nodes are in relationship when they are  
  1054   /// connected with at least two edge-disjoint paths.
  1055   ///
  1056   /// \param graph The undirected graph.
  1057   /// \return The number of components.
  1058   template <typename UGraph>
  1059   int countBiEdgeConnectedComponents(const UGraph& graph) { 
  1060     checkConcept<concepts::UGraph, UGraph>();
  1061     typedef typename UGraph::NodeIt NodeIt;
  1062 
  1063     using namespace _topology_bits;
  1064 
  1065     typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor;
  1066     
  1067     int compNum = 0;
  1068     Visitor visitor(graph, compNum);
  1069 
  1070     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1071     dfs.init();
  1072     
  1073     for (NodeIt it(graph); it != INVALID; ++it) {
  1074       if (!dfs.reached(it)) {
  1075 	dfs.addSource(it);
  1076 	dfs.start();
  1077       }
  1078     }
  1079     return compNum;
  1080   }
  1081 
  1082   /// \ingroup topology
  1083   ///
  1084   /// \brief Find the bi-edge-connected components.
  1085   ///
  1086   /// This function finds the bi-edge-connected components in an undirected 
  1087   /// graph. The bi-edge-connected components are the classes of an equivalence
  1088   /// relation on the nodes. Two nodes are in relationship when they are  
  1089   /// connected at least two edge-disjoint paths.
  1090   ///
  1091   /// \image html edge_biconnected_components.png
  1092   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1093   ///
  1094   /// \param graph The graph.
  1095   /// \retval compMap A writable node map. The values will be set from 0 to
  1096   /// the number of the biconnected components minus one. Each values 
  1097   /// of the map will be set exactly once, the values of a certain component 
  1098   /// will be set continuously.
  1099   /// \return The number of components.
  1100   ///
  1101   template <typename UGraph, typename NodeMap>
  1102   int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { 
  1103     checkConcept<concepts::UGraph, UGraph>();
  1104     typedef typename UGraph::NodeIt NodeIt;
  1105     typedef typename UGraph::Node Node;
  1106     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
  1107 
  1108     using namespace _topology_bits;
  1109 
  1110     typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor;
  1111     
  1112     int compNum = 0;
  1113     Visitor visitor(graph, compMap, compNum);
  1114 
  1115     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1116     dfs.init();
  1117     
  1118     for (NodeIt it(graph); it != INVALID; ++it) {
  1119       if (!dfs.reached(it)) {
  1120 	dfs.addSource(it);
  1121 	dfs.start();
  1122       }
  1123     }
  1124     return compNum;
  1125   }
  1126 
  1127   /// \ingroup topology
  1128   ///
  1129   /// \brief Find the bi-edge-connected cut edges.
  1130   ///
  1131   /// This function finds the bi-edge-connected components in an undirected 
  1132   /// graph. The bi-edge-connected components are the classes of an equivalence
  1133   /// relation on the nodes. Two nodes are in relationship when they are 
  1134   /// connected with at least two edge-disjoint paths. The bi-edge-connected 
  1135   /// components are separted by edges which are the cut edges of the 
  1136   /// components.
  1137   ///
  1138   /// \param graph The graph.
  1139   /// \retval cutMap A writable node map. The values will be set true when the
  1140   /// edge is a cut edge.
  1141   /// \return The number of cut edges.
  1142   template <typename UGraph, typename UEdgeMap>
  1143   int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { 
  1144     checkConcept<concepts::UGraph, UGraph>();
  1145     typedef typename UGraph::NodeIt NodeIt;
  1146     typedef typename UGraph::UEdge UEdge;
  1147     checkConcept<concepts::WriteMap<UEdge, bool>, UEdgeMap>();
  1148 
  1149     using namespace _topology_bits;
  1150 
  1151     typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor;
  1152     
  1153     int cutNum = 0;
  1154     Visitor visitor(graph, cutMap, cutNum);
  1155 
  1156     DfsVisit<UGraph, Visitor> dfs(graph, visitor);
  1157     dfs.init();
  1158     
  1159     for (NodeIt it(graph); it != INVALID; ++it) {
  1160       if (!dfs.reached(it)) {
  1161 	dfs.addSource(it);
  1162 	dfs.start();
  1163       }
  1164     }
  1165     return cutNum;
  1166   }
  1167 
  1168 
  1169   namespace _topology_bits {
  1170     
  1171     template <typename Graph, typename IntNodeMap>
  1172     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1173     public:
  1174       typedef typename Graph::Node Node;
  1175       typedef typename Graph::Edge edge;
  1176 
  1177       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1178 	: _order(order), _num(num) {}
  1179       
  1180       void leave(const Node& node) {
  1181 	_order.set(node, --_num);
  1182       }
  1183 
  1184     private:
  1185       IntNodeMap& _order;
  1186       int _num;
  1187     };
  1188     
  1189   }
  1190 
  1191   /// \ingroup topology
  1192   ///
  1193   /// \brief Sort the nodes of a DAG into topolgical order.
  1194   ///
  1195   /// Sort the nodes of a DAG into topolgical order.
  1196   ///
  1197   /// \param graph The graph. It should be directed and acyclic.
  1198   /// \retval order A writable node map. The values will be set from 0 to
  1199   /// the number of the nodes in the graph minus one. Each values of the map
  1200   /// will be set exactly once, the values  will be set descending order.
  1201   ///
  1202   /// \see checkedTopologicalSort
  1203   /// \see dag
  1204   template <typename Graph, typename NodeMap>
  1205   void topologicalSort(const Graph& graph, NodeMap& order) {
  1206     using namespace _topology_bits;
  1207 
  1208     checkConcept<concepts::Graph, Graph>();
  1209     checkConcept<concepts::WriteMap<typename Graph::Node, int>, NodeMap>();
  1210 
  1211     typedef typename Graph::Node Node;
  1212     typedef typename Graph::NodeIt NodeIt;
  1213     typedef typename Graph::Edge Edge;
  1214 
  1215     TopologicalSortVisitor<Graph, NodeMap> 
  1216       visitor(order, countNodes(graph)); 
  1217 
  1218     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1219       dfs(graph, visitor);
  1220 
  1221     dfs.init();
  1222     for (NodeIt it(graph); it != INVALID; ++it) {
  1223       if (!dfs.reached(it)) {
  1224 	dfs.addSource(it);
  1225 	dfs.start();
  1226       }
  1227     }    
  1228   }
  1229 
  1230   /// \ingroup topology
  1231   ///
  1232   /// \brief Sort the nodes of a DAG into topolgical order.
  1233   ///
  1234   /// Sort the nodes of a DAG into topolgical order. It also checks
  1235   /// that the given graph is DAG.
  1236   ///
  1237   /// \param graph The graph. It should be directed and acyclic.
  1238   /// \retval order A readable - writable node map. The values will be set 
  1239   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1240   /// of the map will be set exactly once, the values will be set descending 
  1241   /// order.
  1242   /// \return %False when the graph is not DAG.
  1243   ///
  1244   /// \see topologicalSort
  1245   /// \see dag
  1246   template <typename Graph, typename NodeMap>
  1247   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1248     using namespace _topology_bits;
  1249 
  1250     checkConcept<concepts::Graph, Graph>();
  1251     checkConcept<concepts::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1252 
  1253     typedef typename Graph::Node Node;
  1254     typedef typename Graph::NodeIt NodeIt;
  1255     typedef typename Graph::Edge Edge;
  1256 
  1257     order = constMap<Node, int, -1>();
  1258 
  1259     TopologicalSortVisitor<Graph, NodeMap> 
  1260       visitor(order, countNodes(graph)); 
  1261 
  1262     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1263       dfs(graph, visitor);
  1264 
  1265     dfs.init();
  1266     for (NodeIt it(graph); it != INVALID; ++it) {
  1267       if (!dfs.reached(it)) {
  1268 	dfs.addSource(it);
  1269 	while (!dfs.emptyQueue()) {
  1270  	  Edge edge = dfs.nextEdge();
  1271  	  Node target = graph.target(edge);
  1272  	  if (dfs.reached(target) && order[target] == -1) {
  1273  	    return false;
  1274  	  }
  1275  	  dfs.processNextEdge();
  1276  	}
  1277       }
  1278     }
  1279     return true;
  1280   }
  1281 
  1282   /// \ingroup topology
  1283   ///
  1284   /// \brief Check that the given directed graph is a DAG.
  1285   ///
  1286   /// Check that the given directed graph is a DAG. The DAG is
  1287   /// an Directed Acyclic Graph.
  1288   /// \return %False when the graph is not DAG.
  1289   /// \see acyclic
  1290   template <typename Graph>
  1291   bool dag(const Graph& graph) {
  1292 
  1293     checkConcept<concepts::Graph, Graph>();
  1294 
  1295     typedef typename Graph::Node Node;
  1296     typedef typename Graph::NodeIt NodeIt;
  1297     typedef typename Graph::Edge Edge;
  1298 
  1299     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1300 
  1301     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1302       Create dfs(graph);
  1303 
  1304     ProcessedMap processed(graph);
  1305     dfs.processedMap(processed);
  1306 
  1307     dfs.init();
  1308     for (NodeIt it(graph); it != INVALID; ++it) {
  1309       if (!dfs.reached(it)) {
  1310 	dfs.addSource(it);
  1311 	while (!dfs.emptyQueue()) {
  1312 	  Edge edge = dfs.nextEdge();
  1313 	  Node target = graph.target(edge);
  1314 	  if (dfs.reached(target) && !processed[target]) {
  1315 	    return false;
  1316 	  }
  1317 	  dfs.processNextEdge();
  1318 	}
  1319       }
  1320     }    
  1321     return true;
  1322   }
  1323 
  1324   /// \ingroup topology
  1325   ///
  1326   /// \brief Check that the given undirected graph is acyclic.
  1327   ///
  1328   /// Check that the given undirected graph acyclic.
  1329   /// \param graph The undirected graph.
  1330   /// \return %True when there is no circle in the graph.
  1331   /// \see dag
  1332   template <typename UGraph>
  1333   bool acyclic(const UGraph& graph) {
  1334     checkConcept<concepts::UGraph, UGraph>();
  1335     typedef typename UGraph::Node Node;
  1336     typedef typename UGraph::NodeIt NodeIt;
  1337     typedef typename UGraph::Edge Edge;
  1338     Dfs<UGraph> dfs(graph);
  1339     dfs.init();
  1340     for (NodeIt it(graph); it != INVALID; ++it) {
  1341       if (!dfs.reached(it)) {
  1342 	dfs.addSource(it);
  1343 	while (!dfs.emptyQueue()) {
  1344 	  Edge edge = dfs.nextEdge();
  1345 	  Node source = graph.source(edge);
  1346 	  Node target = graph.target(edge);
  1347 	  if (dfs.reached(target) && 
  1348 	      dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1349 	    return false;
  1350 	  }
  1351 	  dfs.processNextEdge();
  1352 	}
  1353       }
  1354     }
  1355     return true;
  1356   }
  1357 
  1358   /// \ingroup topology
  1359   ///
  1360   /// \brief Check that the given undirected graph is tree.
  1361   ///
  1362   /// Check that the given undirected graph is tree.
  1363   /// \param graph The undirected graph.
  1364   /// \return %True when the graph is acyclic and connected.
  1365   template <typename UGraph>
  1366   bool tree(const UGraph& graph) {
  1367     checkConcept<concepts::UGraph, UGraph>();
  1368     typedef typename UGraph::Node Node;
  1369     typedef typename UGraph::NodeIt NodeIt;
  1370     typedef typename UGraph::Edge Edge;
  1371     Dfs<UGraph> dfs(graph);
  1372     dfs.init();
  1373     dfs.addSource(NodeIt(graph));
  1374     while (!dfs.emptyQueue()) {
  1375       Edge edge = dfs.nextEdge();
  1376       Node source = graph.source(edge);
  1377       Node target = graph.target(edge);
  1378       if (dfs.reached(target) && 
  1379 	  dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1380 	return false;
  1381       }
  1382       dfs.processNextEdge();
  1383     }
  1384     for (NodeIt it(graph); it != INVALID; ++it) {
  1385       if (!dfs.reached(it)) {
  1386 	return false;
  1387       }
  1388     }    
  1389     return true;
  1390   }
  1391 
  1392   namespace _topology_bits {
  1393 
  1394     template <typename Graph>
  1395     class BipartiteVisitor : public BfsVisitor<Graph> {
  1396     public:
  1397       typedef typename Graph::Edge Edge;
  1398       typedef typename Graph::Node Node;
  1399 
  1400       BipartiteVisitor(const Graph& graph, bool& bipartite) 
  1401         : _graph(graph), _part(graph), _bipartite(bipartite) {}
  1402       
  1403       void start(const Node& node) {
  1404         _part[node] = true;
  1405       }
  1406       void discover(const Edge& edge) {
  1407         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1408       }
  1409       void examine(const Edge& edge) {
  1410         _bipartite = _bipartite && 
  1411           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1412       }
  1413 
  1414     private:
  1415 
  1416       const Graph& _graph;
  1417       typename Graph::template NodeMap<bool> _part;
  1418       bool& _bipartite;
  1419     };
  1420 
  1421     template <typename Graph, typename PartMap>
  1422     class BipartitePartitionsVisitor : public BfsVisitor<Graph> {
  1423     public:
  1424       typedef typename Graph::Edge Edge;
  1425       typedef typename Graph::Node Node;
  1426 
  1427       BipartitePartitionsVisitor(const Graph& graph, 
  1428                                  PartMap& part, bool& bipartite) 
  1429         : _graph(graph), _part(part), _bipartite(bipartite) {}
  1430       
  1431       void start(const Node& node) {
  1432         _part.set(node, true);
  1433       }
  1434       void discover(const Edge& edge) {
  1435         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1436       }
  1437       void examine(const Edge& edge) {
  1438         _bipartite = _bipartite && 
  1439           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1440       }
  1441 
  1442     private:
  1443 
  1444       const Graph& _graph;
  1445       PartMap& _part;
  1446       bool& _bipartite;
  1447     };
  1448   }
  1449 
  1450   /// \ingroup topology
  1451   ///
  1452   /// \brief Check if the given undirected graph is bipartite or not
  1453   ///
  1454   /// The function checks if the given undirected \c graph graph is bipartite 
  1455   /// or not. The \ref Bfs algorithm is used to calculate the result.
  1456   /// \param graph The undirected graph.
  1457   /// \return %True if \c graph is bipartite, %false otherwise.
  1458   /// \sa bipartitePartitions
  1459   ///
  1460   /// \author Balazs Attila Mihaly  
  1461   template<typename UGraph>
  1462   inline bool bipartite(const UGraph &graph){
  1463     using namespace _topology_bits;
  1464 
  1465     checkConcept<concepts::UGraph, UGraph>();
  1466     
  1467     typedef typename UGraph::NodeIt NodeIt;
  1468     typedef typename UGraph::EdgeIt EdgeIt;
  1469     
  1470     bool bipartite = true;
  1471 
  1472     BipartiteVisitor<UGraph> 
  1473       visitor(graph, bipartite);
  1474     BfsVisit<UGraph, BipartiteVisitor<UGraph> > 
  1475       bfs(graph, visitor);
  1476     bfs.init();
  1477     for(NodeIt it(graph); it != INVALID; ++it) {
  1478       if(!bfs.reached(it)){
  1479 	bfs.addSource(it);
  1480         while (!bfs.emptyQueue()) {
  1481           bfs.processNextNode();
  1482           if (!bipartite) return false;
  1483         }
  1484       }
  1485     }
  1486     return true;
  1487   }
  1488   
  1489   /// \ingroup topology
  1490   ///
  1491   /// \brief Check if the given undirected graph is bipartite or not
  1492   ///
  1493   /// The function checks if the given undirected graph is bipartite 
  1494   /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. 
  1495   /// During the execution, the \c partMap will be set as the two 
  1496   /// partitions of the graph.
  1497   /// \param graph The undirected graph.
  1498   /// \retval partMap A writable bool map of nodes. It will be set as the
  1499   /// two partitions of the graph. 
  1500   /// \return %True if \c graph is bipartite, %false otherwise.
  1501   ///
  1502   /// \author Balazs Attila Mihaly  
  1503   ///
  1504   /// \image html bipartite_partitions.png
  1505   /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1506   template<typename UGraph, typename NodeMap>
  1507   inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){
  1508     using namespace _topology_bits;
  1509 
  1510     checkConcept<concepts::UGraph, UGraph>();
  1511     
  1512     typedef typename UGraph::Node Node;
  1513     typedef typename UGraph::NodeIt NodeIt;
  1514     typedef typename UGraph::EdgeIt EdgeIt;
  1515 
  1516     bool bipartite = true;
  1517 
  1518     BipartitePartitionsVisitor<UGraph, NodeMap> 
  1519       visitor(graph, partMap, bipartite);
  1520     BfsVisit<UGraph, BipartitePartitionsVisitor<UGraph, NodeMap> > 
  1521       bfs(graph, visitor);
  1522     bfs.init();
  1523     for(NodeIt it(graph); it != INVALID; ++it) {
  1524       if(!bfs.reached(it)){
  1525 	bfs.addSource(it);
  1526         while (!bfs.emptyQueue()) {
  1527           bfs.processNextNode();
  1528           if (!bipartite) return false;
  1529         }
  1530       }
  1531     }
  1532     return true;
  1533   }
  1534 
  1535   /// \brief Returns true when there is not loop edge in the graph.
  1536   ///
  1537   /// Returns true when there is not loop edge in the graph.
  1538   template <typename Graph>
  1539   bool loopFree(const Graph& graph) {
  1540     for (typename Graph::EdgeIt it(graph); it != INVALID; ++it) {
  1541       if (graph.source(it) == graph.target(it)) return false;
  1542     }
  1543     return true;
  1544   }
  1545 
  1546   /// \brief Returns true when there is not parallel edges in the graph.
  1547   ///
  1548   /// Returns true when there is not parallel edges in the graph.
  1549   template <typename Graph>
  1550   bool parallelFree(const Graph& graph) {
  1551     typename Graph::template NodeMap<bool> reached(graph, false);
  1552     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1553       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1554         if (reached[graph.target(e)]) return false;
  1555         reached.set(graph.target(e), true);
  1556       }
  1557       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1558         reached.set(graph.target(e), false);
  1559       }
  1560     }
  1561     return true;
  1562   }
  1563 
  1564   /// \brief Returns true when there is not loop edge and parallel
  1565   /// edges in the graph.
  1566   ///
  1567   /// Returns true when there is not loop edge and parallel edges in
  1568   /// the graph.
  1569   template <typename Graph>
  1570   bool simpleGraph(const Graph& graph) {
  1571     typename Graph::template NodeMap<bool> reached(graph, false);
  1572     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1573       reached.set(n, true);
  1574       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1575         if (reached[graph.target(e)]) return false;
  1576         reached.set(graph.target(e), true);
  1577       }
  1578       for (typename Graph::OutEdgeIt e(graph, n); e != INVALID; ++e) {
  1579         reached.set(graph.target(e), false);
  1580       }
  1581       reached.set(n, false);
  1582     }
  1583     return true;
  1584   }
  1585    
  1586 } //namespace lemon
  1587 
  1588 #endif //LEMON_TOPOLOGY_H