lemon/capacity_scaling.h
author deba
Fri, 15 Jun 2007 14:31:14 +0000
changeset 2455 dc3f7991ad58
child 2457 8c791ee69a45
permissions -rw-r--r--
Using set() instead of assignment
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CAPACITY_SCALING_H
    20 #define LEMON_CAPACITY_SCALING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief The capacity scaling algorithm for finding a minimum cost
    26 /// flow.
    27 
    28 #include <vector>
    29 #include <lemon/dijkstra.h>
    30 #include <lemon/graph_adaptor.h>
    31 
    32 #define WITH_SCALING
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow
    37   /// @{
    38 
    39   /// \brief Implementation of the capacity scaling version of the
    40   /// succesive shortest path algorithm for finding a minimum cost flow.
    41   ///
    42   /// \ref lemon::CapacityScaling "CapacityScaling" implements a
    43   /// capacity scaling algorithm for finding a minimum cost flow.
    44   ///
    45   /// \param Graph The directed graph type the algorithm runs on.
    46   /// \param LowerMap The type of the lower bound map.
    47   /// \param CapacityMap The type of the capacity (upper bound) map.
    48   /// \param CostMap The type of the cost (length) map.
    49   /// \param SupplyMap The type of the supply map.
    50   ///
    51   /// \warning
    52   /// - Edge capacities and costs should be nonnegative integers.
    53   ///	However \c CostMap::Value should be signed type.
    54   /// - Supply values should be integers.
    55   /// - \c LowerMap::Value must be convertible to
    56   ///	\c CapacityMap::Value and \c CapacityMap::Value must be
    57   ///	convertible to \c SupplyMap::Value.
    58   ///
    59   /// \author Peter Kovacs
    60 
    61 template < typename Graph,
    62 	   typename LowerMap = typename Graph::template EdgeMap<int>,
    63 	   typename CapacityMap = LowerMap,
    64 	   typename CostMap = typename Graph::template EdgeMap<int>,
    65 	   typename SupplyMap = typename Graph::template NodeMap
    66 				<typename CapacityMap::Value> >
    67   class CapacityScaling
    68   {
    69     typedef typename Graph::Node Node;
    70     typedef typename Graph::NodeIt NodeIt;
    71     typedef typename Graph::Edge Edge;
    72     typedef typename Graph::EdgeIt EdgeIt;
    73     typedef typename Graph::InEdgeIt InEdgeIt;
    74     typedef typename Graph::OutEdgeIt OutEdgeIt;
    75 
    76     typedef typename LowerMap::Value Lower;
    77     typedef typename CapacityMap::Value Capacity;
    78     typedef typename CostMap::Value Cost;
    79     typedef typename SupplyMap::Value Supply;
    80     typedef typename Graph::template EdgeMap<Capacity> CapacityRefMap;
    81     typedef typename Graph::template NodeMap<Supply> SupplyRefMap;
    82 
    83     typedef ResGraphAdaptor< const Graph, Capacity,
    84 			     CapacityRefMap, CapacityRefMap > ResGraph;
    85     typedef typename ResGraph::Node ResNode;
    86     typedef typename ResGraph::NodeIt ResNodeIt;
    87     typedef typename ResGraph::Edge ResEdge;
    88     typedef typename ResGraph::EdgeIt ResEdgeIt;
    89 
    90   public:
    91 
    92     /// \brief The type of the flow map.
    93     typedef CapacityRefMap FlowMap;
    94     /// \brief The type of the potential map.
    95     typedef typename Graph::template NodeMap<Cost> PotentialMap;
    96 
    97   protected:
    98 
    99     /// \brief Map adaptor class for handling reduced edge costs.
   100     class ReducedCostMap : public MapBase<ResEdge, Cost>
   101     {
   102     private:
   103 
   104       const ResGraph &gr;
   105       const CostMap &cost_map;
   106       const PotentialMap &pot_map;
   107 
   108     public:
   109 
   110       typedef typename MapBase<ResEdge, Cost>::Value Value;
   111       typedef typename MapBase<ResEdge, Cost>::Key Key;
   112 
   113       ReducedCostMap( const ResGraph &_gr,
   114 		      const CostMap &_cost,
   115 		      const PotentialMap &_pot ) :
   116 	gr(_gr), cost_map(_cost), pot_map(_pot) {}
   117 
   118       Value operator[](const Key &e) const {
   119 	return ResGraph::forward(e) ?
   120 	   cost_map[e] - pot_map[gr.source(e)] + pot_map[gr.target(e)] :
   121 	  -cost_map[e] - pot_map[gr.source(e)] + pot_map[gr.target(e)];
   122       }
   123 
   124     }; //class ReducedCostMap
   125 
   126     /// \brief Map adaptor for \ref lemon::Dijkstra "Dijkstra" class to
   127     /// update node potentials.
   128     class PotentialUpdateMap : public MapBase<ResNode, Cost>
   129     {
   130     private:
   131 
   132       PotentialMap *pot;
   133       typedef std::pair<ResNode, Cost> Pair;
   134       std::vector<Pair> data;
   135 
   136     public:
   137 
   138       typedef typename MapBase<ResNode, Cost>::Value Value;
   139       typedef typename MapBase<ResNode, Cost>::Key Key;
   140 
   141       void potentialMap(PotentialMap &_pot) {
   142 	pot = &_pot;
   143       }
   144 
   145       void init() {
   146 	data.clear();
   147       }
   148 
   149       void set(const Key &n, const Value &v) {
   150 	data.push_back(Pair(n, v));
   151       }
   152 
   153       void update() {
   154 	Cost val = data[data.size()-1].second;
   155 	for (int i = 0; i < data.size()-1; ++i)
   156 	  (*pot)[data[i].first] += val - data[i].second;
   157       }
   158 
   159     }; //class PotentialUpdateMap
   160 
   161 #ifdef WITH_SCALING
   162     /// \brief Map adaptor class for identifing deficit nodes.
   163     class DeficitBoolMap : public MapBase<ResNode, bool>
   164     {
   165     private:
   166 
   167       const SupplyRefMap &imb;
   168       const Capacity &delta;
   169 
   170     public:
   171 
   172       DeficitBoolMap(const SupplyRefMap &_imb, const Capacity &_delta) :
   173 	imb(_imb), delta(_delta) {}
   174 
   175       bool operator[](const ResNode &n) const {
   176 	return imb[n] <= -delta;
   177       }
   178 
   179     }; //class DeficitBoolMap
   180 
   181     /// \brief Map adaptor class for filtering edges with at least
   182     /// \c delta residual capacity
   183     class DeltaFilterMap : public MapBase<ResEdge, bool>
   184     {
   185     private:
   186 
   187       const ResGraph &gr;
   188       const Capacity &delta;
   189 
   190     public:
   191 
   192       typedef typename MapBase<ResEdge, Cost>::Value Value;
   193       typedef typename MapBase<ResEdge, Cost>::Key Key;
   194 
   195       DeltaFilterMap(const ResGraph &_gr, const Capacity &_delta) :
   196 	gr(_gr), delta(_delta) {}
   197 
   198       Value operator[](const Key &e) const {
   199 	return gr.rescap(e) >= delta;
   200       }
   201 
   202     }; //class DeltaFilterMap
   203 
   204     typedef EdgeSubGraphAdaptor<const ResGraph, const DeltaFilterMap>
   205       DeltaResGraph;
   206 
   207     /// \brief Traits class for \ref lemon::Dijkstra "Dijkstra" class.
   208     class ResDijkstraTraits :
   209       public DijkstraDefaultTraits<DeltaResGraph, ReducedCostMap>
   210     {
   211     public:
   212 
   213       typedef PotentialUpdateMap DistMap;
   214 
   215       static DistMap *createDistMap(const DeltaResGraph&) {
   216 	return new DistMap();
   217       }
   218 
   219     }; //class ResDijkstraTraits
   220 
   221 #else //WITHOUT_CAPACITY_SCALING
   222     /// \brief Map adaptor class for identifing deficit nodes.
   223     class DeficitBoolMap : public MapBase<ResNode, bool>
   224     {
   225     private:
   226 
   227       const SupplyRefMap &imb;
   228 
   229     public:
   230 
   231       DeficitBoolMap(const SupplyRefMap &_imb) : imb(_imb) {}
   232 
   233       bool operator[](const ResNode &n) const {
   234 	return imb[n] < 0;
   235       }
   236 
   237     }; //class DeficitBoolMap
   238 
   239     /// \brief Traits class for \ref lemon::Dijkstra "Dijkstra" class.
   240     class ResDijkstraTraits :
   241       public DijkstraDefaultTraits<ResGraph, ReducedCostMap>
   242     {
   243     public:
   244 
   245       typedef PotentialUpdateMap DistMap;
   246 
   247       static DistMap *createDistMap(const ResGraph&) {
   248 	return new DistMap();
   249       }
   250 
   251     }; //class ResDijkstraTraits
   252 #endif
   253 
   254   protected:
   255 
   256     /// \brief The directed graph the algorithm runs on.
   257     const Graph &graph;
   258     /// \brief The original lower bound map.
   259     const LowerMap *lower;
   260     /// \brief The modified capacity map.
   261     CapacityRefMap capacity;
   262     /// \brief The cost map.
   263     const CostMap &cost;
   264     /// \brief The modified supply map.
   265     SupplyRefMap supply;
   266     /// \brief The sum of supply values equals zero.
   267     bool valid_supply;
   268 
   269     /// \brief The edge map of the current flow.
   270     FlowMap flow;
   271     /// \brief The potential node map.
   272     PotentialMap potential;
   273     /// \brief The residual graph.
   274     ResGraph res_graph;
   275     /// \brief The reduced cost map.
   276     ReducedCostMap red_cost;
   277 
   278     /// \brief The imbalance map.
   279     SupplyRefMap imbalance;
   280     /// \brief The excess nodes.
   281     std::vector<ResNode> excess_nodes;
   282     /// \brief The index of the next excess node.
   283     int next_node;
   284 
   285 #ifdef WITH_SCALING
   286     typedef Dijkstra<DeltaResGraph, ReducedCostMap, ResDijkstraTraits>
   287       ResDijkstra;
   288     /// \brief \ref lemon::Dijkstra "Dijkstra" class for finding
   289     /// shortest paths in the residual graph with respect to the
   290     /// reduced edge costs.
   291     ResDijkstra dijkstra;
   292 
   293     /// \brief The delta parameter used for capacity scaling.
   294     Capacity delta;
   295     /// \brief Edge filter map.
   296     DeltaFilterMap delta_filter;
   297     /// \brief The delta residual graph.
   298     DeltaResGraph dres_graph;
   299     /// \brief Map for identifing deficit nodes.
   300     DeficitBoolMap delta_deficit;
   301 
   302 #else //WITHOUT_CAPACITY_SCALING
   303     typedef Dijkstra<ResGraph, ReducedCostMap, ResDijkstraTraits>
   304       ResDijkstra;
   305     /// \brief \ref lemon::Dijkstra "Dijkstra" class for finding
   306     /// shortest paths in the residual graph with respect to the
   307     /// reduced edge costs.
   308     ResDijkstra dijkstra;
   309     /// \brief Map for identifing deficit nodes.
   310     DeficitBoolMap has_deficit;
   311 #endif
   312 
   313     /// \brief Pred map for the \ref lemon::Dijkstra "Dijkstra" class.
   314     typename ResDijkstra::PredMap pred;
   315     /// \brief Dist map for the \ref lemon::Dijkstra "Dijkstra" class to
   316     /// update node potentials.
   317     PotentialUpdateMap updater;
   318 
   319   public :
   320 
   321     /// \brief General constructor of the class (with lower bounds).
   322     ///
   323     /// General constructor of the class (with lower bounds).
   324     ///
   325     /// \param _graph The directed graph the algorithm runs on.
   326     /// \param _lower The lower bounds of the edges.
   327     /// \param _capacity The capacities (upper bounds) of the edges.
   328     /// \param _cost The cost (length) values of the edges.
   329     /// \param _supply The supply values of the nodes (signed).
   330     CapacityScaling( const Graph &_graph,
   331 		     const LowerMap &_lower,
   332 		     const CapacityMap &_capacity,
   333 		     const CostMap &_cost,
   334 		     const SupplyMap &_supply ) :
   335       graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   336       supply(_graph), flow(_graph, 0), potential(_graph, 0),
   337       res_graph(_graph, capacity, flow),
   338       red_cost(res_graph, cost, potential), imbalance(_graph),
   339 #ifdef WITH_SCALING
   340       delta(0), delta_filter(res_graph, delta),
   341       dres_graph(res_graph, delta_filter),
   342       dijkstra(dres_graph, red_cost), pred(dres_graph),
   343       delta_deficit(imbalance, delta)
   344 #else //WITHOUT_CAPACITY_SCALING
   345       dijkstra(res_graph, red_cost), pred(res_graph),
   346       has_deficit(imbalance)
   347 #endif
   348     {
   349       // Removing nonzero lower bounds
   350       capacity = subMap(_capacity, _lower);
   351       Supply sum = 0;
   352       for (NodeIt n(graph); n != INVALID; ++n) {
   353 	Supply s = _supply[n];
   354 	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   355 	  s += _lower[e];
   356 	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   357 	  s -= _lower[e];
   358 	supply[n] = imbalance[n] = s;
   359 	sum += s;
   360       }
   361       valid_supply = sum == 0;
   362     }
   363 
   364     /// \brief General constructor of the class (without lower bounds).
   365     ///
   366     /// General constructor of the class (without lower bounds).
   367     ///
   368     /// \param _graph The directed graph the algorithm runs on.
   369     /// \param _capacity The capacities (upper bounds) of the edges.
   370     /// \param _cost The cost (length) values of the edges.
   371     /// \param _supply The supply values of the nodes (signed).
   372     CapacityScaling( const Graph &_graph,
   373 		     const CapacityMap &_capacity,
   374 		     const CostMap &_cost,
   375 		     const SupplyMap &_supply ) :
   376       graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   377       supply(_supply), flow(_graph, 0), potential(_graph, 0),
   378       res_graph(_graph, capacity, flow),
   379       red_cost(res_graph, cost, potential), imbalance(_graph),
   380 #ifdef WITH_SCALING
   381       delta(0), delta_filter(res_graph, delta),
   382       dres_graph(res_graph, delta_filter),
   383       dijkstra(dres_graph, red_cost), pred(dres_graph),
   384       delta_deficit(imbalance, delta)
   385 #else //WITHOUT_CAPACITY_SCALING
   386       dijkstra(res_graph, red_cost), pred(res_graph),
   387       has_deficit(imbalance)
   388 #endif
   389     {
   390       // Checking the sum of supply values
   391       Supply sum = 0;
   392       for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
   393       valid_supply = sum == 0;
   394     }
   395 
   396     /// \brief Simple constructor of the class (with lower bounds).
   397     ///
   398     /// Simple constructor of the class (with lower bounds).
   399     ///
   400     /// \param _graph The directed graph the algorithm runs on.
   401     /// \param _lower The lower bounds of the edges.
   402     /// \param _capacity The capacities (upper bounds) of the edges.
   403     /// \param _cost The cost (length) values of the edges.
   404     /// \param _s The source node.
   405     /// \param _t The target node.
   406     /// \param _flow_value The required amount of flow from node \c _s
   407     /// to node \c _t (i.e. the supply of \c _s and the demand of
   408     /// \c _t).
   409     CapacityScaling( const Graph &_graph,
   410 		     const LowerMap &_lower,
   411 		     const CapacityMap &_capacity,
   412 		     const CostMap &_cost,
   413 		     Node _s, Node _t,
   414 		     Supply _flow_value ) :
   415       graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   416       supply(_graph), flow(_graph, 0), potential(_graph, 0),
   417       res_graph(_graph, capacity, flow),
   418       red_cost(res_graph, cost, potential), imbalance(_graph),
   419 #ifdef WITH_SCALING
   420       delta(0), delta_filter(res_graph, delta),
   421       dres_graph(res_graph, delta_filter),
   422       dijkstra(dres_graph, red_cost), pred(dres_graph),
   423       delta_deficit(imbalance, delta)
   424 #else //WITHOUT_CAPACITY_SCALING
   425       dijkstra(res_graph, red_cost), pred(res_graph),
   426       has_deficit(imbalance)
   427 #endif
   428     {
   429       // Removing nonzero lower bounds
   430       capacity = subMap(_capacity, _lower);
   431       for (NodeIt n(graph); n != INVALID; ++n) {
   432 	Supply s = 0;
   433 	if (n == _s) s =  _flow_value;
   434 	if (n == _t) s = -_flow_value;
   435 	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   436 	  s += _lower[e];
   437 	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   438 	  s -= _lower[e];
   439 	supply[n] = imbalance[n] = s;
   440       }
   441       valid_supply = true;
   442     }
   443 
   444     /// \brief Simple constructor of the class (without lower bounds).
   445     ///
   446     /// Simple constructor of the class (without lower bounds).
   447     ///
   448     /// \param _graph The directed graph the algorithm runs on.
   449     /// \param _capacity The capacities (upper bounds) of the edges.
   450     /// \param _cost The cost (length) values of the edges.
   451     /// \param _s The source node.
   452     /// \param _t The target node.
   453     /// \param _flow_value The required amount of flow from node \c _s
   454     /// to node \c _t (i.e. the supply of \c _s and the demand of
   455     /// \c _t).
   456     CapacityScaling( const Graph &_graph,
   457 		     const CapacityMap &_capacity,
   458 		     const CostMap &_cost,
   459 		     Node _s, Node _t,
   460 		     Supply _flow_value ) :
   461       graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   462       supply(_graph, 0), flow(_graph, 0), potential(_graph, 0),
   463       res_graph(_graph, capacity, flow),
   464       red_cost(res_graph, cost, potential), imbalance(_graph),
   465 #ifdef WITH_SCALING
   466       delta(0), delta_filter(res_graph, delta),
   467       dres_graph(res_graph, delta_filter),
   468       dijkstra(dres_graph, red_cost), pred(dres_graph),
   469       delta_deficit(imbalance, delta)
   470 #else //WITHOUT_CAPACITY_SCALING
   471       dijkstra(res_graph, red_cost), pred(res_graph),
   472       has_deficit(imbalance)
   473 #endif
   474     {
   475       supply[_s] =  _flow_value;
   476       supply[_t] = -_flow_value;
   477       valid_supply = true;
   478     }
   479 
   480     /// \brief Returns a const reference to the flow map.
   481     ///
   482     /// Returns a const reference to the flow map.
   483     ///
   484     /// \pre \ref run() must be called before using this function.
   485     const FlowMap& flowMap() const {
   486       return flow;
   487     }
   488 
   489     /// \brief Returns a const reference to the potential map (the dual
   490     /// solution).
   491     ///
   492     /// Returns a const reference to the potential map (the dual
   493     /// solution).
   494     ///
   495     /// \pre \ref run() must be called before using this function.
   496     const PotentialMap& potentialMap() const {
   497       return potential;
   498     }
   499 
   500     /// \brief Returns the total cost of the found flow.
   501     ///
   502     /// Returns the total cost of the found flow. The complexity of the
   503     /// function is \f$ O(e) \f$.
   504     ///
   505     /// \pre \ref run() must be called before using this function.
   506     Cost totalCost() const {
   507       Cost c = 0;
   508       for (EdgeIt e(graph); e != INVALID; ++e)
   509 	c += flow[e] * cost[e];
   510       return c;
   511     }
   512 
   513     /// \brief Runs the successive shortest path algorithm.
   514     ///
   515     /// Runs the successive shortest path algorithm.
   516     ///
   517     /// \return \c true if a feasible flow can be found.
   518     bool run() {
   519       return init() && start();
   520     }
   521 
   522   protected:
   523 
   524     /// \brief Initializes the algorithm.
   525     bool init() {
   526       if (!valid_supply) return false;
   527 
   528       // Initalizing Dijkstra class
   529       updater.potentialMap(potential);
   530       dijkstra.distMap(updater).predMap(pred);
   531 
   532 #ifdef WITH_SCALING
   533       // Initilaizing delta value
   534       Capacity max_cap = 0;
   535       for (EdgeIt e(graph); e != INVALID; ++e) {
   536 	if (capacity[e] > max_cap) max_cap = capacity[e];
   537       }
   538       for (delta = 1; 2 * delta < max_cap; delta *= 2) ;
   539 #endif
   540       return true;
   541     }
   542 
   543 #ifdef WITH_SCALING
   544     /// \brief Executes the capacity scaling version of the successive
   545     /// shortest path algorithm.
   546     bool start() {
   547       typedef typename DeltaResGraph::EdgeIt DeltaResEdgeIt;
   548       typedef typename DeltaResGraph::Edge DeltaResEdge;
   549 
   550       // Processing capacity scaling phases
   551       ResNode s, t;
   552       for ( ; delta >= 1; delta = delta < 4 && delta > 1 ?
   553 				  1 : delta / 4 )
   554       {
   555 	// Saturating edges not satisfying the optimality condition
   556 	Capacity r;
   557 	for (DeltaResEdgeIt e(dres_graph); e != INVALID; ++e) {
   558 	  if (red_cost[e] < 0) {
   559 	    res_graph.augment(e, r = res_graph.rescap(e));
   560 	    imbalance[dres_graph.target(e)] += r;
   561 	    imbalance[dres_graph.source(e)] -= r;
   562 	  }
   563 	}
   564 
   565 	// Finding excess nodes
   566 	excess_nodes.clear();
   567 	for (ResNodeIt n(res_graph); n != INVALID; ++n) {
   568 	  if (imbalance[n] >= delta) excess_nodes.push_back(n);
   569 	}
   570 	next_node = 0;
   571 
   572 	// Finding successive shortest paths
   573 	while (next_node < excess_nodes.size()) {
   574 	  // Running Dijkstra
   575 	  s = excess_nodes[next_node];
   576 	  updater.init();
   577 	  dijkstra.init();
   578 	  dijkstra.addSource(s);
   579 	  if ((t = dijkstra.start(delta_deficit)) == INVALID) {
   580 	    if (delta > 1) {
   581 	      ++next_node;
   582 	      continue;
   583 	    }
   584 	    return false;
   585 	  }
   586 
   587 	  // Updating node potentials
   588 	  updater.update();
   589 
   590 	  // Augment along a shortest path from s to t
   591 	  Capacity d = imbalance[s] < -imbalance[t] ?
   592 	    imbalance[s] : -imbalance[t];
   593 	  ResNode u = t;
   594 	  ResEdge e;
   595 	  if (d > delta) {
   596 	    while ((e = pred[u]) != INVALID) {
   597 	      if (res_graph.rescap(e) < d) d = res_graph.rescap(e);
   598 	      u = dres_graph.source(e);
   599 	    }
   600 	  }
   601 	  u = t;
   602 	  while ((e = pred[u]) != INVALID) {
   603 	    res_graph.augment(e, d);
   604 	    u = dres_graph.source(e);
   605 	  }
   606 	  imbalance[s] -= d;
   607 	  imbalance[t] += d;
   608 	  if (imbalance[s] < delta) ++next_node;
   609 	}
   610       }
   611 
   612       // Handling nonzero lower bounds
   613       if (lower) {
   614 	for (EdgeIt e(graph); e != INVALID; ++e)
   615 	  flow[e] += (*lower)[e];
   616       }
   617       return true;
   618     }
   619 
   620 #else //WITHOUT_CAPACITY_SCALING
   621     /// \brief Executes the successive shortest path algorithm without
   622     /// capacity scaling.
   623     bool start() {
   624       // Finding excess nodes
   625       for (ResNodeIt n(res_graph); n != INVALID; ++n) {
   626 	if (imbalance[n] > 0) excess_nodes.push_back(n);
   627       }
   628       if (excess_nodes.size() == 0) return true;
   629       next_node = 0;
   630 
   631       // Finding successive shortest paths
   632       ResNode s, t;
   633       while ( imbalance[excess_nodes[next_node]] > 0 ||
   634 	      ++next_node < excess_nodes.size() )
   635       {
   636 	// Running Dijkstra
   637 	s = excess_nodes[next_node];
   638 	updater.init();
   639 	dijkstra.init();
   640 	dijkstra.addSource(s);
   641 	if ((t = dijkstra.start(has_deficit)) == INVALID)
   642 	  return false;
   643 
   644 	// Updating node potentials
   645 	updater.update();
   646 
   647 	// Augmenting along a shortest path from s to t
   648 	Capacity delta = imbalance[s] < -imbalance[t] ?
   649 	  imbalance[s] : -imbalance[t];
   650 	ResNode u = t;
   651 	ResEdge e;
   652 	while ((e = pred[u]) != INVALID) {
   653 	  if (res_graph.rescap(e) < delta) delta = res_graph.rescap(e);
   654 	  u = res_graph.source(e);
   655 	}
   656 	u = t;
   657 	while ((e = pred[u]) != INVALID) {
   658 	  res_graph.augment(e, delta);
   659 	  u = res_graph.source(e);
   660 	}
   661 	imbalance[s] -= delta;
   662 	imbalance[t] += delta;
   663       }
   664 
   665       // Handling nonzero lower bounds
   666       if (lower) {
   667 	for (EdgeIt e(graph); e != INVALID; ++e)
   668 	  flow[e] += (*lower)[e];
   669       }
   670       return true;
   671     }
   672 #endif
   673 
   674   }; //class CapacityScaling
   675 
   676   ///@}
   677 
   678 } //namespace lemon
   679 
   680 #endif //LEMON_CAPACITY_SCALING_H