lemon/euler.h
author deba
Mon, 19 Dec 2005 09:47:10 +0000
changeset 1865 dcefd1d1377f
parent 1803 ee8dd6872645
child 1875 98698b69a902
permissions -rw-r--r--
Doc fix
     1 /* -*- C++ -*-
     2  * lemon/euler.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 #include<lemon/invalid.h>
    17 #include<lemon/topology.h>
    18 #include <list>
    19 
    20 /// \ingroup topology
    21 /// \file
    22 /// \brief Euler tour
    23 ///
    24 ///This file provides an Euler tour iterator and ways to check
    25 ///if a graph is euler.
    26 
    27 
    28 namespace lemon {
    29 
    30   ///Euler iterator for directed graphs.
    31 
    32   /// \ingroup topology
    33   ///This iterator converts to the \c Edge type of the graph and using
    34   ///operator ++ it provides an Euler tour of the graph (if there exists).
    35   ///
    36   ///For example
    37   ///if the given graph if Euler (i.e it has only one nontrivial component
    38   ///and the in-degree is equal to the out-degree for all nodes),
    39   ///the following code will print the edge IDs according to an
    40   ///Euler tour of \c g.
    41   ///\code
    42   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
    43   ///    std::cout << g.id(e) << std::eol;
    44   ///  }
    45   ///\endcode
    46   ///If \c g is not Euler then the resulted tour will not be full or closed.
    47   ///\todo Test required
    48   template<class Graph>
    49   class EulerIt 
    50   {
    51     typedef typename Graph::Node Node;
    52     typedef typename Graph::NodeIt NodeIt;
    53     typedef typename Graph::Edge Edge;
    54     typedef typename Graph::EdgeIt EdgeIt;
    55     typedef typename Graph::OutEdgeIt OutEdgeIt;
    56     typedef typename Graph::InEdgeIt InEdgeIt;
    57     
    58     const Graph &g;
    59     typename Graph::NodeMap<OutEdgeIt> nedge;
    60     std::list<Edge> euler;
    61 
    62   public:
    63     
    64     ///Constructor
    65 
    66     ///\param _g A directed graph.
    67     ///\param start The starting point of the tour. If it is not given
    68     ///       the tour will start from the first node.
    69     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
    70       : g(_g), nedge(g)
    71     {
    72       if(start==INVALID) start=NodeIt(g);
    73       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
    74       while(nedge[start]!=INVALID) {
    75 	euler.push_back(nedge[start]);
    76 	Node next=g.target(nedge[start]);
    77 	++nedge[start];
    78 	start=next;
    79       }
    80     }
    81     
    82     ///Edge Conversion
    83     operator Edge() { return euler.empty()?INVALID:euler.front(); }
    84     bool operator==(Invalid) { return euler.empty(); }
    85     bool operator!=(Invalid) { return !euler.empty(); }
    86     
    87     ///Next edge of the tour
    88     EulerIt &operator++() {
    89       Node s=g.target(euler.front());
    90       euler.pop_front();
    91       //This produces a warning.Strange.
    92       //std::list<Edge>::iterator next=euler.begin();
    93       typename std::list<Edge>::iterator next=euler.begin();
    94       while(nedge[s]!=INVALID) {
    95 	euler.insert(next,nedge[s]);
    96 	Node n=g.target(nedge[s]);
    97 	++nedge[s];
    98 	s=n;
    99       }
   100       return *this;
   101     }
   102     ///Postfix incrementation
   103     
   104     ///\warning This incrementation
   105     ///returns an \c Edge, not an \ref EulerIt, as one may
   106     ///expect.
   107     Edge operator++(int) 
   108     {
   109       Edge e=*this;
   110       ++(*this);
   111       return e;
   112     }
   113   };
   114 
   115   ///Euler iterator for undirected graphs.
   116 
   117   /// \ingroup topology
   118   ///This iterator converts to the \c Edge type of the graph and using
   119   ///operator ++ it provides an Euler tour of the graph (if there exists).
   120   ///
   121   ///For example
   122   ///if the given graph if Euler (i.e it has only one nontrivial component
   123   ///and the degree of each node is even),
   124   ///the following code will print the edge IDs according to an
   125   ///Euler tour of \c g.
   126   ///\code
   127   ///  for(UndirEulerIt<UndirListGraph> e(g),e!=INVALID;++e) {
   128   ///    std::cout << g.id(UndirEdge(e)) << std::eol;
   129   ///  }
   130   ///\endcode
   131   ///Although the iterator provides an Euler tour of an undirected graph,
   132   ///in order to indicate the direction of the tour, UndirEulerIt
   133   ///returns directed edges (that convert to the undirected ones, of course).
   134   ///
   135   ///If \c g is not Euler then the resulted tour will not be full or closed.
   136   ///\todo Test required
   137   template<class Graph>
   138   class UndirEulerIt
   139   {
   140     typedef typename Graph::Node Node;
   141     typedef typename Graph::NodeIt NodeIt;
   142     typedef typename Graph::Edge Edge;
   143     typedef typename Graph::EdgeIt EdgeIt;
   144     typedef typename Graph::OutEdgeIt OutEdgeIt;
   145     typedef typename Graph::InEdgeIt InEdgeIt;
   146     
   147     const Graph &g;
   148     typename Graph::NodeMap<OutEdgeIt> nedge;
   149     typename Graph::UndirEdgeMap<bool> visited;
   150     std::list<Edge> euler;
   151 
   152   public:
   153     
   154     ///Constructor
   155 
   156     ///\param _g An undirected graph.
   157     ///\param start The starting point of the tour. If it is not given
   158     ///       the tour will start from the first node.
   159     UndirEulerIt(const Graph &_g,typename Graph::Node start=INVALID)
   160       : g(_g), nedge(g), visited(g,false)
   161     {
   162       if(start==INVALID) start=NodeIt(g);
   163       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
   164       while(nedge[start]!=INVALID) {
   165 	euler.push_back(nedge[start]);
   166 	Node next=g.target(nedge[start]);
   167 	++nedge[start];
   168 	start=next;	while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
   169       }
   170     }
   171     
   172     ///Edge Conversion
   173     operator Edge() { return euler.empty()?INVALID:euler.front(); }
   174     bool operator==(Invalid) { return euler.empty(); }
   175     bool operator!=(Invalid) { return !euler.empty(); }
   176     
   177     ///Next edge of the tour
   178     UndirEulerIt &operator++() {
   179       Node s=g.target(euler.front());
   180       euler.pop_front();
   181       typename std::list<Edge>::iterator next=euler.begin();
   182 
   183       while(nedge[s]!=INVALID) {
   184 	while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
   185 	if(nedge[s]==INVALID) break;
   186 	else {
   187 	  euler.insert(next,nedge[s]);
   188 	  Node n=g.target(nedge[s]);
   189 	  ++nedge[s];
   190 	  s=n;
   191 	}
   192       }
   193       return *this;
   194     }
   195     
   196     ///Postfix incrementation
   197     
   198     ///\warning This incrementation
   199     ///returns an \c Edge, not an \ref UndirEulerIt, as one may
   200     ///expect.
   201     Edge operator++(int) 
   202     {
   203       Edge e=*this;
   204       ++(*this);
   205       return e;
   206     }
   207   };
   208 
   209 
   210   ///Checks if the graph is Euler
   211 
   212   /// \ingroup topology
   213   ///Checks if the graph is Euler. It works for both directed and
   214   ///undirected graphs.
   215   ///\note By definition, a directed graph is called \e Euler if
   216   ///and only if connected and the number of it is incoming and outgoing edges
   217   ///are the same for each node.
   218   ///Similarly, an undirected graph is called \e Euler if
   219   ///and only if it is connected and the number of incident edges is even
   220   ///for each node. <em>Therefore, there are graphs which are not Euler, but
   221   ///still have an Euler tour</em>.
   222   ///\todo Test required
   223   template<class Graph>
   224 #ifdef DOXYGEN
   225   bool
   226 #else
   227   typename enable_if<typename Graph::UndirTag,bool>::type
   228   euler(const Graph &g) 
   229   {
   230     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   231       if(countIncEdges(g,n)%2) return false;
   232     return connected(g);
   233   }
   234   template<class Graph>
   235   typename disable_if<typename Graph::UndirTag,bool>::type
   236 #endif
   237   euler(const Graph &g) 
   238   {
   239     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   240       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   241     return connected(g);
   242   }
   243   
   244 }