lemon/euler.h
author alpar
Tue, 05 Jun 2007 10:59:16 +0000
changeset 2446 dd20d76eed13
parent 2429 fd51b552bcf2
child 2553 bfced05fa852
permissions -rw-r--r--
A minimum spanning tree based TSP algorithm is added (-tsp2)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include<lemon/bits/invalid.h>
    20 #include<lemon/topology.h>
    21 #include <list>
    22 
    23 /// \ingroup graph_prop
    24 /// \file
    25 /// \brief Euler tour
    26 ///
    27 ///This file provides an Euler tour iterator and ways to check
    28 ///if a graph is euler.
    29 
    30 
    31 namespace lemon {
    32 
    33   ///Euler iterator for directed graphs.
    34 
    35   /// \ingroup graph_prop
    36   ///This iterator converts to the \c Edge type of the graph and using
    37   ///operator ++ it provides an Euler tour of a \e directed
    38   ///graph (if there exists).
    39   ///
    40   ///For example
    41   ///if the given graph if Euler (i.e it has only one nontrivial component
    42   ///and the in-degree is equal to the out-degree for all nodes),
    43   ///the following code will put the edges of \c g
    44   ///to the vector \c et according to an
    45   ///Euler tour of \c g.
    46   ///\code
    47   ///  std::vector<ListGraph::Edge> et;
    48   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e)
    49   ///    et.push_back(e);
    50   ///\endcode
    51   ///If \c g is not Euler then the resulted tour will not be full or closed.
    52   ///\sa UEulerIt
    53   ///\todo Test required
    54   template<class Graph>
    55   class EulerIt 
    56   {
    57     typedef typename Graph::Node Node;
    58     typedef typename Graph::NodeIt NodeIt;
    59     typedef typename Graph::Edge Edge;
    60     typedef typename Graph::EdgeIt EdgeIt;
    61     typedef typename Graph::OutEdgeIt OutEdgeIt;
    62     typedef typename Graph::InEdgeIt InEdgeIt;
    63     
    64     const Graph &g;
    65     typename Graph::template NodeMap<OutEdgeIt> nedge;
    66     std::list<Edge> euler;
    67 
    68   public:
    69     
    70     ///Constructor
    71 
    72     ///\param _g A directed graph.
    73     ///\param start The starting point of the tour. If it is not given
    74     ///       the tour will start from the first node.
    75     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
    76       : g(_g), nedge(g)
    77     {
    78       if(start==INVALID) start=NodeIt(g);
    79       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
    80       while(nedge[start]!=INVALID) {
    81 	euler.push_back(nedge[start]);
    82 	Node next=g.target(nedge[start]);
    83 	++nedge[start];
    84 	start=next;
    85       }
    86     }
    87     
    88     ///Edge Conversion
    89     operator Edge() { return euler.empty()?INVALID:euler.front(); }
    90     bool operator==(Invalid) { return euler.empty(); }
    91     bool operator!=(Invalid) { return !euler.empty(); }
    92     
    93     ///Next edge of the tour
    94     EulerIt &operator++() {
    95       Node s=g.target(euler.front());
    96       euler.pop_front();
    97       //This produces a warning.Strange.
    98       //std::list<Edge>::iterator next=euler.begin();
    99       typename std::list<Edge>::iterator next=euler.begin();
   100       while(nedge[s]!=INVALID) {
   101 	euler.insert(next,nedge[s]);
   102 	Node n=g.target(nedge[s]);
   103 	++nedge[s];
   104 	s=n;
   105       }
   106       return *this;
   107     }
   108     ///Postfix incrementation
   109     
   110     ///\warning This incrementation
   111     ///returns an \c Edge, not an \ref EulerIt, as one may
   112     ///expect.
   113     Edge operator++(int) 
   114     {
   115       Edge e=*this;
   116       ++(*this);
   117       return e;
   118     }
   119   };
   120 
   121   ///Euler iterator for undirected graphs.
   122 
   123   /// \ingroup graph_prop
   124   ///This iterator converts to the \c Edge (or \c UEdge)
   125   ///type of the graph and using
   126   ///operator ++ it provides an Euler tour of an undirected
   127   ///graph (if there exists).
   128   ///
   129   ///For example
   130   ///if the given graph if Euler (i.e it has only one nontrivial component
   131   ///and the degree of each node is even),
   132   ///the following code will print the edge IDs according to an
   133   ///Euler tour of \c g.
   134   ///\code
   135   ///  for(UEulerIt<ListUGraph> e(g),e!=INVALID;++e) {
   136   ///    std::cout << g.id(UEdge(e)) << std::eol;
   137   ///  }
   138   ///\endcode
   139   ///Although the iterator provides an Euler tour of an undirected graph,
   140   ///in order to indicate the direction of the tour, UEulerIt
   141   ///returns directed edges (that convert to the undirected ones, of course).
   142   ///
   143   ///If \c g is not Euler then the resulted tour will not be full or closed.
   144   ///\sa EulerIt
   145   ///\todo Test required
   146   template<class Graph>
   147   class UEulerIt
   148   {
   149     typedef typename Graph::Node Node;
   150     typedef typename Graph::NodeIt NodeIt;
   151     typedef typename Graph::Edge Edge;
   152     typedef typename Graph::UEdge UEdge;
   153     typedef typename Graph::EdgeIt EdgeIt;
   154     typedef typename Graph::OutEdgeIt OutEdgeIt;
   155     typedef typename Graph::InEdgeIt InEdgeIt;
   156     
   157     const Graph &g;
   158     typename Graph::template NodeMap<OutEdgeIt> nedge;
   159     typename Graph::template UEdgeMap<bool> visited;
   160     std::list<Edge> euler;
   161 
   162   public:
   163     
   164     ///Constructor
   165 
   166     ///\param _g An undirected graph.
   167     ///\param start The starting point of the tour. If it is not given
   168     ///       the tour will start from the first node.
   169     UEulerIt(const Graph &_g,typename Graph::Node start=INVALID)
   170       : g(_g), nedge(g), visited(g,false)
   171     {
   172       if(start==INVALID) start=NodeIt(g);
   173       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
   174       while(nedge[start]!=INVALID) {
   175 	euler.push_back(nedge[start]);
   176 	visited[nedge[start]]=true;
   177 	Node next=g.target(nedge[start]);
   178 	++nedge[start];
   179 	start=next;
   180 	while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
   181       }
   182     }
   183     
   184     ///Edge Conversion
   185     operator Edge() const { return euler.empty()?INVALID:euler.front(); }
   186     ///Edge Conversion
   187     operator UEdge() const { return euler.empty()?INVALID:euler.front(); }
   188     ///\e
   189     bool operator==(Invalid) const { return euler.empty(); }
   190     ///\e
   191     bool operator!=(Invalid) const { return !euler.empty(); }
   192     
   193     ///Next edge of the tour
   194     UEulerIt &operator++() {
   195       Node s=g.target(euler.front());
   196       euler.pop_front();
   197       typename std::list<Edge>::iterator next=euler.begin();
   198 
   199       while(nedge[s]!=INVALID) {
   200 	while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
   201 	if(nedge[s]==INVALID) break;
   202 	else {
   203 	  euler.insert(next,nedge[s]);
   204 	  visited[nedge[s]]=true;
   205 	  Node n=g.target(nedge[s]);
   206 	  ++nedge[s];
   207 	  s=n;
   208 	}
   209       }
   210       return *this;
   211     }
   212     
   213     ///Postfix incrementation
   214     
   215     ///\warning This incrementation
   216     ///returns an \c Edge, not an \ref UEulerIt, as one may
   217     ///expect.
   218     Edge operator++(int) 
   219     {
   220       Edge e=*this;
   221       ++(*this);
   222       return e;
   223     }
   224   };
   225 
   226 
   227   ///Checks if the graph is Euler
   228 
   229   /// \ingroup graph_prop
   230   ///Checks if the graph is Euler. It works for both directed and
   231   ///undirected graphs.
   232   ///\note By definition, a directed graph is called \e Euler if
   233   ///and only if connected and the number of it is incoming and outgoing edges
   234   ///are the same for each node.
   235   ///Similarly, an undirected graph is called \e Euler if
   236   ///and only if it is connected and the number of incident edges is even
   237   ///for each node. <em>Therefore, there are graphs which are not Euler, but
   238   ///still have an Euler tour</em>.
   239   ///\todo Test required
   240   template<class Graph>
   241 #ifdef DOXYGEN
   242   bool
   243 #else
   244   typename enable_if<UndirectedTagIndicator<Graph>,bool>::type
   245   euler(const Graph &g) 
   246   {
   247     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   248       if(countIncEdges(g,n)%2) return false;
   249     return connected(g);
   250   }
   251   template<class Graph>
   252   typename disable_if<UndirectedTagIndicator<Graph>,bool>::type
   253 #endif
   254   euler(const Graph &g) 
   255   {
   256     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   257       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   258     return connected(g);
   259   }
   260   
   261 }