lemon/graph_utils.h
author alpar
Tue, 05 Jun 2007 10:59:16 +0000
changeset 2446 dd20d76eed13
parent 2386 81b47fc5c444
child 2474 e6368948d5f7
permissions -rw-r--r--
A minimum spanning tree based TSP algorithm is added (-tsp2)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 ///
    40 ///
    41 
    42 
    43 namespace lemon {
    44 
    45   /// \addtogroup gutils
    46   /// @{
    47 
    48   ///Creates convenience typedefs for the graph types and iterators
    49 
    50   ///This \c \#define creates convenience typedefs for the following types
    51   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    52   ///\c OutEdgeIt
    53   ///\note If \c G it a template parameter, it should be used in this way.
    54   ///\code
    55   ///  GRAPH_TYPEDEFS(typename G)
    56   ///\endcode
    57   ///
    58   ///\warning There are no typedefs for the graph maps because of the lack of
    59   ///template typedefs in C++.
    60 #define GRAPH_TYPEDEFS(Graph)				\
    61   typedef Graph::     Node      Node;			\
    62     typedef Graph::   NodeIt    NodeIt;			\
    63     typedef Graph::   Edge      Edge;			\
    64     typedef Graph::   EdgeIt    EdgeIt;			\
    65     typedef Graph:: InEdgeIt  InEdgeIt;			\
    66     typedef Graph::OutEdgeIt OutEdgeIt;			
    67 
    68   ///Creates convenience typedefs for the undirected graph types and iterators
    69 
    70   ///This \c \#define creates the same convenience typedefs as defined by
    71   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    72   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    73   ///
    74   ///\note If \c G it a template parameter, it should be used in this way.
    75   ///\code
    76   ///  UGRAPH_TYPEDEFS(typename G)
    77   ///\endcode
    78   ///
    79   ///\warning There are no typedefs for the graph maps because of the lack of
    80   ///template typedefs in C++.
    81 #define UGRAPH_TYPEDEFS(Graph)				\
    82   GRAPH_TYPEDEFS(Graph)						\
    83     typedef Graph:: UEdge   UEdge;			\
    84     typedef Graph:: UEdgeIt UEdgeIt;			\
    85     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    86 
    87   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    88   ///types and iterators
    89 
    90   ///This \c \#define creates the same convenience typedefs as defined by
    91   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    92   ///\c ANodeIt, \c BNodeIt, 
    93   ///
    94   ///\note If \c G it a template parameter, it should be used in this way.
    95   ///\code
    96   ///  BPUGRAPH_TYPEDEFS(typename G)
    97   ///\endcode
    98   ///
    99   ///\warning There are no typedefs for the graph maps because of the lack of
   100   ///template typedefs in C++.
   101 #define BPUGRAPH_TYPEDEFS(Graph)            \
   102   UGRAPH_TYPEDEFS(Graph)                    \
   103     typedef Graph::ANode ANode;             \
   104     typedef Graph::BNode BNode;             \
   105     typedef Graph::ANodeIt ANodeIt;	    \
   106     typedef Graph::BNodeIt BNodeIt;
   107 
   108   /// \brief Function to count the items in the graph.
   109   ///
   110   /// This function counts the items (nodes, edges etc) in the graph.
   111   /// The complexity of the function is O(n) because
   112   /// it iterates on all of the items.
   113 
   114   template <typename Graph, typename Item>
   115   inline int countItems(const Graph& g) {
   116     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   117     int num = 0;
   118     for (ItemIt it(g); it != INVALID; ++it) {
   119       ++num;
   120     }
   121     return num;
   122   }
   123 
   124   // Node counting:
   125 
   126   namespace _graph_utils_bits {
   127     
   128     template <typename Graph, typename Enable = void>
   129     struct CountNodesSelector {
   130       static int count(const Graph &g) {
   131         return countItems<Graph, typename Graph::Node>(g);
   132       }
   133     };
   134 
   135     template <typename Graph>
   136     struct CountNodesSelector<
   137       Graph, typename 
   138       enable_if<typename Graph::NodeNumTag, void>::type> 
   139     {
   140       static int count(const Graph &g) {
   141         return g.nodeNum();
   142       }
   143     };    
   144   }
   145 
   146   /// \brief Function to count the nodes in the graph.
   147   ///
   148   /// This function counts the nodes in the graph.
   149   /// The complexity of the function is O(n) but for some
   150   /// graph structures it is specialized to run in O(1).
   151   ///
   152   /// \todo refer how to specialize it
   153 
   154   template <typename Graph>
   155   inline int countNodes(const Graph& g) {
   156     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   157   }
   158 
   159   namespace _graph_utils_bits {
   160     
   161     template <typename Graph, typename Enable = void>
   162     struct CountANodesSelector {
   163       static int count(const Graph &g) {
   164         return countItems<Graph, typename Graph::ANode>(g);
   165       }
   166     };
   167 
   168     template <typename Graph>
   169     struct CountANodesSelector<
   170       Graph, typename 
   171       enable_if<typename Graph::NodeNumTag, void>::type> 
   172     {
   173       static int count(const Graph &g) {
   174         return g.aNodeNum();
   175       }
   176     };    
   177   }
   178 
   179   /// \brief Function to count the anodes in the graph.
   180   ///
   181   /// This function counts the anodes in the graph.
   182   /// The complexity of the function is O(an) but for some
   183   /// graph structures it is specialized to run in O(1).
   184   ///
   185   /// \todo refer how to specialize it
   186 
   187   template <typename Graph>
   188   inline int countANodes(const Graph& g) {
   189     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   190   }
   191 
   192   namespace _graph_utils_bits {
   193     
   194     template <typename Graph, typename Enable = void>
   195     struct CountBNodesSelector {
   196       static int count(const Graph &g) {
   197         return countItems<Graph, typename Graph::BNode>(g);
   198       }
   199     };
   200 
   201     template <typename Graph>
   202     struct CountBNodesSelector<
   203       Graph, typename 
   204       enable_if<typename Graph::NodeNumTag, void>::type> 
   205     {
   206       static int count(const Graph &g) {
   207         return g.bNodeNum();
   208       }
   209     };    
   210   }
   211 
   212   /// \brief Function to count the bnodes in the graph.
   213   ///
   214   /// This function counts the bnodes in the graph.
   215   /// The complexity of the function is O(bn) but for some
   216   /// graph structures it is specialized to run in O(1).
   217   ///
   218   /// \todo refer how to specialize it
   219 
   220   template <typename Graph>
   221   inline int countBNodes(const Graph& g) {
   222     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   223   }
   224 
   225 
   226   // Edge counting:
   227 
   228   namespace _graph_utils_bits {
   229     
   230     template <typename Graph, typename Enable = void>
   231     struct CountEdgesSelector {
   232       static int count(const Graph &g) {
   233         return countItems<Graph, typename Graph::Edge>(g);
   234       }
   235     };
   236 
   237     template <typename Graph>
   238     struct CountEdgesSelector<
   239       Graph, 
   240       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   241     {
   242       static int count(const Graph &g) {
   243         return g.edgeNum();
   244       }
   245     };    
   246   }
   247 
   248   /// \brief Function to count the edges in the graph.
   249   ///
   250   /// This function counts the edges in the graph.
   251   /// The complexity of the function is O(e) but for some
   252   /// graph structures it is specialized to run in O(1).
   253 
   254   template <typename Graph>
   255   inline int countEdges(const Graph& g) {
   256     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   257   }
   258 
   259   // Undirected edge counting:
   260   namespace _graph_utils_bits {
   261     
   262     template <typename Graph, typename Enable = void>
   263     struct CountUEdgesSelector {
   264       static int count(const Graph &g) {
   265         return countItems<Graph, typename Graph::UEdge>(g);
   266       }
   267     };
   268 
   269     template <typename Graph>
   270     struct CountUEdgesSelector<
   271       Graph, 
   272       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   273     {
   274       static int count(const Graph &g) {
   275         return g.uEdgeNum();
   276       }
   277     };    
   278   }
   279 
   280   /// \brief Function to count the undirected edges in the graph.
   281   ///
   282   /// This function counts the undirected edges in the graph.
   283   /// The complexity of the function is O(e) but for some
   284   /// graph structures it is specialized to run in O(1).
   285 
   286   template <typename Graph>
   287   inline int countUEdges(const Graph& g) {
   288     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   289 
   290   }
   291 
   292 
   293   template <typename Graph, typename DegIt>
   294   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   295     int num = 0;
   296     for (DegIt it(_g, _n); it != INVALID; ++it) {
   297       ++num;
   298     }
   299     return num;
   300   }
   301 
   302   /// \brief Function to count the number of the out-edges from node \c n.
   303   ///
   304   /// This function counts the number of the out-edges from node \c n
   305   /// in the graph.  
   306   template <typename Graph>
   307   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   308     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   309   }
   310 
   311   /// \brief Function to count the number of the in-edges to node \c n.
   312   ///
   313   /// This function counts the number of the in-edges to node \c n
   314   /// in the graph.  
   315   template <typename Graph>
   316   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   317     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   318   }
   319 
   320   /// \brief Function to count the number of the inc-edges to node \c n.
   321   ///
   322   /// This function counts the number of the inc-edges to node \c n
   323   /// in the graph.  
   324   template <typename Graph>
   325   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   326     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   327   }
   328 
   329   namespace _graph_utils_bits {
   330     
   331     template <typename Graph, typename Enable = void>
   332     struct FindEdgeSelector {
   333       typedef typename Graph::Node Node;
   334       typedef typename Graph::Edge Edge;
   335       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   336         if (e == INVALID) {
   337           g.firstOut(e, u);
   338         } else {
   339           g.nextOut(e);
   340         }
   341         while (e != INVALID && g.target(e) != v) {
   342           g.nextOut(e);
   343         }
   344         return e;
   345       }
   346     };
   347 
   348     template <typename Graph>
   349     struct FindEdgeSelector<
   350       Graph, 
   351       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   352     {
   353       typedef typename Graph::Node Node;
   354       typedef typename Graph::Edge Edge;
   355       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   356         return g.findEdge(u, v, prev);
   357       }
   358     };    
   359   }
   360 
   361   /// \brief Finds an edge between two nodes of a graph.
   362   ///
   363   /// Finds an edge from node \c u to node \c v in graph \c g.
   364   ///
   365   /// If \c prev is \ref INVALID (this is the default value), then
   366   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   367   /// the next edge from \c u to \c v after \c prev.
   368   /// \return The found edge or \ref INVALID if there is no such an edge.
   369   ///
   370   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   371   ///\code
   372   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   ///   ...
   374   /// }
   375   ///\endcode
   376   ///
   377   ///\sa EdgeLookUp
   378   ///\se AllEdgeLookup
   379   ///\sa ConEdgeIt
   380   template <typename Graph>
   381   inline typename Graph::Edge 
   382   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   383            typename Graph::Edge prev = INVALID) {
   384     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   385   }
   386 
   387   /// \brief Iterator for iterating on edges connected the same nodes.
   388   ///
   389   /// Iterator for iterating on edges connected the same nodes. It is 
   390   /// higher level interface for the findEdge() function. You can
   391   /// use it the following way:
   392   ///\code
   393   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   394   ///   ...
   395   /// }
   396   ///\endcode
   397   /// 
   398   ///\sa findEdge()
   399   ///\sa EdgeLookUp
   400   ///\sa AllEdgeLookup
   401   ///
   402   /// \author Balazs Dezso 
   403   template <typename _Graph>
   404   class ConEdgeIt : public _Graph::Edge {
   405   public:
   406 
   407     typedef _Graph Graph;
   408     typedef typename Graph::Edge Parent;
   409 
   410     typedef typename Graph::Edge Edge;
   411     typedef typename Graph::Node Node;
   412 
   413     /// \brief Constructor.
   414     ///
   415     /// Construct a new ConEdgeIt iterating on the edges which
   416     /// connects the \c u and \c v node.
   417     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   418       Parent::operator=(findEdge(graph, u, v));
   419     }
   420 
   421     /// \brief Constructor.
   422     ///
   423     /// Construct a new ConEdgeIt which continues the iterating from 
   424     /// the \c e edge.
   425     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   426     
   427     /// \brief Increment operator.
   428     ///
   429     /// It increments the iterator and gives back the next edge.
   430     ConEdgeIt& operator++() {
   431       Parent::operator=(findEdge(graph, graph.source(*this), 
   432 				 graph.target(*this), *this));
   433       return *this;
   434     }
   435   private:
   436     const Graph& graph;
   437   };
   438 
   439   namespace _graph_utils_bits {
   440     
   441     template <typename Graph, typename Enable = void>
   442     struct FindUEdgeSelector {
   443       typedef typename Graph::Node Node;
   444       typedef typename Graph::UEdge UEdge;
   445       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   446         bool b;
   447         if (u != v) {
   448           if (e == INVALID) {
   449             g.firstInc(e, b, u);
   450           } else {
   451             b = g.source(e) == u;
   452             g.nextInc(e, b);
   453           }
   454           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   455             g.nextInc(e, b);
   456           }
   457         } else {
   458           if (e == INVALID) {
   459             g.firstInc(e, b, u);
   460           } else {
   461             b = true;
   462             g.nextInc(e, b);
   463           }
   464           while (e != INVALID && (!b || g.target(e) != v)) {
   465             g.nextInc(e, b);
   466           }
   467         }
   468         return e;
   469       }
   470     };
   471 
   472     template <typename Graph>
   473     struct FindUEdgeSelector<
   474       Graph, 
   475       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   476     {
   477       typedef typename Graph::Node Node;
   478       typedef typename Graph::UEdge UEdge;
   479       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   480         return g.findUEdge(u, v, prev);
   481       }
   482     };    
   483   }
   484 
   485   /// \brief Finds an uedge between two nodes of a graph.
   486   ///
   487   /// Finds an uedge from node \c u to node \c v in graph \c g.
   488   /// If the node \c u and node \c v is equal then each loop edge
   489   /// will be enumerated.
   490   ///
   491   /// If \c prev is \ref INVALID (this is the default value), then
   492   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   493   /// the next edge from \c u to \c v after \c prev.
   494   /// \return The found edge or \ref INVALID if there is no such an edge.
   495   ///
   496   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   497   ///\code
   498   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   499   ///     e = findUEdge(g,u,v,e)) {
   500   ///   ...
   501   /// }
   502   ///\endcode
   503   ///
   504   ///\sa ConEdgeIt
   505 
   506   template <typename Graph>
   507   inline typename Graph::UEdge 
   508   findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   509             typename Graph::UEdge p = INVALID) {
   510     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   511   }
   512 
   513   /// \brief Iterator for iterating on uedges connected the same nodes.
   514   ///
   515   /// Iterator for iterating on uedges connected the same nodes. It is 
   516   /// higher level interface for the findUEdge() function. You can
   517   /// use it the following way:
   518   ///\code
   519   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   520   ///   ...
   521   /// }
   522   ///\endcode
   523   ///
   524   ///\sa findUEdge()
   525   ///
   526   /// \author Balazs Dezso 
   527   template <typename _Graph>
   528   class ConUEdgeIt : public _Graph::UEdge {
   529   public:
   530 
   531     typedef _Graph Graph;
   532     typedef typename Graph::UEdge Parent;
   533 
   534     typedef typename Graph::UEdge UEdge;
   535     typedef typename Graph::Node Node;
   536 
   537     /// \brief Constructor.
   538     ///
   539     /// Construct a new ConUEdgeIt iterating on the edges which
   540     /// connects the \c u and \c v node.
   541     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   542       Parent::operator=(findUEdge(graph, u, v));
   543     }
   544 
   545     /// \brief Constructor.
   546     ///
   547     /// Construct a new ConUEdgeIt which continues the iterating from 
   548     /// the \c e edge.
   549     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   550     
   551     /// \brief Increment operator.
   552     ///
   553     /// It increments the iterator and gives back the next edge.
   554     ConUEdgeIt& operator++() {
   555       Parent::operator=(findUEdge(graph, graph.source(*this), 
   556 				      graph.target(*this), *this));
   557       return *this;
   558     }
   559   private:
   560     const Graph& graph;
   561   };
   562 
   563   /// \brief Copy a map.
   564   ///
   565   /// This function copies the \c source map to the \c target map. It uses the
   566   /// given iterator to iterate on the data structure and it uses the \c ref
   567   /// mapping to convert the source's keys to the target's keys.
   568   template <typename Target, typename Source, 
   569 	    typename ItemIt, typename Ref>	    
   570   void copyMap(Target& target, const Source& source, 
   571 	       ItemIt it, const Ref& ref) {
   572     for (; it != INVALID; ++it) {
   573       target[ref[it]] = source[it];
   574     }
   575   }
   576 
   577   /// \brief Copy the source map to the target map.
   578   ///
   579   /// Copy the \c source map to the \c target map. It uses the given iterator
   580   /// to iterate on the data structure.
   581   template <typename Target, typename Source, typename ItemIt>	    
   582   void copyMap(Target& target, const Source& source, ItemIt it) {
   583     for (; it != INVALID; ++it) {
   584       target[it] = source[it];
   585     }
   586   }
   587 
   588   namespace _graph_utils_bits {
   589 
   590     template <typename Graph, typename Item, typename RefMap>
   591     class MapCopyBase {
   592     public:
   593       virtual void copy(const Graph& source, const RefMap& refMap) = 0;
   594       
   595       virtual ~MapCopyBase() {}
   596     };
   597 
   598     template <typename Graph, typename Item, typename RefMap, 
   599               typename TargetMap, typename SourceMap>
   600     class MapCopy : public MapCopyBase<Graph, Item, RefMap> {
   601     public:
   602 
   603       MapCopy(TargetMap& tmap, const SourceMap& map) 
   604         : _tmap(tmap), _map(map) {}
   605       
   606       virtual void copy(const Graph& graph, const RefMap& refMap) {
   607         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   608         for (ItemIt it(graph); it != INVALID; ++it) {
   609           _tmap.set(refMap[it], _map[it]);
   610         }
   611       }
   612 
   613     private:
   614       TargetMap& _tmap;
   615       const SourceMap& _map;
   616     };
   617 
   618     template <typename Graph, typename Item, typename RefMap, typename It>
   619     class ItemCopy : public MapCopyBase<Graph, Item, RefMap> {
   620     public:
   621 
   622       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
   623       
   624       virtual void copy(const Graph&, const RefMap& refMap) {
   625         _it = refMap[_item];
   626       }
   627 
   628     private:
   629       It& _it;
   630       Item _item;
   631     };
   632 
   633     template <typename Graph, typename Item, typename RefMap, typename Ref>
   634     class RefCopy : public MapCopyBase<Graph, Item, RefMap> {
   635     public:
   636 
   637       RefCopy(Ref& map) : _map(map) {}
   638       
   639       virtual void copy(const Graph& graph, const RefMap& refMap) {
   640         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   641         for (ItemIt it(graph); it != INVALID; ++it) {
   642           _map.set(it, refMap[it]);
   643         }
   644       }
   645 
   646     private:
   647       Ref& _map;
   648     };
   649 
   650     template <typename Graph, typename Item, typename RefMap, 
   651               typename CrossRef>
   652     class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> {
   653     public:
   654 
   655       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   656       
   657       virtual void copy(const Graph& graph, const RefMap& refMap) {
   658         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   659         for (ItemIt it(graph); it != INVALID; ++it) {
   660           _cmap.set(refMap[it], it);
   661         }
   662       }
   663 
   664     private:
   665       CrossRef& _cmap;
   666     };
   667 
   668     template <typename Graph, typename Enable = void>
   669     struct GraphCopySelector {
   670       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   671       static void copy(Graph &target, const Source& source,
   672                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   673         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   674           nodeRefMap[it] = target.addNode();
   675         }
   676         for (typename Source::EdgeIt it(source); it != INVALID; ++it) {
   677           edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   678                                           nodeRefMap[source.target(it)]);
   679         }
   680       }
   681     };
   682 
   683     template <typename Graph>
   684     struct GraphCopySelector<
   685       Graph, 
   686       typename enable_if<typename Graph::BuildTag, void>::type> 
   687     {
   688       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   689       static void copy(Graph &target, const Source& source,
   690                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   691         target.build(source, nodeRefMap, edgeRefMap);
   692       }
   693     };
   694 
   695     template <typename UGraph, typename Enable = void>
   696     struct UGraphCopySelector {
   697       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   698       static void copy(UGraph &target, const Source& source,
   699                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   700         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   701           nodeRefMap[it] = target.addNode();
   702         }
   703         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   704           uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   705                                           nodeRefMap[source.target(it)]);
   706         }
   707       }
   708     };
   709 
   710     template <typename UGraph>
   711     struct UGraphCopySelector<
   712       UGraph, 
   713       typename enable_if<typename UGraph::BuildTag, void>::type> 
   714     {
   715       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   716       static void copy(UGraph &target, const Source& source,
   717                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   718         target.build(source, nodeRefMap, uEdgeRefMap);
   719       }
   720     };
   721 
   722     template <typename BpUGraph, typename Enable = void>
   723     struct BpUGraphCopySelector {
   724       template <typename Source, typename ANodeRefMap, 
   725                 typename BNodeRefMap, typename UEdgeRefMap>
   726       static void copy(BpUGraph &target, const Source& source,
   727                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   728                        UEdgeRefMap& uEdgeRefMap) {
   729         for (typename Source::ANodeIt it(source); it != INVALID; ++it) {
   730           aNodeRefMap[it] = target.addANode();
   731         }
   732         for (typename Source::BNodeIt it(source); it != INVALID; ++it) {
   733           bNodeRefMap[it] = target.addBNode();
   734         }
   735         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   736           uEdgeRefMap[it] = target.addEdge(aNodeRefMap[source.aNode(it)], 
   737                                            bNodeRefMap[source.bNode(it)]);
   738         }
   739       }
   740     };
   741 
   742     template <typename BpUGraph>
   743     struct BpUGraphCopySelector<
   744       BpUGraph, 
   745       typename enable_if<typename BpUGraph::BuildTag, void>::type> 
   746     {
   747       template <typename Source, typename ANodeRefMap, 
   748                 typename BNodeRefMap, typename UEdgeRefMap>
   749       static void copy(BpUGraph &target, const Source& source,
   750                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   751                        UEdgeRefMap& uEdgeRefMap) {
   752         target.build(source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
   753       }
   754     };
   755     
   756 
   757   }
   758 
   759   /// \brief Class to copy a graph.
   760   ///
   761   /// Class to copy a graph to another graph (duplicate a graph). The
   762   /// simplest way of using it is through the \c copyGraph() function.
   763   template <typename Target, typename Source>
   764   class GraphCopy {
   765   private:
   766 
   767     typedef typename Source::Node Node;
   768     typedef typename Source::NodeIt NodeIt;
   769     typedef typename Source::Edge Edge;
   770     typedef typename Source::EdgeIt EdgeIt;
   771 
   772     typedef typename Target::Node TNode;
   773     typedef typename Target::Edge TEdge;
   774 
   775     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   776     typedef typename Source::template EdgeMap<TEdge> EdgeRefMap;
   777     
   778     
   779   public: 
   780 
   781 
   782     /// \brief Constructor for the GraphCopy.
   783     ///
   784     /// It copies the content of the \c _source graph into the
   785     /// \c _target graph.
   786     GraphCopy(Target& _target, const Source& _source) 
   787       : source(_source), target(_target) {}
   788 
   789     /// \brief Destructor of the GraphCopy
   790     ///
   791     /// Destructor of the GraphCopy
   792     ~GraphCopy() {
   793       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   794         delete nodeMapCopies[i];
   795       }
   796       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
   797         delete edgeMapCopies[i];
   798       }
   799 
   800     }
   801 
   802     /// \brief Copies the node references into the given map.
   803     ///
   804     /// Copies the node references into the given map.
   805     template <typename NodeRef>
   806     GraphCopy& nodeRef(NodeRef& map) {
   807       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
   808                               NodeRefMap, NodeRef>(map));
   809       return *this;
   810     }
   811 
   812     /// \brief Copies the node cross references into the given map.
   813     ///
   814     ///  Copies the node cross references (reverse references) into
   815     ///  the given map.
   816     template <typename NodeCrossRef>
   817     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   818       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
   819                               NodeRefMap, NodeCrossRef>(map));
   820       return *this;
   821     }
   822 
   823     /// \brief Make copy of the given map.
   824     ///
   825     /// Makes copy of the given map for the newly created graph. 
   826     /// The new map's key type is the target graph's node type,
   827     /// and the copied map's key type is the source graph's node
   828     /// type.  
   829     template <typename TargetMap, typename SourceMap>
   830     GraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
   831       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
   832                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
   833       return *this;
   834     }
   835 
   836     /// \brief Make a copy of the given node.
   837     ///
   838     /// Make a copy of the given node.
   839     GraphCopy& node(TNode& tnode, const Node& snode) {
   840       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
   841                               NodeRefMap, TNode>(tnode, snode));
   842       return *this;
   843     }
   844 
   845     /// \brief Copies the edge references into the given map.
   846     ///
   847     /// Copies the edge references into the given map.
   848     template <typename EdgeRef>
   849     GraphCopy& edgeRef(EdgeRef& map) {
   850       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
   851                               EdgeRefMap, EdgeRef>(map));
   852       return *this;
   853     }
   854 
   855     /// \brief Copies the edge cross references into the given map.
   856     ///
   857     ///  Copies the edge cross references (reverse references) into
   858     ///  the given map.
   859     template <typename EdgeCrossRef>
   860     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   861       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
   862                               EdgeRefMap, EdgeCrossRef>(map));
   863       return *this;
   864     }
   865 
   866     /// \brief Make copy of the given map.
   867     ///
   868     /// Makes copy of the given map for the newly created graph. 
   869     /// The new map's key type is the target graph's edge type,
   870     /// and the copied map's key type is the source graph's edge
   871     /// type.  
   872     template <typename TargetMap, typename SourceMap>
   873     GraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
   874       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
   875                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
   876       return *this;
   877     }
   878 
   879     /// \brief Make a copy of the given edge.
   880     ///
   881     /// Make a copy of the given edge.
   882     GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
   883       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
   884                               EdgeRefMap, TEdge>(tedge, sedge));
   885       return *this;
   886     }
   887 
   888     /// \brief Executes the copies.
   889     ///
   890     /// Executes the copies.
   891     void run() {
   892       NodeRefMap nodeRefMap(source);
   893       EdgeRefMap edgeRefMap(source);
   894       _graph_utils_bits::GraphCopySelector<Target>::
   895         copy(target, source, nodeRefMap, edgeRefMap);
   896       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   897         nodeMapCopies[i]->copy(source, nodeRefMap);
   898       }
   899       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
   900         edgeMapCopies[i]->copy(source, edgeRefMap);
   901       }      
   902     }
   903 
   904   protected:
   905 
   906 
   907     const Source& source;
   908     Target& target;
   909 
   910     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
   911     nodeMapCopies;
   912 
   913     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
   914     edgeMapCopies;
   915 
   916   };
   917 
   918   /// \brief Copy a graph to another graph.
   919   ///
   920   /// Copy a graph to another graph.
   921   /// The usage of the function:
   922   /// 
   923   ///\code
   924   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
   925   ///\endcode
   926   /// 
   927   /// After the copy the \c nr map will contain the mapping from the
   928   /// source graph's nodes to the target graph's nodes and the \c ecr will
   929   /// contain the mapping from the target graph's edges to the source's
   930   /// edges.
   931   ///
   932   /// \see GraphCopy 
   933   template <typename Target, typename Source>
   934   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   935     return GraphCopy<Target, Source>(target, source);
   936   }
   937 
   938   /// \brief Class to copy an undirected graph.
   939   ///
   940   /// Class to copy an undirected graph to another graph (duplicate a graph).
   941   /// The simplest way of using it is through the \c copyUGraph() function.
   942   template <typename Target, typename Source>
   943   class UGraphCopy {
   944   private:
   945 
   946     typedef typename Source::Node Node;
   947     typedef typename Source::NodeIt NodeIt;
   948     typedef typename Source::Edge Edge;
   949     typedef typename Source::EdgeIt EdgeIt;
   950     typedef typename Source::UEdge UEdge;
   951     typedef typename Source::UEdgeIt UEdgeIt;
   952 
   953     typedef typename Target::Node TNode;
   954     typedef typename Target::Edge TEdge;
   955     typedef typename Target::UEdge TUEdge;
   956 
   957     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   958     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
   959 
   960     struct EdgeRefMap {
   961       EdgeRefMap(const Target& _target, const Source& _source,
   962                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
   963         : target(_target), source(_source), 
   964           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
   965 
   966       typedef typename Source::Edge Key;
   967       typedef typename Target::Edge Value;
   968 
   969       Value operator[](const Key& key) const {
   970         bool forward = 
   971           (source.direction(key) == 
   972            (node_ref[source.source(static_cast<const UEdge&>(key))] == 
   973             target.source(uedge_ref[static_cast<const UEdge&>(key)])));
   974 	return target.direct(uedge_ref[key], forward); 
   975       }
   976       
   977       const Target& target;
   978       const Source& source;
   979       const UEdgeRefMap& uedge_ref;
   980       const NodeRefMap& node_ref;
   981     };
   982 
   983     
   984   public: 
   985 
   986 
   987     /// \brief Constructor for the GraphCopy.
   988     ///
   989     /// It copies the content of the \c _source graph into the
   990     /// \c _target graph.
   991     UGraphCopy(Target& _target, const Source& _source) 
   992       : source(_source), target(_target) {}
   993 
   994     /// \brief Destructor of the GraphCopy
   995     ///
   996     /// Destructor of the GraphCopy
   997     ~UGraphCopy() {
   998       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   999         delete nodeMapCopies[i];
  1000       }
  1001       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1002         delete edgeMapCopies[i];
  1003       }
  1004       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1005         delete uEdgeMapCopies[i];
  1006       }
  1007 
  1008     }
  1009 
  1010     /// \brief Copies the node references into the given map.
  1011     ///
  1012     /// Copies the node references into the given map.
  1013     template <typename NodeRef>
  1014     UGraphCopy& nodeRef(NodeRef& map) {
  1015       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1016                               NodeRefMap, NodeRef>(map));
  1017       return *this;
  1018     }
  1019 
  1020     /// \brief Copies the node cross references into the given map.
  1021     ///
  1022     ///  Copies the node cross references (reverse references) into
  1023     ///  the given map.
  1024     template <typename NodeCrossRef>
  1025     UGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1026       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1027                               NodeRefMap, NodeCrossRef>(map));
  1028       return *this;
  1029     }
  1030 
  1031     /// \brief Make copy of the given map.
  1032     ///
  1033     /// Makes copy of the given map for the newly created graph. 
  1034     /// The new map's key type is the target graph's node type,
  1035     /// and the copied map's key type is the source graph's node
  1036     /// type.  
  1037     template <typename TargetMap, typename SourceMap>
  1038     UGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1039       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1040                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1041       return *this;
  1042     }
  1043 
  1044     /// \brief Make a copy of the given node.
  1045     ///
  1046     /// Make a copy of the given node.
  1047     UGraphCopy& node(TNode& tnode, const Node& snode) {
  1048       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1049                               NodeRefMap, TNode>(tnode, snode));
  1050       return *this;
  1051     }
  1052 
  1053     /// \brief Copies the edge references into the given map.
  1054     ///
  1055     /// Copies the edge references into the given map.
  1056     template <typename EdgeRef>
  1057     UGraphCopy& edgeRef(EdgeRef& map) {
  1058       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1059                               EdgeRefMap, EdgeRef>(map));
  1060       return *this;
  1061     }
  1062 
  1063     /// \brief Copies the edge cross references into the given map.
  1064     ///
  1065     ///  Copies the edge cross references (reverse references) into
  1066     ///  the given map.
  1067     template <typename EdgeCrossRef>
  1068     UGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1069       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1070                               EdgeRefMap, EdgeCrossRef>(map));
  1071       return *this;
  1072     }
  1073 
  1074     /// \brief Make copy of the given map.
  1075     ///
  1076     /// Makes copy of the given map for the newly created graph. 
  1077     /// The new map's key type is the target graph's edge type,
  1078     /// and the copied map's key type is the source graph's edge
  1079     /// type.  
  1080     template <typename TargetMap, typename SourceMap>
  1081     UGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1082       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1083                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1084       return *this;
  1085     }
  1086 
  1087     /// \brief Make a copy of the given edge.
  1088     ///
  1089     /// Make a copy of the given edge.
  1090     UGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
  1091       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1092                               EdgeRefMap, TEdge>(tedge, sedge));
  1093       return *this;
  1094     }
  1095 
  1096     /// \brief Copies the undirected edge references into the given map.
  1097     ///
  1098     /// Copies the undirected edge references into the given map.
  1099     template <typename UEdgeRef>
  1100     UGraphCopy& uEdgeRef(UEdgeRef& map) {
  1101       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1102                                UEdgeRefMap, UEdgeRef>(map));
  1103       return *this;
  1104     }
  1105 
  1106     /// \brief Copies the undirected edge cross references into the given map.
  1107     ///
  1108     /// Copies the undirected edge cross references (reverse
  1109     /// references) into the given map.
  1110     template <typename UEdgeCrossRef>
  1111     UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1112       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1113                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1114       return *this;
  1115     }
  1116 
  1117     /// \brief Make copy of the given map.
  1118     ///
  1119     /// Makes copy of the given map for the newly created graph. 
  1120     /// The new map's key type is the target graph's undirected edge type,
  1121     /// and the copied map's key type is the source graph's undirected edge
  1122     /// type.  
  1123     template <typename TargetMap, typename SourceMap>
  1124     UGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1125       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1126                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1127       return *this;
  1128     }
  1129 
  1130     /// \brief Make a copy of the given undirected edge.
  1131     ///
  1132     /// Make a copy of the given undirected edge.
  1133     UGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
  1134       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1135                                UEdgeRefMap, TUEdge>(tuedge, suedge));
  1136       return *this;
  1137     }
  1138 
  1139     /// \brief Executes the copies.
  1140     ///
  1141     /// Executes the copies.
  1142     void run() {
  1143       NodeRefMap nodeRefMap(source);
  1144       UEdgeRefMap uEdgeRefMap(source);
  1145       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1146       _graph_utils_bits::UGraphCopySelector<Target>::
  1147         copy(target, source, nodeRefMap, uEdgeRefMap);
  1148       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1149         nodeMapCopies[i]->copy(source, nodeRefMap);
  1150       }
  1151       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1152         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1153       }
  1154       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1155         edgeMapCopies[i]->copy(source, edgeRefMap);
  1156       }
  1157     }
  1158 
  1159   private:
  1160     
  1161     const Source& source;
  1162     Target& target;
  1163 
  1164     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1165     nodeMapCopies;
  1166 
  1167     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1168     edgeMapCopies;
  1169 
  1170     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1171     uEdgeMapCopies;
  1172 
  1173   };
  1174 
  1175   /// \brief Copy an undirected graph to another graph.
  1176   ///
  1177   /// Copy an undirected graph to another graph.
  1178   /// The usage of the function:
  1179   /// 
  1180   ///\code
  1181   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
  1182   ///\endcode
  1183   /// 
  1184   /// After the copy the \c nr map will contain the mapping from the
  1185   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1186   /// contain the mapping from the target graph's edges to the source's
  1187   /// edges.
  1188   ///
  1189   /// \see UGraphCopy 
  1190   template <typename Target, typename Source>
  1191   UGraphCopy<Target, Source> 
  1192   copyUGraph(Target& target, const Source& source) {
  1193     return UGraphCopy<Target, Source>(target, source);
  1194   }
  1195 
  1196   /// \brief Class to copy a bipartite undirected graph.
  1197   ///
  1198   /// Class to copy a bipartite undirected graph to another graph
  1199   /// (duplicate a graph).  The simplest way of using it is through
  1200   /// the \c copyBpUGraph() function.
  1201   template <typename Target, typename Source>
  1202   class BpUGraphCopy {
  1203   private:
  1204 
  1205     typedef typename Source::Node Node;
  1206     typedef typename Source::ANode ANode;
  1207     typedef typename Source::BNode BNode;
  1208     typedef typename Source::NodeIt NodeIt;
  1209     typedef typename Source::Edge Edge;
  1210     typedef typename Source::EdgeIt EdgeIt;
  1211     typedef typename Source::UEdge UEdge;
  1212     typedef typename Source::UEdgeIt UEdgeIt;
  1213 
  1214     typedef typename Target::Node TNode;
  1215     typedef typename Target::Edge TEdge;
  1216     typedef typename Target::UEdge TUEdge;
  1217 
  1218     typedef typename Source::template ANodeMap<TNode> ANodeRefMap;
  1219     typedef typename Source::template BNodeMap<TNode> BNodeRefMap;
  1220     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
  1221 
  1222     struct NodeRefMap {
  1223       NodeRefMap(const Source& _source, const ANodeRefMap& _anode_ref,
  1224                  const BNodeRefMap& _bnode_ref)
  1225         : source(_source), anode_ref(_anode_ref), bnode_ref(_bnode_ref) {}
  1226 
  1227       typedef typename Source::Node Key;
  1228       typedef typename Target::Node Value;
  1229 
  1230       Value operator[](const Key& key) const {
  1231 	return source.aNode(key) ? anode_ref[key] : bnode_ref[key]; 
  1232       }
  1233       
  1234       const Source& source;
  1235       const ANodeRefMap& anode_ref;
  1236       const BNodeRefMap& bnode_ref;
  1237     };
  1238 
  1239     struct EdgeRefMap {
  1240       EdgeRefMap(const Target& _target, const Source& _source,
  1241                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
  1242         : target(_target), source(_source), 
  1243           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
  1244 
  1245       typedef typename Source::Edge Key;
  1246       typedef typename Target::Edge Value;
  1247 
  1248       Value operator[](const Key& key) const {
  1249         bool forward = 
  1250           (source.direction(key) == 
  1251            (node_ref[source.source(static_cast<const UEdge&>(key))] == 
  1252             target.source(uedge_ref[static_cast<const UEdge&>(key)])));
  1253 	return target.direct(uedge_ref[key], forward); 
  1254       }
  1255       
  1256       const Target& target;
  1257       const Source& source;
  1258       const UEdgeRefMap& uedge_ref;
  1259       const NodeRefMap& node_ref;
  1260     };
  1261     
  1262   public: 
  1263 
  1264 
  1265     /// \brief Constructor for the GraphCopy.
  1266     ///
  1267     /// It copies the content of the \c _source graph into the
  1268     /// \c _target graph.
  1269     BpUGraphCopy(Target& _target, const Source& _source) 
  1270       : source(_source), target(_target) {}
  1271 
  1272     /// \brief Destructor of the GraphCopy
  1273     ///
  1274     /// Destructor of the GraphCopy
  1275     ~BpUGraphCopy() {
  1276       for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
  1277         delete aNodeMapCopies[i];
  1278       }
  1279       for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
  1280         delete bNodeMapCopies[i];
  1281       }
  1282       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1283         delete nodeMapCopies[i];
  1284       }
  1285       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1286         delete edgeMapCopies[i];
  1287       }
  1288       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1289         delete uEdgeMapCopies[i];
  1290       }
  1291 
  1292     }
  1293 
  1294     /// \brief Copies the A-node references into the given map.
  1295     ///
  1296     /// Copies the A-node references into the given map.
  1297     template <typename ANodeRef>
  1298     BpUGraphCopy& aNodeRef(ANodeRef& map) {
  1299       aNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, ANode, 
  1300                                ANodeRefMap, ANodeRef>(map));
  1301       return *this;
  1302     }
  1303 
  1304     /// \brief Copies the A-node cross references into the given map.
  1305     ///
  1306     /// Copies the A-node cross references (reverse references) into
  1307     /// the given map.
  1308     template <typename ANodeCrossRef>
  1309     BpUGraphCopy& aNodeCrossRef(ANodeCrossRef& map) {
  1310       aNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1311                                ANode, ANodeRefMap, ANodeCrossRef>(map));
  1312       return *this;
  1313     }
  1314 
  1315     /// \brief Make copy of the given A-node map.
  1316     ///
  1317     /// Makes copy of the given map for the newly created graph. 
  1318     /// The new map's key type is the target graph's node type,
  1319     /// and the copied map's key type is the source graph's node
  1320     /// type.  
  1321     template <typename TargetMap, typename SourceMap>
  1322     BpUGraphCopy& aNodeMap(TargetMap& tmap, const SourceMap& map) {
  1323       aNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, ANode, 
  1324                                ANodeRefMap, TargetMap, SourceMap>(tmap, map));
  1325       return *this;
  1326     }
  1327 
  1328     /// \brief Copies the B-node references into the given map.
  1329     ///
  1330     /// Copies the B-node references into the given map.
  1331     template <typename BNodeRef>
  1332     BpUGraphCopy& bNodeRef(BNodeRef& map) {
  1333       bNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, BNode, 
  1334                                BNodeRefMap, BNodeRef>(map));
  1335       return *this;
  1336     }
  1337 
  1338     /// \brief Copies the B-node cross references into the given map.
  1339     ///
  1340     ///  Copies the B-node cross references (reverse references) into
  1341     ///  the given map.
  1342     template <typename BNodeCrossRef>
  1343     BpUGraphCopy& bNodeCrossRef(BNodeCrossRef& map) {
  1344       bNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1345                               BNode, BNodeRefMap, BNodeCrossRef>(map));
  1346       return *this;
  1347     }
  1348 
  1349     /// \brief Make copy of the given B-node map.
  1350     ///
  1351     /// Makes copy of the given map for the newly created graph. 
  1352     /// The new map's key type is the target graph's node type,
  1353     /// and the copied map's key type is the source graph's node
  1354     /// type.  
  1355     template <typename TargetMap, typename SourceMap>
  1356     BpUGraphCopy& bNodeMap(TargetMap& tmap, const SourceMap& map) {
  1357       bNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, BNode, 
  1358                                BNodeRefMap, TargetMap, SourceMap>(tmap, map));
  1359       return *this;
  1360     }
  1361     /// \brief Copies the node references into the given map.
  1362     ///
  1363     /// Copies the node references into the given map.
  1364     template <typename NodeRef>
  1365     BpUGraphCopy& nodeRef(NodeRef& map) {
  1366       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1367                               NodeRefMap, NodeRef>(map));
  1368       return *this;
  1369     }
  1370 
  1371     /// \brief Copies the node cross references into the given map.
  1372     ///
  1373     ///  Copies the node cross references (reverse references) into
  1374     ///  the given map.
  1375     template <typename NodeCrossRef>
  1376     BpUGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1377       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1378                               NodeRefMap, NodeCrossRef>(map));
  1379       return *this;
  1380     }
  1381 
  1382     /// \brief Make copy of the given map.
  1383     ///
  1384     /// Makes copy of the given map for the newly created graph. 
  1385     /// The new map's key type is the target graph's node type,
  1386     /// and the copied map's key type is the source graph's node
  1387     /// type.  
  1388     template <typename TargetMap, typename SourceMap>
  1389     BpUGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1390       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1391                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1392       return *this;
  1393     }
  1394 
  1395     /// \brief Make a copy of the given node.
  1396     ///
  1397     /// Make a copy of the given node.
  1398     BpUGraphCopy& node(TNode& tnode, const Node& snode) {
  1399       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1400                               NodeRefMap, TNode>(tnode, snode));
  1401       return *this;
  1402     }
  1403 
  1404     /// \brief Copies the edge references into the given map.
  1405     ///
  1406     /// Copies the edge references into the given map.
  1407     template <typename EdgeRef>
  1408     BpUGraphCopy& edgeRef(EdgeRef& map) {
  1409       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1410                               EdgeRefMap, EdgeRef>(map));
  1411       return *this;
  1412     }
  1413 
  1414     /// \brief Copies the edge cross references into the given map.
  1415     ///
  1416     ///  Copies the edge cross references (reverse references) into
  1417     ///  the given map.
  1418     template <typename EdgeCrossRef>
  1419     BpUGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1420       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1421                               EdgeRefMap, EdgeCrossRef>(map));
  1422       return *this;
  1423     }
  1424 
  1425     /// \brief Make copy of the given map.
  1426     ///
  1427     /// Makes copy of the given map for the newly created graph. 
  1428     /// The new map's key type is the target graph's edge type,
  1429     /// and the copied map's key type is the source graph's edge
  1430     /// type.  
  1431     template <typename TargetMap, typename SourceMap>
  1432     BpUGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1433       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1434                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1435       return *this;
  1436     }
  1437 
  1438     /// \brief Make a copy of the given edge.
  1439     ///
  1440     /// Make a copy of the given edge.
  1441     BpUGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
  1442       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1443                               EdgeRefMap, TEdge>(tedge, sedge));
  1444       return *this;
  1445     }
  1446 
  1447     /// \brief Copies the undirected edge references into the given map.
  1448     ///
  1449     /// Copies the undirected edge references into the given map.
  1450     template <typename UEdgeRef>
  1451     BpUGraphCopy& uEdgeRef(UEdgeRef& map) {
  1452       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1453                                UEdgeRefMap, UEdgeRef>(map));
  1454       return *this;
  1455     }
  1456 
  1457     /// \brief Copies the undirected edge cross references into the given map.
  1458     ///
  1459     /// Copies the undirected edge cross references (reverse
  1460     /// references) into the given map.
  1461     template <typename UEdgeCrossRef>
  1462     BpUGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1463       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1464                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1465       return *this;
  1466     }
  1467 
  1468     /// \brief Make copy of the given map.
  1469     ///
  1470     /// Makes copy of the given map for the newly created graph. 
  1471     /// The new map's key type is the target graph's undirected edge type,
  1472     /// and the copied map's key type is the source graph's undirected edge
  1473     /// type.  
  1474     template <typename TargetMap, typename SourceMap>
  1475     BpUGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1476       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1477                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1478       return *this;
  1479     }
  1480 
  1481     /// \brief Make a copy of the given undirected edge.
  1482     ///
  1483     /// Make a copy of the given undirected edge.
  1484     BpUGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
  1485       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1486                                UEdgeRefMap, TUEdge>(tuedge, suedge));
  1487       return *this;
  1488     }
  1489 
  1490     /// \brief Executes the copies.
  1491     ///
  1492     /// Executes the copies.
  1493     void run() {
  1494       ANodeRefMap aNodeRefMap(source);
  1495       BNodeRefMap bNodeRefMap(source);
  1496       NodeRefMap nodeRefMap(source, aNodeRefMap, bNodeRefMap);
  1497       UEdgeRefMap uEdgeRefMap(source);
  1498       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1499       _graph_utils_bits::BpUGraphCopySelector<Target>::
  1500         copy(target, source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
  1501       for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
  1502         aNodeMapCopies[i]->copy(source, aNodeRefMap);
  1503       }
  1504       for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
  1505         bNodeMapCopies[i]->copy(source, bNodeRefMap);
  1506       }
  1507       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1508         nodeMapCopies[i]->copy(source, nodeRefMap);
  1509       }
  1510       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1511         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1512       }
  1513       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1514         edgeMapCopies[i]->copy(source, edgeRefMap);
  1515       }
  1516     }
  1517 
  1518   private:
  1519     
  1520     const Source& source;
  1521     Target& target;
  1522 
  1523     std::vector<_graph_utils_bits::MapCopyBase<Source, ANode, ANodeRefMap>* > 
  1524     aNodeMapCopies;
  1525 
  1526     std::vector<_graph_utils_bits::MapCopyBase<Source, BNode, BNodeRefMap>* > 
  1527     bNodeMapCopies;
  1528 
  1529     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1530     nodeMapCopies;
  1531 
  1532     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1533     edgeMapCopies;
  1534 
  1535     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1536     uEdgeMapCopies;
  1537 
  1538   };
  1539 
  1540   /// \brief Copy a bipartite undirected graph to another graph.
  1541   ///
  1542   /// Copy a bipartite undirected graph to another graph.
  1543   /// The usage of the function:
  1544   /// 
  1545   ///\code
  1546   /// copyBpUGraph(trg, src).aNodeRef(anr).edgeCrossRef(ecr).run();
  1547   ///\endcode
  1548   /// 
  1549   /// After the copy the \c nr map will contain the mapping from the
  1550   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1551   /// contain the mapping from the target graph's edges to the source's
  1552   /// edges.
  1553   ///
  1554   /// \see BpUGraphCopy
  1555   template <typename Target, typename Source>
  1556   BpUGraphCopy<Target, Source> 
  1557   copyBpUGraph(Target& target, const Source& source) {
  1558     return BpUGraphCopy<Target, Source>(target, source);
  1559   }
  1560 
  1561 
  1562   /// @}
  1563 
  1564   /// \addtogroup graph_maps
  1565   /// @{
  1566 
  1567   /// Provides an immutable and unique id for each item in the graph.
  1568 
  1569   /// The IdMap class provides a unique and immutable id for each item of the
  1570   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
  1571   /// different items (nodes) get different ids <li>\b immutable: the id of an
  1572   /// item (node) does not change (even if you delete other nodes).  </ul>
  1573   /// Through this map you get access (i.e. can read) the inner id values of
  1574   /// the items stored in the graph. This map can be inverted with its member
  1575   /// class \c InverseMap.
  1576   ///
  1577   template <typename _Graph, typename _Item>
  1578   class IdMap {
  1579   public:
  1580     typedef _Graph Graph;
  1581     typedef int Value;
  1582     typedef _Item Item;
  1583     typedef _Item Key;
  1584 
  1585     /// \brief Constructor.
  1586     ///
  1587     /// Constructor of the map.
  1588     explicit IdMap(const Graph& _graph) : graph(&_graph) {}
  1589 
  1590     /// \brief Gives back the \e id of the item.
  1591     ///
  1592     /// Gives back the immutable and unique \e id of the item.
  1593     int operator[](const Item& item) const { return graph->id(item);}
  1594 
  1595     /// \brief Gives back the item by its id.
  1596     ///
  1597     /// Gives back the item by its id.
  1598     Item operator()(int id) { return graph->fromId(id, Item()); }
  1599 
  1600   private:
  1601     const Graph* graph;
  1602 
  1603   public:
  1604 
  1605     /// \brief The class represents the inverse of its owner (IdMap).
  1606     ///
  1607     /// The class represents the inverse of its owner (IdMap).
  1608     /// \see inverse()
  1609     class InverseMap {
  1610     public:
  1611 
  1612       /// \brief Constructor.
  1613       ///
  1614       /// Constructor for creating an id-to-item map.
  1615       explicit InverseMap(const Graph& _graph) : graph(&_graph) {}
  1616 
  1617       /// \brief Constructor.
  1618       ///
  1619       /// Constructor for creating an id-to-item map.
  1620       explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
  1621 
  1622       /// \brief Gives back the given item from its id.
  1623       ///
  1624       /// Gives back the given item from its id.
  1625       /// 
  1626       Item operator[](int id) const { return graph->fromId(id, Item());}
  1627 
  1628     private:
  1629       const Graph* graph;
  1630     };
  1631 
  1632     /// \brief Gives back the inverse of the map.
  1633     ///
  1634     /// Gives back the inverse of the IdMap.
  1635     InverseMap inverse() const { return InverseMap(*graph);} 
  1636 
  1637   };
  1638 
  1639   
  1640   /// \brief General invertable graph-map type.
  1641 
  1642   /// This type provides simple invertable graph-maps. 
  1643   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1644   /// and if a key is set to a new value then store it
  1645   /// in the inverse map.
  1646   ///
  1647   /// The values of the map can be accessed
  1648   /// with stl compatible forward iterator.
  1649   ///
  1650   /// \param _Graph The graph type.
  1651   /// \param _Item The item type of the graph.
  1652   /// \param _Value The value type of the map.
  1653   ///
  1654   /// \see IterableValueMap
  1655   template <typename _Graph, typename _Item, typename _Value>
  1656   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
  1657   private:
  1658     
  1659     typedef DefaultMap<_Graph, _Item, _Value> Map;
  1660     typedef _Graph Graph;
  1661 
  1662     typedef std::map<_Value, _Item> Container;
  1663     Container invMap;    
  1664 
  1665   public:
  1666  
  1667     /// The key type of InvertableMap (Node, Edge, UEdge).
  1668     typedef typename Map::Key Key;
  1669     /// The value type of the InvertableMap.
  1670     typedef typename Map::Value Value;
  1671 
  1672 
  1673 
  1674     /// \brief Constructor.
  1675     ///
  1676     /// Construct a new InvertableMap for the graph.
  1677     ///
  1678     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
  1679 
  1680     /// \brief Forward iterator for values.
  1681     ///
  1682     /// This iterator is an stl compatible forward
  1683     /// iterator on the values of the map. The values can
  1684     /// be accessed in the [beginValue, endValue) range.
  1685     ///
  1686     class ValueIterator 
  1687       : public std::iterator<std::forward_iterator_tag, Value> {
  1688       friend class InvertableMap;
  1689     private:
  1690       ValueIterator(typename Container::const_iterator _it) 
  1691         : it(_it) {}
  1692     public:
  1693       
  1694       ValueIterator() {}
  1695 
  1696       ValueIterator& operator++() { ++it; return *this; }
  1697       ValueIterator operator++(int) { 
  1698         ValueIterator tmp(*this); 
  1699         operator++();
  1700         return tmp; 
  1701       }
  1702 
  1703       const Value& operator*() const { return it->first; }
  1704       const Value* operator->() const { return &(it->first); }
  1705 
  1706       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1707       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1708       
  1709     private:
  1710       typename Container::const_iterator it;
  1711     };
  1712 
  1713     /// \brief Returns an iterator to the first value.
  1714     ///
  1715     /// Returns an stl compatible iterator to the 
  1716     /// first value of the map. The values of the
  1717     /// map can be accessed in the [beginValue, endValue)
  1718     /// range.
  1719     ValueIterator beginValue() const {
  1720       return ValueIterator(invMap.begin());
  1721     }
  1722 
  1723     /// \brief Returns an iterator after the last value.
  1724     ///
  1725     /// Returns an stl compatible iterator after the 
  1726     /// last value of the map. The values of the
  1727     /// map can be accessed in the [beginValue, endValue)
  1728     /// range.
  1729     ValueIterator endValue() const {
  1730       return ValueIterator(invMap.end());
  1731     }
  1732     
  1733     /// \brief The setter function of the map.
  1734     ///
  1735     /// Sets the mapped value.
  1736     void set(const Key& key, const Value& val) {
  1737       Value oldval = Map::operator[](key);
  1738       typename Container::iterator it = invMap.find(oldval);
  1739       if (it != invMap.end() && it->second == key) {
  1740 	invMap.erase(it);
  1741       }      
  1742       invMap.insert(make_pair(val, key));
  1743       Map::set(key, val);
  1744     }
  1745 
  1746     /// \brief The getter function of the map.
  1747     ///
  1748     /// It gives back the value associated with the key.
  1749     typename MapTraits<Map>::ConstReturnValue 
  1750     operator[](const Key& key) const {
  1751       return Map::operator[](key);
  1752     }
  1753 
  1754     /// \brief Gives back the item by its value.
  1755     ///
  1756     /// Gives back the item by its value.
  1757     Key operator()(const Value& key) const {
  1758       typename Container::const_iterator it = invMap.find(key);
  1759       return it != invMap.end() ? it->second : INVALID;
  1760     }
  1761 
  1762   protected:
  1763 
  1764     /// \brief Erase the key from the map.
  1765     ///
  1766     /// Erase the key to the map. It is called by the
  1767     /// \c AlterationNotifier.
  1768     virtual void erase(const Key& key) {
  1769       Value val = Map::operator[](key);
  1770       typename Container::iterator it = invMap.find(val);
  1771       if (it != invMap.end() && it->second == key) {
  1772 	invMap.erase(it);
  1773       }
  1774       Map::erase(key);
  1775     }
  1776 
  1777     /// \brief Erase more keys from the map.
  1778     ///
  1779     /// Erase more keys from the map. It is called by the
  1780     /// \c AlterationNotifier.
  1781     virtual void erase(const std::vector<Key>& keys) {
  1782       for (int i = 0; i < int(keys.size()); ++i) {
  1783 	Value val = Map::operator[](keys[i]);
  1784 	typename Container::iterator it = invMap.find(val);
  1785 	if (it != invMap.end() && it->second == keys[i]) {
  1786 	  invMap.erase(it);
  1787 	}
  1788       }
  1789       Map::erase(keys);
  1790     }
  1791 
  1792     /// \brief Clear the keys from the map and inverse map.
  1793     ///
  1794     /// Clear the keys from the map and inverse map. It is called by the
  1795     /// \c AlterationNotifier.
  1796     virtual void clear() {
  1797       invMap.clear();
  1798       Map::clear();
  1799     }
  1800 
  1801   public:
  1802 
  1803     /// \brief The inverse map type.
  1804     ///
  1805     /// The inverse of this map. The subscript operator of the map
  1806     /// gives back always the item what was last assigned to the value. 
  1807     class InverseMap {
  1808     public:
  1809       /// \brief Constructor of the InverseMap.
  1810       ///
  1811       /// Constructor of the InverseMap.
  1812       explicit InverseMap(const InvertableMap& _inverted) 
  1813         : inverted(_inverted) {}
  1814 
  1815       /// The value type of the InverseMap.
  1816       typedef typename InvertableMap::Key Value;
  1817       /// The key type of the InverseMap.
  1818       typedef typename InvertableMap::Value Key; 
  1819 
  1820       /// \brief Subscript operator. 
  1821       ///
  1822       /// Subscript operator. It gives back always the item 
  1823       /// what was last assigned to the value.
  1824       Value operator[](const Key& key) const {
  1825 	return inverted(key);
  1826       }
  1827       
  1828     private:
  1829       const InvertableMap& inverted;
  1830     };
  1831 
  1832     /// \brief It gives back the just readable inverse map.
  1833     ///
  1834     /// It gives back the just readable inverse map.
  1835     InverseMap inverse() const {
  1836       return InverseMap(*this);
  1837     } 
  1838 
  1839 
  1840     
  1841   };
  1842 
  1843   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1844   /// item in the graph.
  1845   ///
  1846   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1847   /// descriptor (id) for each item of the same type (e.g. node) in the
  1848   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1849   /// different ids <li>\b continuous: the range of the ids is the set of
  1850   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1851   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1852   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1853   /// with its member class \c InverseMap.
  1854   ///
  1855   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1856   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1857   /// UEdge.
  1858   template <typename _Graph, typename _Item>
  1859   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
  1860 
  1861     typedef _Item Item;
  1862     typedef DefaultMap<_Graph, _Item, int> Map;
  1863 
  1864   public:
  1865     /// The graph class of DescriptorMap.
  1866     typedef _Graph Graph;
  1867 
  1868     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1869     typedef typename Map::Key Key;
  1870     /// The value type of DescriptorMap.
  1871     typedef typename Map::Value Value;
  1872 
  1873     /// \brief Constructor.
  1874     ///
  1875     /// Constructor for descriptor map.
  1876     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
  1877       Item it;
  1878       const typename Map::Notifier* nf = Map::notifier(); 
  1879       for (nf->first(it); it != INVALID; nf->next(it)) {
  1880 	Map::set(it, invMap.size());
  1881 	invMap.push_back(it);	
  1882       }      
  1883     }
  1884 
  1885   protected:
  1886 
  1887     /// \brief Add a new key to the map.
  1888     ///
  1889     /// Add a new key to the map. It is called by the
  1890     /// \c AlterationNotifier.
  1891     virtual void add(const Item& item) {
  1892       Map::add(item);
  1893       Map::set(item, invMap.size());
  1894       invMap.push_back(item);
  1895     }
  1896 
  1897     /// \brief Add more new keys to the map.
  1898     ///
  1899     /// Add more new keys to the map. It is called by the
  1900     /// \c AlterationNotifier.
  1901     virtual void add(const std::vector<Item>& items) {
  1902       Map::add(items);
  1903       for (int i = 0; i < int(items.size()); ++i) {
  1904 	Map::set(items[i], invMap.size());
  1905 	invMap.push_back(items[i]);
  1906       }
  1907     }
  1908 
  1909     /// \brief Erase the key from the map.
  1910     ///
  1911     /// Erase the key from the map. It is called by the
  1912     /// \c AlterationNotifier.
  1913     virtual void erase(const Item& item) {
  1914       Map::set(invMap.back(), Map::operator[](item));
  1915       invMap[Map::operator[](item)] = invMap.back();
  1916       invMap.pop_back();
  1917       Map::erase(item);
  1918     }
  1919 
  1920     /// \brief Erase more keys from the map.
  1921     ///
  1922     /// Erase more keys from the map. It is called by the
  1923     /// \c AlterationNotifier.
  1924     virtual void erase(const std::vector<Item>& items) {
  1925       for (int i = 0; i < int(items.size()); ++i) {
  1926 	Map::set(invMap.back(), Map::operator[](items[i]));
  1927 	invMap[Map::operator[](items[i])] = invMap.back();
  1928 	invMap.pop_back();
  1929       }
  1930       Map::erase(items);
  1931     }
  1932 
  1933     /// \brief Build the unique map.
  1934     ///
  1935     /// Build the unique map. It is called by the
  1936     /// \c AlterationNotifier.
  1937     virtual void build() {
  1938       Map::build();
  1939       Item it;
  1940       const typename Map::Notifier* nf = Map::notifier(); 
  1941       for (nf->first(it); it != INVALID; nf->next(it)) {
  1942 	Map::set(it, invMap.size());
  1943 	invMap.push_back(it);	
  1944       }      
  1945     }
  1946     
  1947     /// \brief Clear the keys from the map.
  1948     ///
  1949     /// Clear the keys from the map. It is called by the
  1950     /// \c AlterationNotifier.
  1951     virtual void clear() {
  1952       invMap.clear();
  1953       Map::clear();
  1954     }
  1955 
  1956   public:
  1957 
  1958     /// \brief Returns the maximal value plus one.
  1959     ///
  1960     /// Returns the maximal value plus one in the map.
  1961     unsigned int size() const {
  1962       return invMap.size();
  1963     }
  1964 
  1965     /// \brief Swaps the position of the two items in the map.
  1966     ///
  1967     /// Swaps the position of the two items in the map.
  1968     void swap(const Item& p, const Item& q) {
  1969       int pi = Map::operator[](p);
  1970       int qi = Map::operator[](q);
  1971       Map::set(p, qi);
  1972       invMap[qi] = p;
  1973       Map::set(q, pi);
  1974       invMap[pi] = q;
  1975     }
  1976 
  1977     /// \brief Gives back the \e descriptor of the item.
  1978     ///
  1979     /// Gives back the mutable and unique \e descriptor of the map.
  1980     int operator[](const Item& item) const {
  1981       return Map::operator[](item);
  1982     }
  1983 
  1984     /// \brief Gives back the item by its descriptor.
  1985     ///
  1986     /// Gives back th item by its descriptor.
  1987     Item operator()(int id) const {
  1988       return invMap[id];
  1989     }
  1990     
  1991   private:
  1992 
  1993     typedef std::vector<Item> Container;
  1994     Container invMap;
  1995 
  1996   public:
  1997     /// \brief The inverse map type of DescriptorMap.
  1998     ///
  1999     /// The inverse map type of DescriptorMap.
  2000     class InverseMap {
  2001     public:
  2002       /// \brief Constructor of the InverseMap.
  2003       ///
  2004       /// Constructor of the InverseMap.
  2005       explicit InverseMap(const DescriptorMap& _inverted) 
  2006 	: inverted(_inverted) {}
  2007 
  2008 
  2009       /// The value type of the InverseMap.
  2010       typedef typename DescriptorMap::Key Value;
  2011       /// The key type of the InverseMap.
  2012       typedef typename DescriptorMap::Value Key; 
  2013 
  2014       /// \brief Subscript operator. 
  2015       ///
  2016       /// Subscript operator. It gives back the item 
  2017       /// that the descriptor belongs to currently.
  2018       Value operator[](const Key& key) const {
  2019 	return inverted(key);
  2020       }
  2021 
  2022       /// \brief Size of the map.
  2023       ///
  2024       /// Returns the size of the map.
  2025       unsigned int size() const {
  2026 	return inverted.size();
  2027       }
  2028       
  2029     private:
  2030       const DescriptorMap& inverted;
  2031     };
  2032 
  2033     /// \brief Gives back the inverse of the map.
  2034     ///
  2035     /// Gives back the inverse of the map.
  2036     const InverseMap inverse() const {
  2037       return InverseMap(*this);
  2038     }
  2039   };
  2040 
  2041   /// \brief Returns the source of the given edge.
  2042   ///
  2043   /// The SourceMap gives back the source Node of the given edge. 
  2044   /// \author Balazs Dezso
  2045   template <typename Graph>
  2046   class SourceMap {
  2047   public:
  2048 
  2049     typedef typename Graph::Node Value;
  2050     typedef typename Graph::Edge Key;
  2051 
  2052     /// \brief Constructor
  2053     ///
  2054     /// Constructor
  2055     /// \param _graph The graph that the map belongs to.
  2056     explicit SourceMap(const Graph& _graph) : graph(_graph) {}
  2057 
  2058     /// \brief The subscript operator.
  2059     ///
  2060     /// The subscript operator.
  2061     /// \param edge The edge 
  2062     /// \return The source of the edge 
  2063     Value operator[](const Key& edge) const {
  2064       return graph.source(edge);
  2065     }
  2066 
  2067   private:
  2068     const Graph& graph;
  2069   };
  2070 
  2071   /// \brief Returns a \ref SourceMap class
  2072   ///
  2073   /// This function just returns an \ref SourceMap class.
  2074   /// \relates SourceMap
  2075   template <typename Graph>
  2076   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  2077     return SourceMap<Graph>(graph);
  2078   } 
  2079 
  2080   /// \brief Returns the target of the given edge.
  2081   ///
  2082   /// The TargetMap gives back the target Node of the given edge. 
  2083   /// \author Balazs Dezso
  2084   template <typename Graph>
  2085   class TargetMap {
  2086   public:
  2087 
  2088     typedef typename Graph::Node Value;
  2089     typedef typename Graph::Edge Key;
  2090 
  2091     /// \brief Constructor
  2092     ///
  2093     /// Constructor
  2094     /// \param _graph The graph that the map belongs to.
  2095     explicit TargetMap(const Graph& _graph) : graph(_graph) {}
  2096 
  2097     /// \brief The subscript operator.
  2098     ///
  2099     /// The subscript operator.
  2100     /// \param e The edge 
  2101     /// \return The target of the edge 
  2102     Value operator[](const Key& e) const {
  2103       return graph.target(e);
  2104     }
  2105 
  2106   private:
  2107     const Graph& graph;
  2108   };
  2109 
  2110   /// \brief Returns a \ref TargetMap class
  2111   ///
  2112   /// This function just returns a \ref TargetMap class.
  2113   /// \relates TargetMap
  2114   template <typename Graph>
  2115   inline TargetMap<Graph> targetMap(const Graph& graph) {
  2116     return TargetMap<Graph>(graph);
  2117   }
  2118 
  2119   /// \brief Returns the "forward" directed edge view of an undirected edge.
  2120   ///
  2121   /// Returns the "forward" directed edge view of an undirected edge.
  2122   /// \author Balazs Dezso
  2123   template <typename Graph>
  2124   class ForwardMap {
  2125   public:
  2126 
  2127     typedef typename Graph::Edge Value;
  2128     typedef typename Graph::UEdge Key;
  2129 
  2130     /// \brief Constructor
  2131     ///
  2132     /// Constructor
  2133     /// \param _graph The graph that the map belongs to.
  2134     explicit ForwardMap(const Graph& _graph) : graph(_graph) {}
  2135 
  2136     /// \brief The subscript operator.
  2137     ///
  2138     /// The subscript operator.
  2139     /// \param key An undirected edge 
  2140     /// \return The "forward" directed edge view of undirected edge 
  2141     Value operator[](const Key& key) const {
  2142       return graph.direct(key, true);
  2143     }
  2144 
  2145   private:
  2146     const Graph& graph;
  2147   };
  2148 
  2149   /// \brief Returns a \ref ForwardMap class
  2150   ///
  2151   /// This function just returns an \ref ForwardMap class.
  2152   /// \relates ForwardMap
  2153   template <typename Graph>
  2154   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  2155     return ForwardMap<Graph>(graph);
  2156   }
  2157 
  2158   /// \brief Returns the "backward" directed edge view of an undirected edge.
  2159   ///
  2160   /// Returns the "backward" directed edge view of an undirected edge.
  2161   /// \author Balazs Dezso
  2162   template <typename Graph>
  2163   class BackwardMap {
  2164   public:
  2165 
  2166     typedef typename Graph::Edge Value;
  2167     typedef typename Graph::UEdge Key;
  2168 
  2169     /// \brief Constructor
  2170     ///
  2171     /// Constructor
  2172     /// \param _graph The graph that the map belongs to.
  2173     explicit BackwardMap(const Graph& _graph) : graph(_graph) {}
  2174 
  2175     /// \brief The subscript operator.
  2176     ///
  2177     /// The subscript operator.
  2178     /// \param key An undirected edge 
  2179     /// \return The "backward" directed edge view of undirected edge 
  2180     Value operator[](const Key& key) const {
  2181       return graph.direct(key, false);
  2182     }
  2183 
  2184   private:
  2185     const Graph& graph;
  2186   };
  2187 
  2188   /// \brief Returns a \ref BackwardMap class
  2189 
  2190   /// This function just returns a \ref BackwardMap class.
  2191   /// \relates BackwardMap
  2192   template <typename Graph>
  2193   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  2194     return BackwardMap<Graph>(graph);
  2195   }
  2196 
  2197   /// \brief Potential difference map
  2198   ///
  2199   /// If there is an potential map on the nodes then we
  2200   /// can get an edge map as we get the substraction of the
  2201   /// values of the target and source.
  2202   template <typename Graph, typename NodeMap>
  2203   class PotentialDifferenceMap {
  2204   public:
  2205     typedef typename Graph::Edge Key;
  2206     typedef typename NodeMap::Value Value;
  2207 
  2208     /// \brief Constructor
  2209     ///
  2210     /// Contructor of the map
  2211     explicit PotentialDifferenceMap(const Graph& _graph, 
  2212                                     const NodeMap& _potential) 
  2213       : graph(_graph), potential(_potential) {}
  2214 
  2215     /// \brief Const subscription operator
  2216     ///
  2217     /// Const subscription operator
  2218     Value operator[](const Key& edge) const {
  2219       return potential[graph.target(edge)] - potential[graph.source(edge)];
  2220     }
  2221 
  2222   private:
  2223     const Graph& graph;
  2224     const NodeMap& potential;
  2225   };
  2226 
  2227   /// \brief Just returns a PotentialDifferenceMap
  2228   ///
  2229   /// Just returns a PotentialDifferenceMap
  2230   /// \relates PotentialDifferenceMap
  2231   template <typename Graph, typename NodeMap>
  2232   PotentialDifferenceMap<Graph, NodeMap> 
  2233   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  2234     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  2235   }
  2236 
  2237   /// \brief Map of the node in-degrees.
  2238   ///
  2239   /// This map returns the in-degree of a node. Once it is constructed,
  2240   /// the degrees are stored in a standard NodeMap, so each query is done
  2241   /// in constant time. On the other hand, the values are updated automatically
  2242   /// whenever the graph changes.
  2243   ///
  2244   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2245   /// alternative ways to modify the graph. The correct behavior of InDegMap
  2246   /// is not guarantied if these additional features are used. For example
  2247   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2248   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2249   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2250   /// of \ref ListGraph will \e not update the degree values correctly.
  2251   ///
  2252   /// \sa OutDegMap
  2253 
  2254   template <typename _Graph>
  2255   class InDegMap  
  2256     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2257       ::ItemNotifier::ObserverBase {
  2258 
  2259   public:
  2260     
  2261     typedef _Graph Graph;
  2262     typedef int Value;
  2263     typedef typename Graph::Node Key;
  2264 
  2265     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2266     ::ItemNotifier::ObserverBase Parent;
  2267 
  2268   private:
  2269 
  2270     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2271     public:
  2272 
  2273       typedef DefaultMap<_Graph, Key, int> Parent;
  2274       typedef typename Parent::Graph Graph;
  2275 
  2276       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2277       
  2278       virtual void add(const Key& key) {
  2279 	Parent::add(key);
  2280 	Parent::set(key, 0);
  2281       }
  2282 
  2283       virtual void add(const std::vector<Key>& keys) {
  2284 	Parent::add(keys);
  2285 	for (int i = 0; i < int(keys.size()); ++i) {
  2286 	  Parent::set(keys[i], 0);
  2287 	}
  2288       }
  2289     };
  2290 
  2291   public:
  2292 
  2293     /// \brief Constructor.
  2294     ///
  2295     /// Constructor for creating in-degree map.
  2296     explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2297       Parent::attach(graph.notifier(typename _Graph::Edge()));
  2298       
  2299       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2300 	deg[it] = countInEdges(graph, it);
  2301       }
  2302     }
  2303     
  2304     /// Gives back the in-degree of a Node.
  2305     int operator[](const Key& key) const {
  2306       return deg[key];
  2307     }
  2308 
  2309   protected:
  2310     
  2311     typedef typename Graph::Edge Edge;
  2312 
  2313     virtual void add(const Edge& edge) {
  2314       ++deg[graph.target(edge)];
  2315     }
  2316 
  2317     virtual void add(const std::vector<Edge>& edges) {
  2318       for (int i = 0; i < int(edges.size()); ++i) {
  2319         ++deg[graph.target(edges[i])];
  2320       }
  2321     }
  2322 
  2323     virtual void erase(const Edge& edge) {
  2324       --deg[graph.target(edge)];
  2325     }
  2326 
  2327     virtual void erase(const std::vector<Edge>& edges) {
  2328       for (int i = 0; i < int(edges.size()); ++i) {
  2329         --deg[graph.target(edges[i])];
  2330       }
  2331     }
  2332 
  2333     virtual void build() {
  2334       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2335 	deg[it] = countInEdges(graph, it);
  2336       }      
  2337     }
  2338 
  2339     virtual void clear() {
  2340       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2341 	deg[it] = 0;
  2342       }
  2343     }
  2344   private:
  2345     
  2346     const _Graph& graph;
  2347     AutoNodeMap deg;
  2348   };
  2349 
  2350   /// \brief Map of the node out-degrees.
  2351   ///
  2352   /// This map returns the out-degree of a node. Once it is constructed,
  2353   /// the degrees are stored in a standard NodeMap, so each query is done
  2354   /// in constant time. On the other hand, the values are updated automatically
  2355   /// whenever the graph changes.
  2356   ///
  2357   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2358   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  2359   /// is not guarantied if these additional features are used. For example
  2360   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2361   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2362   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2363   /// of \ref ListGraph will \e not update the degree values correctly.
  2364   ///
  2365   /// \sa InDegMap
  2366 
  2367   template <typename _Graph>
  2368   class OutDegMap  
  2369     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2370       ::ItemNotifier::ObserverBase {
  2371 
  2372   public:
  2373 
  2374     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2375     ::ItemNotifier::ObserverBase Parent;
  2376     
  2377     typedef _Graph Graph;
  2378     typedef int Value;
  2379     typedef typename Graph::Node Key;
  2380 
  2381   private:
  2382 
  2383     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2384     public:
  2385 
  2386       typedef DefaultMap<_Graph, Key, int> Parent;
  2387       typedef typename Parent::Graph Graph;
  2388 
  2389       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2390       
  2391       virtual void add(const Key& key) {
  2392 	Parent::add(key);
  2393 	Parent::set(key, 0);
  2394       }
  2395       virtual void add(const std::vector<Key>& keys) {
  2396 	Parent::add(keys);
  2397 	for (int i = 0; i < int(keys.size()); ++i) {
  2398 	  Parent::set(keys[i], 0);
  2399 	}
  2400       }
  2401     };
  2402 
  2403   public:
  2404 
  2405     /// \brief Constructor.
  2406     ///
  2407     /// Constructor for creating out-degree map.
  2408     explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2409       Parent::attach(graph.notifier(typename _Graph::Edge()));
  2410       
  2411       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2412 	deg[it] = countOutEdges(graph, it);
  2413       }
  2414     }
  2415 
  2416     /// Gives back the out-degree of a Node.
  2417     int operator[](const Key& key) const {
  2418       return deg[key];
  2419     }
  2420 
  2421   protected:
  2422     
  2423     typedef typename Graph::Edge Edge;
  2424 
  2425     virtual void add(const Edge& edge) {
  2426       ++deg[graph.source(edge)];
  2427     }
  2428 
  2429     virtual void add(const std::vector<Edge>& edges) {
  2430       for (int i = 0; i < int(edges.size()); ++i) {
  2431         ++deg[graph.source(edges[i])];
  2432       }
  2433     }
  2434 
  2435     virtual void erase(const Edge& edge) {
  2436       --deg[graph.source(edge)];
  2437     }
  2438 
  2439     virtual void erase(const std::vector<Edge>& edges) {
  2440       for (int i = 0; i < int(edges.size()); ++i) {
  2441         --deg[graph.source(edges[i])];
  2442       }
  2443     }
  2444 
  2445     virtual void build() {
  2446       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2447 	deg[it] = countOutEdges(graph, it);
  2448       }      
  2449     }
  2450 
  2451     virtual void clear() {
  2452       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2453 	deg[it] = 0;
  2454       }
  2455     }
  2456   private:
  2457     
  2458     const _Graph& graph;
  2459     AutoNodeMap deg;
  2460   };
  2461 
  2462 
  2463   ///Fast edge look up between given endpoints.
  2464   
  2465   ///\ingroup gutils
  2466   ///Using this class, you can find an edge in a graph from a given
  2467   ///source to a given target in time <em>O(log d)</em>,
  2468   ///where <em>d</em> is the out-degree of the source node.
  2469   ///
  2470   ///It is not possible to find \e all parallel edges between two nodes.
  2471   ///Use \ref AllEdgeLookUp for this purpose.
  2472   ///
  2473   ///\warning This class is static, so you should refresh() (or at least
  2474   ///refresh(Node)) this data structure
  2475   ///whenever the graph changes. This is a time consuming (superlinearly
  2476   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2477   ///
  2478   ///\param G The type of the underlying graph.
  2479   ///
  2480   ///\sa AllEdgeLookUp  
  2481   template<class G>
  2482   class EdgeLookUp 
  2483   {
  2484   public:
  2485     GRAPH_TYPEDEFS(typename G)
  2486     typedef G Graph;
  2487 
  2488   protected:
  2489     const Graph &_g;
  2490     typename Graph::template NodeMap<Edge> _head;
  2491     typename Graph::template EdgeMap<Edge> _left;
  2492     typename Graph::template EdgeMap<Edge> _right;
  2493     
  2494     class EdgeLess {
  2495       const Graph &g;
  2496     public:
  2497       EdgeLess(const Graph &_g) : g(_g) {}
  2498       bool operator()(Edge a,Edge b) const 
  2499       {
  2500 	return g.target(a)<g.target(b);
  2501       }
  2502     };
  2503     
  2504   public:
  2505     
  2506     ///Constructor
  2507 
  2508     ///Constructor.
  2509     ///
  2510     ///It builds up the search database, which remains valid until the graph
  2511     ///changes.
  2512     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2513     
  2514   private:
  2515     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
  2516     {
  2517       int m=(a+b)/2;
  2518       Edge me=v[m];
  2519       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
  2520       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
  2521       return me;
  2522     }
  2523   public:
  2524     ///Refresh the data structure at a node.
  2525 
  2526     ///Build up the search database of node \c n.
  2527     ///
  2528     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2529     ///the number of the outgoing edges of \c n.
  2530     void refresh(Node n) 
  2531     {
  2532       std::vector<Edge> v;
  2533       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2534       if(v.size()) {
  2535 	std::sort(v.begin(),v.end(),EdgeLess(_g));
  2536 	_head[n]=refresh_rec(v,0,v.size()-1);
  2537       }
  2538       else _head[n]=INVALID;
  2539     }
  2540     ///Refresh the full data structure.
  2541 
  2542     ///Build up the full search database. In fact, it simply calls
  2543     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2544     ///
  2545     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2546     ///the number of the edges of \c n and <em>D</em> is the maximum
  2547     ///out-degree of the graph.
  2548 
  2549     void refresh() 
  2550     {
  2551       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2552     }
  2553     
  2554     ///Find an edge between two nodes.
  2555     
  2556     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
  2557     /// <em>d</em> is the number of outgoing edges of \c s.
  2558     ///\param s The source node
  2559     ///\param t The target node
  2560     ///\return An edge from \c s to \c t if there exists,
  2561     ///\ref INVALID otherwise.
  2562     ///
  2563     ///\warning If you change the graph, refresh() must be called before using
  2564     ///this operator. If you change the outgoing edges of
  2565     ///a single node \c n, then
  2566     ///\ref refresh(Node) "refresh(n)" is enough.
  2567     ///
  2568     Edge operator()(Node s, Node t) const
  2569     {
  2570       Edge e;
  2571       for(e=_head[s];
  2572 	  e!=INVALID&&_g.target(e)!=t;
  2573 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  2574       return e;
  2575     }
  2576 
  2577   };
  2578 
  2579   ///Fast look up of all edges between given endpoints.
  2580   
  2581   ///\ingroup gutils
  2582   ///This class is the same as \ref EdgeLookUp, with the addition
  2583   ///that it makes it possible to find all edges between given endpoints.
  2584   ///
  2585   ///\warning This class is static, so you should refresh() (or at least
  2586   ///refresh(Node)) this data structure
  2587   ///whenever the graph changes. This is a time consuming (superlinearly
  2588   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2589   ///
  2590   ///\param G The type of the underlying graph.
  2591   ///
  2592   ///\sa EdgeLookUp  
  2593   template<class G>
  2594   class AllEdgeLookUp : public EdgeLookUp<G>
  2595   {
  2596     using EdgeLookUp<G>::_g;
  2597     using EdgeLookUp<G>::_right;
  2598     using EdgeLookUp<G>::_left;
  2599     using EdgeLookUp<G>::_head;
  2600 
  2601     GRAPH_TYPEDEFS(typename G)
  2602     typedef G Graph;
  2603     
  2604     typename Graph::template EdgeMap<Edge> _next;
  2605     
  2606     Edge refreshNext(Edge head,Edge next=INVALID)
  2607     {
  2608       if(head==INVALID) return next;
  2609       else {
  2610 	next=refreshNext(_right[head],next);
  2611 // 	_next[head]=next;
  2612 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2613 	  ? next : INVALID;
  2614 	return refreshNext(_left[head],head);
  2615       }
  2616     }
  2617     
  2618     void refreshNext()
  2619     {
  2620       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2621     }
  2622     
  2623   public:
  2624     ///Constructor
  2625 
  2626     ///Constructor.
  2627     ///
  2628     ///It builds up the search database, which remains valid until the graph
  2629     ///changes.
  2630     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
  2631 
  2632     ///Refresh the data structure at a node.
  2633 
  2634     ///Build up the search database of node \c n.
  2635     ///
  2636     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2637     ///the number of the outgoing edges of \c n.
  2638     
  2639     void refresh(Node n) 
  2640     {
  2641       EdgeLookUp<G>::refresh(n);
  2642       refreshNext(_head[n]);
  2643     }
  2644     
  2645     ///Refresh the full data structure.
  2646 
  2647     ///Build up the full search database. In fact, it simply calls
  2648     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2649     ///
  2650     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2651     ///the number of the edges of \c n and <em>D</em> is the maximum
  2652     ///out-degree of the graph.
  2653 
  2654     void refresh() 
  2655     {
  2656       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2657     }
  2658     
  2659     ///Find an edge between two nodes.
  2660     
  2661     ///Find an edge between two nodes.
  2662     ///\param s The source node
  2663     ///\param t The target node
  2664     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
  2665     ///not given, the operator finds the first appropriate edge.
  2666     ///\return An edge from \c s to \c t after \c prev or
  2667     ///\ref INVALID if there is no more.
  2668     ///
  2669     ///For example, you can count the number of edges from \c u to \c v in the
  2670     ///following way.
  2671     ///\code
  2672     ///AllEdgeLookUp<ListGraph> ae(g);
  2673     ///...
  2674     ///int n=0;
  2675     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2676     ///\endcode
  2677     ///
  2678     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
  2679     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
  2680     ///consecutive edges are found in constant time.
  2681     ///
  2682     ///\warning If you change the graph, refresh() must be called before using
  2683     ///this operator. If you change the outgoing edges of
  2684     ///a single node \c n, then
  2685     ///\ref refresh(Node) "refresh(n)" is enough.
  2686     ///
  2687 #ifdef DOXYGEN
  2688     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
  2689 #else
  2690     using EdgeLookUp<G>::operator() ;
  2691     Edge operator()(Node s, Node t, Edge prev) const
  2692     {
  2693       return prev==INVALID?(*this)(s,t):_next[prev];
  2694     }
  2695 #endif
  2696       
  2697   };
  2698 
  2699   /// @}
  2700 
  2701 } //END OF NAMESPACE LEMON
  2702 
  2703 #endif