lemon/min_cost_max_flow.h
author alpar
Tue, 05 Jun 2007 10:59:16 +0000
changeset 2446 dd20d76eed13
child 2507 6520edb2c3f3
permissions -rw-r--r--
A minimum spanning tree based TSP algorithm is added (-tsp2)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MIN_COST_MAX_FLOW_H
    20 #define LEMON_MIN_COST_MAX_FLOW_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief An efficient algorithm for finding a minimum cost maximum
    26 /// flow.
    27 
    28 #include <lemon/preflow.h>
    29 #include <lemon/network_simplex.h>
    30 #include <lemon/maps.h>
    31 
    32 namespace lemon {
    33 
    34   /// \addtogroup min_cost_flow
    35   /// @{
    36 
    37   /// \brief An efficient algorithm for finding a minimum cost maximum
    38   /// flow.
    39   ///
    40   /// \ref lemon::MinCostFlow "MinCostMaxFlow" implements an efficient
    41   /// algorithm for finding a maximum flow having minimal total cost
    42   /// from a given source node to a given target node in a directed
    43   /// graph.
    44   ///
    45   /// \note \ref lemon::MinCostMaxFlow "MinCostMaxFlow" uses
    46   /// \ref lemon::Preflow "Preflow" algorithm for finding the maximum
    47   /// flow value and \ref lemon::NetworkSimplex "NetworkSimplex" 
    48   /// algorithm for finding a minimum cost flow of that value.
    49   ///
    50   /// \param Graph The directed graph type the algorithm runs on.
    51   /// \param CapacityMap The type of the capacity (upper bound) map.
    52   /// \param CostMap The type of the cost (length) map.
    53   ///
    54   /// \warning
    55   /// - Edge capacities and costs should be nonnegative integers.
    56   ///	However \c CostMap::Value should be signed type.
    57   ///
    58   /// \author Peter Kovacs
    59 
    60 template < typename Graph,
    61 	   typename CapacityMap = typename Graph::template EdgeMap<int>,
    62 	   typename CostMap = typename Graph::template EdgeMap<int> >
    63   class MinCostMaxFlow
    64   {
    65     typedef typename Graph::Node Node;
    66     typedef typename Graph::Edge Edge;
    67 
    68     typedef typename CapacityMap::Value Capacity;
    69     typedef typename Graph::template NodeMap<Capacity> SupplyMap;
    70     typedef NetworkSimplex< Graph, CapacityMap, CapacityMap,
    71 			    CostMap, SupplyMap >
    72       MinCostFlowImpl;
    73 
    74   public:
    75 
    76     /// \brief The type of the flow map.
    77     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    78 
    79   private:
    80 
    81     /// \brief The directed graph the algorithm runs on.
    82     const Graph &graph;
    83     /// \brief The modified capacity map.
    84     const CapacityMap &capacity;
    85     /// \brief The cost map.
    86     const CostMap &cost;
    87     /// \brief The source node.
    88     Node source;
    89     /// \brief The target node.
    90     Node target;
    91     /// \brief The edge map of the found flow.
    92     FlowMap flow;
    93 
    94     typedef Preflow<Graph, Capacity, CapacityMap, FlowMap> PreflowImpl;
    95     /// \brief \ref lemon::Preflow "Preflow" class for finding the
    96     /// maximum flow value.
    97     PreflowImpl preflow;
    98 
    99   public:
   100 
   101     /// \brief The constructor of the class.
   102     ///
   103     /// The constructor of the class.
   104     ///
   105     /// \param _graph The directed graph the algorithm runs on.
   106     /// \param _capacity The capacities (upper bounds) of the edges.
   107     /// \param _cost The cost (length) values of the edges.
   108     /// \param _s The source node.
   109     /// \param _t The target node.
   110     MinCostMaxFlow( const Graph &_graph,
   111 		    const CapacityMap &_capacity,
   112 		    const CostMap &_cost,
   113 		    Node _s, Node _t ) :
   114       graph(_graph), capacity(_capacity), cost(_cost),
   115       source(_s), target(_t), flow(_graph),
   116       preflow(_graph, _s, _t, _capacity, flow)
   117     {}
   118 
   119     /// \brief Returns a const reference to the flow map.
   120     ///
   121     /// Returns a const reference to the flow map.
   122     ///
   123     /// \pre \ref run() must be called before using this function.
   124     const FlowMap& flowMap() const {
   125       return flow;
   126     }
   127 
   128     /// \brief Returns the total cost of the found flow.
   129     ///
   130     /// Returns the total cost of the found flow. The complexity of the
   131     /// function is \f$ O(e) \f$.
   132     ///
   133     /// \pre \ref run() must be called before using this function.
   134     Cost totalCost() const {
   135       Cost c = 0;
   136       for (EdgeIt e(graph); e != INVALID; ++e)
   137 	c += flow[e] * cost[e];
   138       return c;
   139     }
   140 
   141     /// \brief Runs the algorithm.
   142     void run() {
   143       preflow.phase1();
   144       MinCostFlowImpl mcf_impl( graph, capacity, cost,
   145 				source, target, preflow.flowValue() );
   146       mcf_impl.run();
   147       flow = mcf_impl.flowMap();
   148     }
   149 
   150   }; //class MinCostMaxFlow
   151 
   152   ///@}
   153 
   154 } //namespace lemon
   155 
   156 #endif //LEMON_MIN_COST_MAX_FLOW_H