lemon/graph_utils.h
author deba
Sun, 30 Sep 2007 19:19:33 +0000
changeset 2481 ddb851e1481a
parent 2474 e6368948d5f7
child 2485 88aa7870756a
permissions -rw-r--r--
Avoiding warnings
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 
    40 namespace lemon {
    41 
    42   /// \addtogroup gutils
    43   /// @{
    44 
    45   ///Creates convenience typedefs for the graph types and iterators
    46 
    47   ///This \c \#define creates convenience typedefs for the following types
    48   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    49   ///\c OutEdgeIt
    50   ///\note If \c G it a template parameter, it should be used in this way.
    51   ///\code
    52   ///  GRAPH_TYPEDEFS(typename G)
    53   ///\endcode
    54   ///
    55   ///\warning There are no typedefs for the graph maps because of the lack of
    56   ///template typedefs in C++.
    57 #define GRAPH_TYPEDEFS(Graph)				\
    58   typedef Graph::     Node      Node;			\
    59     typedef Graph::   NodeIt    NodeIt;			\
    60     typedef Graph::   Edge      Edge;			\
    61     typedef Graph::   EdgeIt    EdgeIt;			\
    62     typedef Graph:: InEdgeIt  InEdgeIt;			\
    63     typedef Graph::OutEdgeIt OutEdgeIt;			
    64 
    65   ///Creates convenience typedefs for the undirected graph types and iterators
    66 
    67   ///This \c \#define creates the same convenience typedefs as defined by
    68   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    69   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    70   ///
    71   ///\note If \c G it a template parameter, it should be used in this way.
    72   ///\code
    73   ///  UGRAPH_TYPEDEFS(typename G)
    74   ///\endcode
    75   ///
    76   ///\warning There are no typedefs for the graph maps because of the lack of
    77   ///template typedefs in C++.
    78 #define UGRAPH_TYPEDEFS(Graph)				\
    79   GRAPH_TYPEDEFS(Graph)						\
    80     typedef Graph:: UEdge   UEdge;			\
    81     typedef Graph:: UEdgeIt UEdgeIt;			\
    82     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    83 
    84   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    85   ///types and iterators
    86 
    87   ///This \c \#define creates the same convenience typedefs as defined by
    88   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    89   ///\c ANodeIt, \c BNodeIt, 
    90   ///
    91   ///\note If \c G it a template parameter, it should be used in this way.
    92   ///\code
    93   ///  BPUGRAPH_TYPEDEFS(typename G)
    94   ///\endcode
    95   ///
    96   ///\warning There are no typedefs for the graph maps because of the lack of
    97   ///template typedefs in C++.
    98 #define BPUGRAPH_TYPEDEFS(Graph)            \
    99   UGRAPH_TYPEDEFS(Graph)                    \
   100     typedef Graph::ANode ANode;             \
   101     typedef Graph::BNode BNode;             \
   102     typedef Graph::ANodeIt ANodeIt;	    \
   103     typedef Graph::BNodeIt BNodeIt;
   104 
   105   /// \brief Function to count the items in the graph.
   106   ///
   107   /// This function counts the items (nodes, edges etc) in the graph.
   108   /// The complexity of the function is O(n) because
   109   /// it iterates on all of the items.
   110 
   111   template <typename Graph, typename Item>
   112   inline int countItems(const Graph& g) {
   113     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   114     int num = 0;
   115     for (ItemIt it(g); it != INVALID; ++it) {
   116       ++num;
   117     }
   118     return num;
   119   }
   120 
   121   // Node counting:
   122 
   123   namespace _graph_utils_bits {
   124     
   125     template <typename Graph, typename Enable = void>
   126     struct CountNodesSelector {
   127       static int count(const Graph &g) {
   128         return countItems<Graph, typename Graph::Node>(g);
   129       }
   130     };
   131 
   132     template <typename Graph>
   133     struct CountNodesSelector<
   134       Graph, typename 
   135       enable_if<typename Graph::NodeNumTag, void>::type> 
   136     {
   137       static int count(const Graph &g) {
   138         return g.nodeNum();
   139       }
   140     };    
   141   }
   142 
   143   /// \brief Function to count the nodes in the graph.
   144   ///
   145   /// This function counts the nodes in the graph.
   146   /// The complexity of the function is O(n) but for some
   147   /// graph structures it is specialized to run in O(1).
   148   ///
   149   /// \todo Refer how to specialize it.
   150 
   151   template <typename Graph>
   152   inline int countNodes(const Graph& g) {
   153     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   154   }
   155 
   156   namespace _graph_utils_bits {
   157     
   158     template <typename Graph, typename Enable = void>
   159     struct CountANodesSelector {
   160       static int count(const Graph &g) {
   161         return countItems<Graph, typename Graph::ANode>(g);
   162       }
   163     };
   164 
   165     template <typename Graph>
   166     struct CountANodesSelector<
   167       Graph, typename 
   168       enable_if<typename Graph::NodeNumTag, void>::type> 
   169     {
   170       static int count(const Graph &g) {
   171         return g.aNodeNum();
   172       }
   173     };    
   174   }
   175 
   176   /// \brief Function to count the anodes in the graph.
   177   ///
   178   /// This function counts the anodes in the graph.
   179   /// The complexity of the function is O(an) but for some
   180   /// graph structures it is specialized to run in O(1).
   181   ///
   182   /// \todo Refer how to specialize it.
   183 
   184   template <typename Graph>
   185   inline int countANodes(const Graph& g) {
   186     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   187   }
   188 
   189   namespace _graph_utils_bits {
   190     
   191     template <typename Graph, typename Enable = void>
   192     struct CountBNodesSelector {
   193       static int count(const Graph &g) {
   194         return countItems<Graph, typename Graph::BNode>(g);
   195       }
   196     };
   197 
   198     template <typename Graph>
   199     struct CountBNodesSelector<
   200       Graph, typename 
   201       enable_if<typename Graph::NodeNumTag, void>::type> 
   202     {
   203       static int count(const Graph &g) {
   204         return g.bNodeNum();
   205       }
   206     };    
   207   }
   208 
   209   /// \brief Function to count the bnodes in the graph.
   210   ///
   211   /// This function counts the bnodes in the graph.
   212   /// The complexity of the function is O(bn) but for some
   213   /// graph structures it is specialized to run in O(1).
   214   ///
   215   /// \todo Refer how to specialize it.
   216 
   217   template <typename Graph>
   218   inline int countBNodes(const Graph& g) {
   219     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   220   }
   221 
   222 
   223   // Edge counting:
   224 
   225   namespace _graph_utils_bits {
   226     
   227     template <typename Graph, typename Enable = void>
   228     struct CountEdgesSelector {
   229       static int count(const Graph &g) {
   230         return countItems<Graph, typename Graph::Edge>(g);
   231       }
   232     };
   233 
   234     template <typename Graph>
   235     struct CountEdgesSelector<
   236       Graph, 
   237       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   238     {
   239       static int count(const Graph &g) {
   240         return g.edgeNum();
   241       }
   242     };    
   243   }
   244 
   245   /// \brief Function to count the edges in the graph.
   246   ///
   247   /// This function counts the edges in the graph.
   248   /// The complexity of the function is O(e) but for some
   249   /// graph structures it is specialized to run in O(1).
   250 
   251   template <typename Graph>
   252   inline int countEdges(const Graph& g) {
   253     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   254   }
   255 
   256   // Undirected edge counting:
   257   namespace _graph_utils_bits {
   258     
   259     template <typename Graph, typename Enable = void>
   260     struct CountUEdgesSelector {
   261       static int count(const Graph &g) {
   262         return countItems<Graph, typename Graph::UEdge>(g);
   263       }
   264     };
   265 
   266     template <typename Graph>
   267     struct CountUEdgesSelector<
   268       Graph, 
   269       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   270     {
   271       static int count(const Graph &g) {
   272         return g.uEdgeNum();
   273       }
   274     };    
   275   }
   276 
   277   /// \brief Function to count the undirected edges in the graph.
   278   ///
   279   /// This function counts the undirected edges in the graph.
   280   /// The complexity of the function is O(e) but for some
   281   /// graph structures it is specialized to run in O(1).
   282 
   283   template <typename Graph>
   284   inline int countUEdges(const Graph& g) {
   285     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   286 
   287   }
   288 
   289 
   290   template <typename Graph, typename DegIt>
   291   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   292     int num = 0;
   293     for (DegIt it(_g, _n); it != INVALID; ++it) {
   294       ++num;
   295     }
   296     return num;
   297   }
   298 
   299   /// \brief Function to count the number of the out-edges from node \c n.
   300   ///
   301   /// This function counts the number of the out-edges from node \c n
   302   /// in the graph.  
   303   template <typename Graph>
   304   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   305     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   306   }
   307 
   308   /// \brief Function to count the number of the in-edges to node \c n.
   309   ///
   310   /// This function counts the number of the in-edges to node \c n
   311   /// in the graph.  
   312   template <typename Graph>
   313   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   314     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   315   }
   316 
   317   /// \brief Function to count the number of the inc-edges to node \c n.
   318   ///
   319   /// This function counts the number of the inc-edges to node \c n
   320   /// in the graph.  
   321   template <typename Graph>
   322   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   323     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   324   }
   325 
   326   namespace _graph_utils_bits {
   327     
   328     template <typename Graph, typename Enable = void>
   329     struct FindEdgeSelector {
   330       typedef typename Graph::Node Node;
   331       typedef typename Graph::Edge Edge;
   332       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   333         if (e == INVALID) {
   334           g.firstOut(e, u);
   335         } else {
   336           g.nextOut(e);
   337         }
   338         while (e != INVALID && g.target(e) != v) {
   339           g.nextOut(e);
   340         }
   341         return e;
   342       }
   343     };
   344 
   345     template <typename Graph>
   346     struct FindEdgeSelector<
   347       Graph, 
   348       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   349     {
   350       typedef typename Graph::Node Node;
   351       typedef typename Graph::Edge Edge;
   352       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   353         return g.findEdge(u, v, prev);
   354       }
   355     };    
   356   }
   357 
   358   /// \brief Finds an edge between two nodes of a graph.
   359   ///
   360   /// Finds an edge from node \c u to node \c v in graph \c g.
   361   ///
   362   /// If \c prev is \ref INVALID (this is the default value), then
   363   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   364   /// the next edge from \c u to \c v after \c prev.
   365   /// \return The found edge or \ref INVALID if there is no such an edge.
   366   ///
   367   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   368   ///\code
   369   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   370   ///   ...
   371   /// }
   372   ///\endcode
   373   ///
   374   ///\sa EdgeLookUp
   375   ///\sa AllEdgeLookUp
   376   ///\sa ConEdgeIt
   377   template <typename Graph>
   378   inline typename Graph::Edge 
   379   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   380            typename Graph::Edge prev = INVALID) {
   381     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   382   }
   383 
   384   /// \brief Iterator for iterating on edges connected the same nodes.
   385   ///
   386   /// Iterator for iterating on edges connected the same nodes. It is 
   387   /// higher level interface for the findEdge() function. You can
   388   /// use it the following way:
   389   ///\code
   390   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   391   ///   ...
   392   /// }
   393   ///\endcode
   394   /// 
   395   ///\sa findEdge()
   396   ///\sa EdgeLookUp
   397   ///\sa AllEdgeLookUp
   398   ///
   399   /// \author Balazs Dezso 
   400   template <typename _Graph>
   401   class ConEdgeIt : public _Graph::Edge {
   402   public:
   403 
   404     typedef _Graph Graph;
   405     typedef typename Graph::Edge Parent;
   406 
   407     typedef typename Graph::Edge Edge;
   408     typedef typename Graph::Node Node;
   409 
   410     /// \brief Constructor.
   411     ///
   412     /// Construct a new ConEdgeIt iterating on the edges which
   413     /// connects the \c u and \c v node.
   414     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   415       Parent::operator=(findEdge(graph, u, v));
   416     }
   417 
   418     /// \brief Constructor.
   419     ///
   420     /// Construct a new ConEdgeIt which continues the iterating from 
   421     /// the \c e edge.
   422     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   423     
   424     /// \brief Increment operator.
   425     ///
   426     /// It increments the iterator and gives back the next edge.
   427     ConEdgeIt& operator++() {
   428       Parent::operator=(findEdge(graph, graph.source(*this), 
   429 				 graph.target(*this), *this));
   430       return *this;
   431     }
   432   private:
   433     const Graph& graph;
   434   };
   435 
   436   namespace _graph_utils_bits {
   437     
   438     template <typename Graph, typename Enable = void>
   439     struct FindUEdgeSelector {
   440       typedef typename Graph::Node Node;
   441       typedef typename Graph::UEdge UEdge;
   442       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   443         bool b;
   444         if (u != v) {
   445           if (e == INVALID) {
   446             g.firstInc(e, b, u);
   447           } else {
   448             b = g.source(e) == u;
   449             g.nextInc(e, b);
   450           }
   451           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   452             g.nextInc(e, b);
   453           }
   454         } else {
   455           if (e == INVALID) {
   456             g.firstInc(e, b, u);
   457           } else {
   458             b = true;
   459             g.nextInc(e, b);
   460           }
   461           while (e != INVALID && (!b || g.target(e) != v)) {
   462             g.nextInc(e, b);
   463           }
   464         }
   465         return e;
   466       }
   467     };
   468 
   469     template <typename Graph>
   470     struct FindUEdgeSelector<
   471       Graph, 
   472       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   473     {
   474       typedef typename Graph::Node Node;
   475       typedef typename Graph::UEdge UEdge;
   476       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   477         return g.findUEdge(u, v, prev);
   478       }
   479     };    
   480   }
   481 
   482   /// \brief Finds an uedge between two nodes of a graph.
   483   ///
   484   /// Finds an uedge from node \c u to node \c v in graph \c g.
   485   /// If the node \c u and node \c v is equal then each loop edge
   486   /// will be enumerated.
   487   ///
   488   /// If \c prev is \ref INVALID (this is the default value), then
   489   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   490   /// the next edge from \c u to \c v after \c prev.
   491   /// \return The found edge or \ref INVALID if there is no such an edge.
   492   ///
   493   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   494   ///\code
   495   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   496   ///     e = findUEdge(g,u,v,e)) {
   497   ///   ...
   498   /// }
   499   ///\endcode
   500   ///
   501   ///\sa ConEdgeIt
   502 
   503   template <typename Graph>
   504   inline typename Graph::UEdge 
   505   findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   506             typename Graph::UEdge p = INVALID) {
   507     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   508   }
   509 
   510   /// \brief Iterator for iterating on uedges connected the same nodes.
   511   ///
   512   /// Iterator for iterating on uedges connected the same nodes. It is 
   513   /// higher level interface for the findUEdge() function. You can
   514   /// use it the following way:
   515   ///\code
   516   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   517   ///   ...
   518   /// }
   519   ///\endcode
   520   ///
   521   ///\sa findUEdge()
   522   ///
   523   /// \author Balazs Dezso 
   524   template <typename _Graph>
   525   class ConUEdgeIt : public _Graph::UEdge {
   526   public:
   527 
   528     typedef _Graph Graph;
   529     typedef typename Graph::UEdge Parent;
   530 
   531     typedef typename Graph::UEdge UEdge;
   532     typedef typename Graph::Node Node;
   533 
   534     /// \brief Constructor.
   535     ///
   536     /// Construct a new ConUEdgeIt iterating on the edges which
   537     /// connects the \c u and \c v node.
   538     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   539       Parent::operator=(findUEdge(graph, u, v));
   540     }
   541 
   542     /// \brief Constructor.
   543     ///
   544     /// Construct a new ConUEdgeIt which continues the iterating from 
   545     /// the \c e edge.
   546     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   547     
   548     /// \brief Increment operator.
   549     ///
   550     /// It increments the iterator and gives back the next edge.
   551     ConUEdgeIt& operator++() {
   552       Parent::operator=(findUEdge(graph, graph.source(*this), 
   553 				      graph.target(*this), *this));
   554       return *this;
   555     }
   556   private:
   557     const Graph& graph;
   558   };
   559 
   560   /// \brief Copy a map.
   561   ///
   562   /// This function copies the \c source map to the \c target map. It uses the
   563   /// given iterator to iterate on the data structure and it uses the \c ref
   564   /// mapping to convert the source's keys to the target's keys.
   565   template <typename Target, typename Source, 
   566 	    typename ItemIt, typename Ref>	    
   567   void copyMap(Target& target, const Source& source, 
   568 	       ItemIt it, const Ref& ref) {
   569     for (; it != INVALID; ++it) {
   570       target[ref[it]] = source[it];
   571     }
   572   }
   573 
   574   /// \brief Copy the source map to the target map.
   575   ///
   576   /// Copy the \c source map to the \c target map. It uses the given iterator
   577   /// to iterate on the data structure.
   578   template <typename Target, typename Source, typename ItemIt>	    
   579   void copyMap(Target& target, const Source& source, ItemIt it) {
   580     for (; it != INVALID; ++it) {
   581       target[it] = source[it];
   582     }
   583   }
   584 
   585   namespace _graph_utils_bits {
   586 
   587     template <typename Graph, typename Item, typename RefMap>
   588     class MapCopyBase {
   589     public:
   590       virtual void copy(const Graph& source, const RefMap& refMap) = 0;
   591       
   592       virtual ~MapCopyBase() {}
   593     };
   594 
   595     template <typename Graph, typename Item, typename RefMap, 
   596               typename TargetMap, typename SourceMap>
   597     class MapCopy : public MapCopyBase<Graph, Item, RefMap> {
   598     public:
   599 
   600       MapCopy(TargetMap& tmap, const SourceMap& map) 
   601         : _tmap(tmap), _map(map) {}
   602       
   603       virtual void copy(const Graph& graph, const RefMap& refMap) {
   604         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   605         for (ItemIt it(graph); it != INVALID; ++it) {
   606           _tmap.set(refMap[it], _map[it]);
   607         }
   608       }
   609 
   610     private:
   611       TargetMap& _tmap;
   612       const SourceMap& _map;
   613     };
   614 
   615     template <typename Graph, typename Item, typename RefMap, typename It>
   616     class ItemCopy : public MapCopyBase<Graph, Item, RefMap> {
   617     public:
   618 
   619       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
   620       
   621       virtual void copy(const Graph&, const RefMap& refMap) {
   622         _it = refMap[_item];
   623       }
   624 
   625     private:
   626       It& _it;
   627       Item _item;
   628     };
   629 
   630     template <typename Graph, typename Item, typename RefMap, typename Ref>
   631     class RefCopy : public MapCopyBase<Graph, Item, RefMap> {
   632     public:
   633 
   634       RefCopy(Ref& map) : _map(map) {}
   635       
   636       virtual void copy(const Graph& graph, const RefMap& refMap) {
   637         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   638         for (ItemIt it(graph); it != INVALID; ++it) {
   639           _map.set(it, refMap[it]);
   640         }
   641       }
   642 
   643     private:
   644       Ref& _map;
   645     };
   646 
   647     template <typename Graph, typename Item, typename RefMap, 
   648               typename CrossRef>
   649     class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> {
   650     public:
   651 
   652       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   653       
   654       virtual void copy(const Graph& graph, const RefMap& refMap) {
   655         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   656         for (ItemIt it(graph); it != INVALID; ++it) {
   657           _cmap.set(refMap[it], it);
   658         }
   659       }
   660 
   661     private:
   662       CrossRef& _cmap;
   663     };
   664 
   665     template <typename Graph, typename Enable = void>
   666     struct GraphCopySelector {
   667       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   668       static void copy(Graph &target, const Source& source,
   669                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   670         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   671           nodeRefMap[it] = target.addNode();
   672         }
   673         for (typename Source::EdgeIt it(source); it != INVALID; ++it) {
   674           edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   675                                           nodeRefMap[source.target(it)]);
   676         }
   677       }
   678     };
   679 
   680     template <typename Graph>
   681     struct GraphCopySelector<
   682       Graph, 
   683       typename enable_if<typename Graph::BuildTag, void>::type> 
   684     {
   685       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   686       static void copy(Graph &target, const Source& source,
   687                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   688         target.build(source, nodeRefMap, edgeRefMap);
   689       }
   690     };
   691 
   692     template <typename UGraph, typename Enable = void>
   693     struct UGraphCopySelector {
   694       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   695       static void copy(UGraph &target, const Source& source,
   696                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   697         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   698           nodeRefMap[it] = target.addNode();
   699         }
   700         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   701           uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   702                                           nodeRefMap[source.target(it)]);
   703         }
   704       }
   705     };
   706 
   707     template <typename UGraph>
   708     struct UGraphCopySelector<
   709       UGraph, 
   710       typename enable_if<typename UGraph::BuildTag, void>::type> 
   711     {
   712       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   713       static void copy(UGraph &target, const Source& source,
   714                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   715         target.build(source, nodeRefMap, uEdgeRefMap);
   716       }
   717     };
   718 
   719     template <typename BpUGraph, typename Enable = void>
   720     struct BpUGraphCopySelector {
   721       template <typename Source, typename ANodeRefMap, 
   722                 typename BNodeRefMap, typename UEdgeRefMap>
   723       static void copy(BpUGraph &target, const Source& source,
   724                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   725                        UEdgeRefMap& uEdgeRefMap) {
   726         for (typename Source::ANodeIt it(source); it != INVALID; ++it) {
   727           aNodeRefMap[it] = target.addANode();
   728         }
   729         for (typename Source::BNodeIt it(source); it != INVALID; ++it) {
   730           bNodeRefMap[it] = target.addBNode();
   731         }
   732         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   733           uEdgeRefMap[it] = target.addEdge(aNodeRefMap[source.aNode(it)], 
   734                                            bNodeRefMap[source.bNode(it)]);
   735         }
   736       }
   737     };
   738 
   739     template <typename BpUGraph>
   740     struct BpUGraphCopySelector<
   741       BpUGraph, 
   742       typename enable_if<typename BpUGraph::BuildTag, void>::type> 
   743     {
   744       template <typename Source, typename ANodeRefMap, 
   745                 typename BNodeRefMap, typename UEdgeRefMap>
   746       static void copy(BpUGraph &target, const Source& source,
   747                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   748                        UEdgeRefMap& uEdgeRefMap) {
   749         target.build(source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
   750       }
   751     };
   752     
   753 
   754   }
   755 
   756   /// \brief Class to copy a graph.
   757   ///
   758   /// Class to copy a graph to another graph (duplicate a graph). The
   759   /// simplest way of using it is through the \c copyGraph() function.
   760   template <typename Target, typename Source>
   761   class GraphCopy {
   762   private:
   763 
   764     typedef typename Source::Node Node;
   765     typedef typename Source::NodeIt NodeIt;
   766     typedef typename Source::Edge Edge;
   767     typedef typename Source::EdgeIt EdgeIt;
   768 
   769     typedef typename Target::Node TNode;
   770     typedef typename Target::Edge TEdge;
   771 
   772     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   773     typedef typename Source::template EdgeMap<TEdge> EdgeRefMap;
   774     
   775     
   776   public: 
   777 
   778 
   779     /// \brief Constructor for the GraphCopy.
   780     ///
   781     /// It copies the content of the \c _source graph into the
   782     /// \c _target graph.
   783     GraphCopy(Target& _target, const Source& _source) 
   784       : source(_source), target(_target) {}
   785 
   786     /// \brief Destructor of the GraphCopy
   787     ///
   788     /// Destructor of the GraphCopy
   789     ~GraphCopy() {
   790       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   791         delete nodeMapCopies[i];
   792       }
   793       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
   794         delete edgeMapCopies[i];
   795       }
   796 
   797     }
   798 
   799     /// \brief Copies the node references into the given map.
   800     ///
   801     /// Copies the node references into the given map.
   802     template <typename NodeRef>
   803     GraphCopy& nodeRef(NodeRef& map) {
   804       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
   805                               NodeRefMap, NodeRef>(map));
   806       return *this;
   807     }
   808 
   809     /// \brief Copies the node cross references into the given map.
   810     ///
   811     ///  Copies the node cross references (reverse references) into
   812     ///  the given map.
   813     template <typename NodeCrossRef>
   814     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   815       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
   816                               NodeRefMap, NodeCrossRef>(map));
   817       return *this;
   818     }
   819 
   820     /// \brief Make copy of the given map.
   821     ///
   822     /// Makes copy of the given map for the newly created graph. 
   823     /// The new map's key type is the target graph's node type,
   824     /// and the copied map's key type is the source graph's node
   825     /// type.  
   826     template <typename TargetMap, typename SourceMap>
   827     GraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
   828       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
   829                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
   830       return *this;
   831     }
   832 
   833     /// \brief Make a copy of the given node.
   834     ///
   835     /// Make a copy of the given node.
   836     GraphCopy& node(TNode& tnode, const Node& snode) {
   837       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
   838                               NodeRefMap, TNode>(tnode, snode));
   839       return *this;
   840     }
   841 
   842     /// \brief Copies the edge references into the given map.
   843     ///
   844     /// Copies the edge references into the given map.
   845     template <typename EdgeRef>
   846     GraphCopy& edgeRef(EdgeRef& map) {
   847       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
   848                               EdgeRefMap, EdgeRef>(map));
   849       return *this;
   850     }
   851 
   852     /// \brief Copies the edge cross references into the given map.
   853     ///
   854     ///  Copies the edge cross references (reverse references) into
   855     ///  the given map.
   856     template <typename EdgeCrossRef>
   857     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   858       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
   859                               EdgeRefMap, EdgeCrossRef>(map));
   860       return *this;
   861     }
   862 
   863     /// \brief Make copy of the given map.
   864     ///
   865     /// Makes copy of the given map for the newly created graph. 
   866     /// The new map's key type is the target graph's edge type,
   867     /// and the copied map's key type is the source graph's edge
   868     /// type.  
   869     template <typename TargetMap, typename SourceMap>
   870     GraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
   871       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
   872                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
   873       return *this;
   874     }
   875 
   876     /// \brief Make a copy of the given edge.
   877     ///
   878     /// Make a copy of the given edge.
   879     GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
   880       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
   881                               EdgeRefMap, TEdge>(tedge, sedge));
   882       return *this;
   883     }
   884 
   885     /// \brief Executes the copies.
   886     ///
   887     /// Executes the copies.
   888     void run() {
   889       NodeRefMap nodeRefMap(source);
   890       EdgeRefMap edgeRefMap(source);
   891       _graph_utils_bits::GraphCopySelector<Target>::
   892         copy(target, source, nodeRefMap, edgeRefMap);
   893       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   894         nodeMapCopies[i]->copy(source, nodeRefMap);
   895       }
   896       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
   897         edgeMapCopies[i]->copy(source, edgeRefMap);
   898       }      
   899     }
   900 
   901   protected:
   902 
   903 
   904     const Source& source;
   905     Target& target;
   906 
   907     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
   908     nodeMapCopies;
   909 
   910     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
   911     edgeMapCopies;
   912 
   913   };
   914 
   915   /// \brief Copy a graph to another graph.
   916   ///
   917   /// Copy a graph to another graph.
   918   /// The usage of the function:
   919   /// 
   920   ///\code
   921   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
   922   ///\endcode
   923   /// 
   924   /// After the copy the \c nr map will contain the mapping from the
   925   /// source graph's nodes to the target graph's nodes and the \c ecr will
   926   /// contain the mapping from the target graph's edges to the source's
   927   /// edges.
   928   ///
   929   /// \see GraphCopy 
   930   template <typename Target, typename Source>
   931   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   932     return GraphCopy<Target, Source>(target, source);
   933   }
   934 
   935   /// \brief Class to copy an undirected graph.
   936   ///
   937   /// Class to copy an undirected graph to another graph (duplicate a graph).
   938   /// The simplest way of using it is through the \c copyUGraph() function.
   939   template <typename Target, typename Source>
   940   class UGraphCopy {
   941   private:
   942 
   943     typedef typename Source::Node Node;
   944     typedef typename Source::NodeIt NodeIt;
   945     typedef typename Source::Edge Edge;
   946     typedef typename Source::EdgeIt EdgeIt;
   947     typedef typename Source::UEdge UEdge;
   948     typedef typename Source::UEdgeIt UEdgeIt;
   949 
   950     typedef typename Target::Node TNode;
   951     typedef typename Target::Edge TEdge;
   952     typedef typename Target::UEdge TUEdge;
   953 
   954     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   955     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
   956 
   957     struct EdgeRefMap {
   958       EdgeRefMap(const Target& _target, const Source& _source,
   959                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
   960         : target(_target), source(_source), 
   961           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
   962 
   963       typedef typename Source::Edge Key;
   964       typedef typename Target::Edge Value;
   965 
   966       Value operator[](const Key& key) const {
   967         bool forward = 
   968           (source.direction(key) == 
   969            (node_ref[source.source(static_cast<const UEdge&>(key))] == 
   970             target.source(uedge_ref[static_cast<const UEdge&>(key)])));
   971 	return target.direct(uedge_ref[key], forward); 
   972       }
   973       
   974       const Target& target;
   975       const Source& source;
   976       const UEdgeRefMap& uedge_ref;
   977       const NodeRefMap& node_ref;
   978     };
   979 
   980     
   981   public: 
   982 
   983 
   984     /// \brief Constructor for the GraphCopy.
   985     ///
   986     /// It copies the content of the \c _source graph into the
   987     /// \c _target graph.
   988     UGraphCopy(Target& _target, const Source& _source) 
   989       : source(_source), target(_target) {}
   990 
   991     /// \brief Destructor of the GraphCopy
   992     ///
   993     /// Destructor of the GraphCopy
   994     ~UGraphCopy() {
   995       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
   996         delete nodeMapCopies[i];
   997       }
   998       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
   999         delete edgeMapCopies[i];
  1000       }
  1001       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1002         delete uEdgeMapCopies[i];
  1003       }
  1004 
  1005     }
  1006 
  1007     /// \brief Copies the node references into the given map.
  1008     ///
  1009     /// Copies the node references into the given map.
  1010     template <typename NodeRef>
  1011     UGraphCopy& nodeRef(NodeRef& map) {
  1012       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1013                               NodeRefMap, NodeRef>(map));
  1014       return *this;
  1015     }
  1016 
  1017     /// \brief Copies the node cross references into the given map.
  1018     ///
  1019     ///  Copies the node cross references (reverse references) into
  1020     ///  the given map.
  1021     template <typename NodeCrossRef>
  1022     UGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1023       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1024                               NodeRefMap, NodeCrossRef>(map));
  1025       return *this;
  1026     }
  1027 
  1028     /// \brief Make copy of the given map.
  1029     ///
  1030     /// Makes copy of the given map for the newly created graph. 
  1031     /// The new map's key type is the target graph's node type,
  1032     /// and the copied map's key type is the source graph's node
  1033     /// type.  
  1034     template <typename TargetMap, typename SourceMap>
  1035     UGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1036       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1037                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1038       return *this;
  1039     }
  1040 
  1041     /// \brief Make a copy of the given node.
  1042     ///
  1043     /// Make a copy of the given node.
  1044     UGraphCopy& node(TNode& tnode, const Node& snode) {
  1045       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1046                               NodeRefMap, TNode>(tnode, snode));
  1047       return *this;
  1048     }
  1049 
  1050     /// \brief Copies the edge references into the given map.
  1051     ///
  1052     /// Copies the edge references into the given map.
  1053     template <typename EdgeRef>
  1054     UGraphCopy& edgeRef(EdgeRef& map) {
  1055       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1056                               EdgeRefMap, EdgeRef>(map));
  1057       return *this;
  1058     }
  1059 
  1060     /// \brief Copies the edge cross references into the given map.
  1061     ///
  1062     ///  Copies the edge cross references (reverse references) into
  1063     ///  the given map.
  1064     template <typename EdgeCrossRef>
  1065     UGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1066       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1067                               EdgeRefMap, EdgeCrossRef>(map));
  1068       return *this;
  1069     }
  1070 
  1071     /// \brief Make copy of the given map.
  1072     ///
  1073     /// Makes copy of the given map for the newly created graph. 
  1074     /// The new map's key type is the target graph's edge type,
  1075     /// and the copied map's key type is the source graph's edge
  1076     /// type.  
  1077     template <typename TargetMap, typename SourceMap>
  1078     UGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1079       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1080                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1081       return *this;
  1082     }
  1083 
  1084     /// \brief Make a copy of the given edge.
  1085     ///
  1086     /// Make a copy of the given edge.
  1087     UGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
  1088       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1089                               EdgeRefMap, TEdge>(tedge, sedge));
  1090       return *this;
  1091     }
  1092 
  1093     /// \brief Copies the undirected edge references into the given map.
  1094     ///
  1095     /// Copies the undirected edge references into the given map.
  1096     template <typename UEdgeRef>
  1097     UGraphCopy& uEdgeRef(UEdgeRef& map) {
  1098       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1099                                UEdgeRefMap, UEdgeRef>(map));
  1100       return *this;
  1101     }
  1102 
  1103     /// \brief Copies the undirected edge cross references into the given map.
  1104     ///
  1105     /// Copies the undirected edge cross references (reverse
  1106     /// references) into the given map.
  1107     template <typename UEdgeCrossRef>
  1108     UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1109       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1110                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1111       return *this;
  1112     }
  1113 
  1114     /// \brief Make copy of the given map.
  1115     ///
  1116     /// Makes copy of the given map for the newly created graph. 
  1117     /// The new map's key type is the target graph's undirected edge type,
  1118     /// and the copied map's key type is the source graph's undirected edge
  1119     /// type.  
  1120     template <typename TargetMap, typename SourceMap>
  1121     UGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1122       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1123                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1124       return *this;
  1125     }
  1126 
  1127     /// \brief Make a copy of the given undirected edge.
  1128     ///
  1129     /// Make a copy of the given undirected edge.
  1130     UGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
  1131       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1132                                UEdgeRefMap, TUEdge>(tuedge, suedge));
  1133       return *this;
  1134     }
  1135 
  1136     /// \brief Executes the copies.
  1137     ///
  1138     /// Executes the copies.
  1139     void run() {
  1140       NodeRefMap nodeRefMap(source);
  1141       UEdgeRefMap uEdgeRefMap(source);
  1142       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1143       _graph_utils_bits::UGraphCopySelector<Target>::
  1144         copy(target, source, nodeRefMap, uEdgeRefMap);
  1145       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1146         nodeMapCopies[i]->copy(source, nodeRefMap);
  1147       }
  1148       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1149         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1150       }
  1151       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1152         edgeMapCopies[i]->copy(source, edgeRefMap);
  1153       }
  1154     }
  1155 
  1156   private:
  1157     
  1158     const Source& source;
  1159     Target& target;
  1160 
  1161     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1162     nodeMapCopies;
  1163 
  1164     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1165     edgeMapCopies;
  1166 
  1167     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1168     uEdgeMapCopies;
  1169 
  1170   };
  1171 
  1172   /// \brief Copy an undirected graph to another graph.
  1173   ///
  1174   /// Copy an undirected graph to another graph.
  1175   /// The usage of the function:
  1176   /// 
  1177   ///\code
  1178   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
  1179   ///\endcode
  1180   /// 
  1181   /// After the copy the \c nr map will contain the mapping from the
  1182   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1183   /// contain the mapping from the target graph's edges to the source's
  1184   /// edges.
  1185   ///
  1186   /// \see UGraphCopy 
  1187   template <typename Target, typename Source>
  1188   UGraphCopy<Target, Source> 
  1189   copyUGraph(Target& target, const Source& source) {
  1190     return UGraphCopy<Target, Source>(target, source);
  1191   }
  1192 
  1193   /// \brief Class to copy a bipartite undirected graph.
  1194   ///
  1195   /// Class to copy a bipartite undirected graph to another graph
  1196   /// (duplicate a graph).  The simplest way of using it is through
  1197   /// the \c copyBpUGraph() function.
  1198   template <typename Target, typename Source>
  1199   class BpUGraphCopy {
  1200   private:
  1201 
  1202     typedef typename Source::Node Node;
  1203     typedef typename Source::ANode ANode;
  1204     typedef typename Source::BNode BNode;
  1205     typedef typename Source::NodeIt NodeIt;
  1206     typedef typename Source::Edge Edge;
  1207     typedef typename Source::EdgeIt EdgeIt;
  1208     typedef typename Source::UEdge UEdge;
  1209     typedef typename Source::UEdgeIt UEdgeIt;
  1210 
  1211     typedef typename Target::Node TNode;
  1212     typedef typename Target::Edge TEdge;
  1213     typedef typename Target::UEdge TUEdge;
  1214 
  1215     typedef typename Source::template ANodeMap<TNode> ANodeRefMap;
  1216     typedef typename Source::template BNodeMap<TNode> BNodeRefMap;
  1217     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
  1218 
  1219     struct NodeRefMap {
  1220       NodeRefMap(const Source& _source, const ANodeRefMap& _anode_ref,
  1221                  const BNodeRefMap& _bnode_ref)
  1222         : source(_source), anode_ref(_anode_ref), bnode_ref(_bnode_ref) {}
  1223 
  1224       typedef typename Source::Node Key;
  1225       typedef typename Target::Node Value;
  1226 
  1227       Value operator[](const Key& key) const {
  1228 	return source.aNode(key) ? anode_ref[key] : bnode_ref[key]; 
  1229       }
  1230       
  1231       const Source& source;
  1232       const ANodeRefMap& anode_ref;
  1233       const BNodeRefMap& bnode_ref;
  1234     };
  1235 
  1236     struct EdgeRefMap {
  1237       EdgeRefMap(const Target& _target, const Source& _source,
  1238                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
  1239         : target(_target), source(_source), 
  1240           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
  1241 
  1242       typedef typename Source::Edge Key;
  1243       typedef typename Target::Edge Value;
  1244 
  1245       Value operator[](const Key& key) const {
  1246         bool forward = 
  1247           (source.direction(key) == 
  1248            (node_ref[source.source(static_cast<const UEdge&>(key))] == 
  1249             target.source(uedge_ref[static_cast<const UEdge&>(key)])));
  1250 	return target.direct(uedge_ref[key], forward); 
  1251       }
  1252       
  1253       const Target& target;
  1254       const Source& source;
  1255       const UEdgeRefMap& uedge_ref;
  1256       const NodeRefMap& node_ref;
  1257     };
  1258     
  1259   public: 
  1260 
  1261 
  1262     /// \brief Constructor for the GraphCopy.
  1263     ///
  1264     /// It copies the content of the \c _source graph into the
  1265     /// \c _target graph.
  1266     BpUGraphCopy(Target& _target, const Source& _source) 
  1267       : source(_source), target(_target) {}
  1268 
  1269     /// \brief Destructor of the GraphCopy
  1270     ///
  1271     /// Destructor of the GraphCopy
  1272     ~BpUGraphCopy() {
  1273       for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
  1274         delete aNodeMapCopies[i];
  1275       }
  1276       for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
  1277         delete bNodeMapCopies[i];
  1278       }
  1279       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1280         delete nodeMapCopies[i];
  1281       }
  1282       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1283         delete edgeMapCopies[i];
  1284       }
  1285       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1286         delete uEdgeMapCopies[i];
  1287       }
  1288 
  1289     }
  1290 
  1291     /// \brief Copies the A-node references into the given map.
  1292     ///
  1293     /// Copies the A-node references into the given map.
  1294     template <typename ANodeRef>
  1295     BpUGraphCopy& aNodeRef(ANodeRef& map) {
  1296       aNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, ANode, 
  1297                                ANodeRefMap, ANodeRef>(map));
  1298       return *this;
  1299     }
  1300 
  1301     /// \brief Copies the A-node cross references into the given map.
  1302     ///
  1303     /// Copies the A-node cross references (reverse references) into
  1304     /// the given map.
  1305     template <typename ANodeCrossRef>
  1306     BpUGraphCopy& aNodeCrossRef(ANodeCrossRef& map) {
  1307       aNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1308                                ANode, ANodeRefMap, ANodeCrossRef>(map));
  1309       return *this;
  1310     }
  1311 
  1312     /// \brief Make copy of the given A-node map.
  1313     ///
  1314     /// Makes copy of the given map for the newly created graph. 
  1315     /// The new map's key type is the target graph's node type,
  1316     /// and the copied map's key type is the source graph's node
  1317     /// type.  
  1318     template <typename TargetMap, typename SourceMap>
  1319     BpUGraphCopy& aNodeMap(TargetMap& tmap, const SourceMap& map) {
  1320       aNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, ANode, 
  1321                                ANodeRefMap, TargetMap, SourceMap>(tmap, map));
  1322       return *this;
  1323     }
  1324 
  1325     /// \brief Copies the B-node references into the given map.
  1326     ///
  1327     /// Copies the B-node references into the given map.
  1328     template <typename BNodeRef>
  1329     BpUGraphCopy& bNodeRef(BNodeRef& map) {
  1330       bNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, BNode, 
  1331                                BNodeRefMap, BNodeRef>(map));
  1332       return *this;
  1333     }
  1334 
  1335     /// \brief Copies the B-node cross references into the given map.
  1336     ///
  1337     ///  Copies the B-node cross references (reverse references) into
  1338     ///  the given map.
  1339     template <typename BNodeCrossRef>
  1340     BpUGraphCopy& bNodeCrossRef(BNodeCrossRef& map) {
  1341       bNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1342                               BNode, BNodeRefMap, BNodeCrossRef>(map));
  1343       return *this;
  1344     }
  1345 
  1346     /// \brief Make copy of the given B-node map.
  1347     ///
  1348     /// Makes copy of the given map for the newly created graph. 
  1349     /// The new map's key type is the target graph's node type,
  1350     /// and the copied map's key type is the source graph's node
  1351     /// type.  
  1352     template <typename TargetMap, typename SourceMap>
  1353     BpUGraphCopy& bNodeMap(TargetMap& tmap, const SourceMap& map) {
  1354       bNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, BNode, 
  1355                                BNodeRefMap, TargetMap, SourceMap>(tmap, map));
  1356       return *this;
  1357     }
  1358     /// \brief Copies the node references into the given map.
  1359     ///
  1360     /// Copies the node references into the given map.
  1361     template <typename NodeRef>
  1362     BpUGraphCopy& nodeRef(NodeRef& map) {
  1363       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1364                               NodeRefMap, NodeRef>(map));
  1365       return *this;
  1366     }
  1367 
  1368     /// \brief Copies the node cross references into the given map.
  1369     ///
  1370     ///  Copies the node cross references (reverse references) into
  1371     ///  the given map.
  1372     template <typename NodeCrossRef>
  1373     BpUGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1374       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1375                               NodeRefMap, NodeCrossRef>(map));
  1376       return *this;
  1377     }
  1378 
  1379     /// \brief Make copy of the given map.
  1380     ///
  1381     /// Makes copy of the given map for the newly created graph. 
  1382     /// The new map's key type is the target graph's node type,
  1383     /// and the copied map's key type is the source graph's node
  1384     /// type.  
  1385     template <typename TargetMap, typename SourceMap>
  1386     BpUGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1387       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1388                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1389       return *this;
  1390     }
  1391 
  1392     /// \brief Make a copy of the given node.
  1393     ///
  1394     /// Make a copy of the given node.
  1395     BpUGraphCopy& node(TNode& tnode, const Node& snode) {
  1396       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1397                               NodeRefMap, TNode>(tnode, snode));
  1398       return *this;
  1399     }
  1400 
  1401     /// \brief Copies the edge references into the given map.
  1402     ///
  1403     /// Copies the edge references into the given map.
  1404     template <typename EdgeRef>
  1405     BpUGraphCopy& edgeRef(EdgeRef& map) {
  1406       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1407                               EdgeRefMap, EdgeRef>(map));
  1408       return *this;
  1409     }
  1410 
  1411     /// \brief Copies the edge cross references into the given map.
  1412     ///
  1413     ///  Copies the edge cross references (reverse references) into
  1414     ///  the given map.
  1415     template <typename EdgeCrossRef>
  1416     BpUGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1417       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1418                               EdgeRefMap, EdgeCrossRef>(map));
  1419       return *this;
  1420     }
  1421 
  1422     /// \brief Make copy of the given map.
  1423     ///
  1424     /// Makes copy of the given map for the newly created graph. 
  1425     /// The new map's key type is the target graph's edge type,
  1426     /// and the copied map's key type is the source graph's edge
  1427     /// type.  
  1428     template <typename TargetMap, typename SourceMap>
  1429     BpUGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1430       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1431                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1432       return *this;
  1433     }
  1434 
  1435     /// \brief Make a copy of the given edge.
  1436     ///
  1437     /// Make a copy of the given edge.
  1438     BpUGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
  1439       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1440                               EdgeRefMap, TEdge>(tedge, sedge));
  1441       return *this;
  1442     }
  1443 
  1444     /// \brief Copies the undirected edge references into the given map.
  1445     ///
  1446     /// Copies the undirected edge references into the given map.
  1447     template <typename UEdgeRef>
  1448     BpUGraphCopy& uEdgeRef(UEdgeRef& map) {
  1449       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1450                                UEdgeRefMap, UEdgeRef>(map));
  1451       return *this;
  1452     }
  1453 
  1454     /// \brief Copies the undirected edge cross references into the given map.
  1455     ///
  1456     /// Copies the undirected edge cross references (reverse
  1457     /// references) into the given map.
  1458     template <typename UEdgeCrossRef>
  1459     BpUGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1460       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1461                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1462       return *this;
  1463     }
  1464 
  1465     /// \brief Make copy of the given map.
  1466     ///
  1467     /// Makes copy of the given map for the newly created graph. 
  1468     /// The new map's key type is the target graph's undirected edge type,
  1469     /// and the copied map's key type is the source graph's undirected edge
  1470     /// type.  
  1471     template <typename TargetMap, typename SourceMap>
  1472     BpUGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1473       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1474                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1475       return *this;
  1476     }
  1477 
  1478     /// \brief Make a copy of the given undirected edge.
  1479     ///
  1480     /// Make a copy of the given undirected edge.
  1481     BpUGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
  1482       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1483                                UEdgeRefMap, TUEdge>(tuedge, suedge));
  1484       return *this;
  1485     }
  1486 
  1487     /// \brief Executes the copies.
  1488     ///
  1489     /// Executes the copies.
  1490     void run() {
  1491       ANodeRefMap aNodeRefMap(source);
  1492       BNodeRefMap bNodeRefMap(source);
  1493       NodeRefMap nodeRefMap(source, aNodeRefMap, bNodeRefMap);
  1494       UEdgeRefMap uEdgeRefMap(source);
  1495       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1496       _graph_utils_bits::BpUGraphCopySelector<Target>::
  1497         copy(target, source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
  1498       for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
  1499         aNodeMapCopies[i]->copy(source, aNodeRefMap);
  1500       }
  1501       for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
  1502         bNodeMapCopies[i]->copy(source, bNodeRefMap);
  1503       }
  1504       for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
  1505         nodeMapCopies[i]->copy(source, nodeRefMap);
  1506       }
  1507       for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
  1508         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1509       }
  1510       for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
  1511         edgeMapCopies[i]->copy(source, edgeRefMap);
  1512       }
  1513     }
  1514 
  1515   private:
  1516     
  1517     const Source& source;
  1518     Target& target;
  1519 
  1520     std::vector<_graph_utils_bits::MapCopyBase<Source, ANode, ANodeRefMap>* > 
  1521     aNodeMapCopies;
  1522 
  1523     std::vector<_graph_utils_bits::MapCopyBase<Source, BNode, BNodeRefMap>* > 
  1524     bNodeMapCopies;
  1525 
  1526     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1527     nodeMapCopies;
  1528 
  1529     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1530     edgeMapCopies;
  1531 
  1532     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1533     uEdgeMapCopies;
  1534 
  1535   };
  1536 
  1537   /// \brief Copy a bipartite undirected graph to another graph.
  1538   ///
  1539   /// Copy a bipartite undirected graph to another graph.
  1540   /// The usage of the function:
  1541   /// 
  1542   ///\code
  1543   /// copyBpUGraph(trg, src).aNodeRef(anr).edgeCrossRef(ecr).run();
  1544   ///\endcode
  1545   /// 
  1546   /// After the copy the \c nr map will contain the mapping from the
  1547   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1548   /// contain the mapping from the target graph's edges to the source's
  1549   /// edges.
  1550   ///
  1551   /// \see BpUGraphCopy
  1552   template <typename Target, typename Source>
  1553   BpUGraphCopy<Target, Source> 
  1554   copyBpUGraph(Target& target, const Source& source) {
  1555     return BpUGraphCopy<Target, Source>(target, source);
  1556   }
  1557 
  1558 
  1559   /// @}
  1560 
  1561   /// \addtogroup graph_maps
  1562   /// @{
  1563 
  1564   /// Provides an immutable and unique id for each item in the graph.
  1565 
  1566   /// The IdMap class provides a unique and immutable id for each item of the
  1567   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
  1568   /// different items (nodes) get different ids <li>\b immutable: the id of an
  1569   /// item (node) does not change (even if you delete other nodes).  </ul>
  1570   /// Through this map you get access (i.e. can read) the inner id values of
  1571   /// the items stored in the graph. This map can be inverted with its member
  1572   /// class \c InverseMap.
  1573   ///
  1574   template <typename _Graph, typename _Item>
  1575   class IdMap {
  1576   public:
  1577     typedef _Graph Graph;
  1578     typedef int Value;
  1579     typedef _Item Item;
  1580     typedef _Item Key;
  1581 
  1582     /// \brief Constructor.
  1583     ///
  1584     /// Constructor of the map.
  1585     explicit IdMap(const Graph& _graph) : graph(&_graph) {}
  1586 
  1587     /// \brief Gives back the \e id of the item.
  1588     ///
  1589     /// Gives back the immutable and unique \e id of the item.
  1590     int operator[](const Item& item) const { return graph->id(item);}
  1591 
  1592     /// \brief Gives back the item by its id.
  1593     ///
  1594     /// Gives back the item by its id.
  1595     Item operator()(int id) { return graph->fromId(id, Item()); }
  1596 
  1597   private:
  1598     const Graph* graph;
  1599 
  1600   public:
  1601 
  1602     /// \brief The class represents the inverse of its owner (IdMap).
  1603     ///
  1604     /// The class represents the inverse of its owner (IdMap).
  1605     /// \see inverse()
  1606     class InverseMap {
  1607     public:
  1608 
  1609       /// \brief Constructor.
  1610       ///
  1611       /// Constructor for creating an id-to-item map.
  1612       explicit InverseMap(const Graph& _graph) : graph(&_graph) {}
  1613 
  1614       /// \brief Constructor.
  1615       ///
  1616       /// Constructor for creating an id-to-item map.
  1617       explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
  1618 
  1619       /// \brief Gives back the given item from its id.
  1620       ///
  1621       /// Gives back the given item from its id.
  1622       /// 
  1623       Item operator[](int id) const { return graph->fromId(id, Item());}
  1624 
  1625     private:
  1626       const Graph* graph;
  1627     };
  1628 
  1629     /// \brief Gives back the inverse of the map.
  1630     ///
  1631     /// Gives back the inverse of the IdMap.
  1632     InverseMap inverse() const { return InverseMap(*graph);} 
  1633 
  1634   };
  1635 
  1636   
  1637   /// \brief General invertable graph-map type.
  1638 
  1639   /// This type provides simple invertable graph-maps. 
  1640   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1641   /// and if a key is set to a new value then store it
  1642   /// in the inverse map.
  1643   ///
  1644   /// The values of the map can be accessed
  1645   /// with stl compatible forward iterator.
  1646   ///
  1647   /// \param _Graph The graph type.
  1648   /// \param _Item The item type of the graph.
  1649   /// \param _Value The value type of the map.
  1650   ///
  1651   /// \see IterableValueMap
  1652   template <typename _Graph, typename _Item, typename _Value>
  1653   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
  1654   private:
  1655     
  1656     typedef DefaultMap<_Graph, _Item, _Value> Map;
  1657     typedef _Graph Graph;
  1658 
  1659     typedef std::map<_Value, _Item> Container;
  1660     Container invMap;    
  1661 
  1662   public:
  1663  
  1664     /// The key type of InvertableMap (Node, Edge, UEdge).
  1665     typedef typename Map::Key Key;
  1666     /// The value type of the InvertableMap.
  1667     typedef typename Map::Value Value;
  1668 
  1669 
  1670 
  1671     /// \brief Constructor.
  1672     ///
  1673     /// Construct a new InvertableMap for the graph.
  1674     ///
  1675     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
  1676 
  1677     /// \brief Forward iterator for values.
  1678     ///
  1679     /// This iterator is an stl compatible forward
  1680     /// iterator on the values of the map. The values can
  1681     /// be accessed in the [beginValue, endValue) range.
  1682     ///
  1683     class ValueIterator 
  1684       : public std::iterator<std::forward_iterator_tag, Value> {
  1685       friend class InvertableMap;
  1686     private:
  1687       ValueIterator(typename Container::const_iterator _it) 
  1688         : it(_it) {}
  1689     public:
  1690       
  1691       ValueIterator() {}
  1692 
  1693       ValueIterator& operator++() { ++it; return *this; }
  1694       ValueIterator operator++(int) { 
  1695         ValueIterator tmp(*this); 
  1696         operator++();
  1697         return tmp; 
  1698       }
  1699 
  1700       const Value& operator*() const { return it->first; }
  1701       const Value* operator->() const { return &(it->first); }
  1702 
  1703       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1704       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1705       
  1706     private:
  1707       typename Container::const_iterator it;
  1708     };
  1709 
  1710     /// \brief Returns an iterator to the first value.
  1711     ///
  1712     /// Returns an stl compatible iterator to the 
  1713     /// first value of the map. The values of the
  1714     /// map can be accessed in the [beginValue, endValue)
  1715     /// range.
  1716     ValueIterator beginValue() const {
  1717       return ValueIterator(invMap.begin());
  1718     }
  1719 
  1720     /// \brief Returns an iterator after the last value.
  1721     ///
  1722     /// Returns an stl compatible iterator after the 
  1723     /// last value of the map. The values of the
  1724     /// map can be accessed in the [beginValue, endValue)
  1725     /// range.
  1726     ValueIterator endValue() const {
  1727       return ValueIterator(invMap.end());
  1728     }
  1729     
  1730     /// \brief The setter function of the map.
  1731     ///
  1732     /// Sets the mapped value.
  1733     void set(const Key& key, const Value& val) {
  1734       Value oldval = Map::operator[](key);
  1735       typename Container::iterator it = invMap.find(oldval);
  1736       if (it != invMap.end() && it->second == key) {
  1737 	invMap.erase(it);
  1738       }      
  1739       invMap.insert(make_pair(val, key));
  1740       Map::set(key, val);
  1741     }
  1742 
  1743     /// \brief The getter function of the map.
  1744     ///
  1745     /// It gives back the value associated with the key.
  1746     typename MapTraits<Map>::ConstReturnValue 
  1747     operator[](const Key& key) const {
  1748       return Map::operator[](key);
  1749     }
  1750 
  1751     /// \brief Gives back the item by its value.
  1752     ///
  1753     /// Gives back the item by its value.
  1754     Key operator()(const Value& key) const {
  1755       typename Container::const_iterator it = invMap.find(key);
  1756       return it != invMap.end() ? it->second : INVALID;
  1757     }
  1758 
  1759   protected:
  1760 
  1761     /// \brief Erase the key from the map.
  1762     ///
  1763     /// Erase the key to the map. It is called by the
  1764     /// \c AlterationNotifier.
  1765     virtual void erase(const Key& key) {
  1766       Value val = Map::operator[](key);
  1767       typename Container::iterator it = invMap.find(val);
  1768       if (it != invMap.end() && it->second == key) {
  1769 	invMap.erase(it);
  1770       }
  1771       Map::erase(key);
  1772     }
  1773 
  1774     /// \brief Erase more keys from the map.
  1775     ///
  1776     /// Erase more keys from the map. It is called by the
  1777     /// \c AlterationNotifier.
  1778     virtual void erase(const std::vector<Key>& keys) {
  1779       for (int i = 0; i < int(keys.size()); ++i) {
  1780 	Value val = Map::operator[](keys[i]);
  1781 	typename Container::iterator it = invMap.find(val);
  1782 	if (it != invMap.end() && it->second == keys[i]) {
  1783 	  invMap.erase(it);
  1784 	}
  1785       }
  1786       Map::erase(keys);
  1787     }
  1788 
  1789     /// \brief Clear the keys from the map and inverse map.
  1790     ///
  1791     /// Clear the keys from the map and inverse map. It is called by the
  1792     /// \c AlterationNotifier.
  1793     virtual void clear() {
  1794       invMap.clear();
  1795       Map::clear();
  1796     }
  1797 
  1798   public:
  1799 
  1800     /// \brief The inverse map type.
  1801     ///
  1802     /// The inverse of this map. The subscript operator of the map
  1803     /// gives back always the item what was last assigned to the value. 
  1804     class InverseMap {
  1805     public:
  1806       /// \brief Constructor of the InverseMap.
  1807       ///
  1808       /// Constructor of the InverseMap.
  1809       explicit InverseMap(const InvertableMap& _inverted) 
  1810         : inverted(_inverted) {}
  1811 
  1812       /// The value type of the InverseMap.
  1813       typedef typename InvertableMap::Key Value;
  1814       /// The key type of the InverseMap.
  1815       typedef typename InvertableMap::Value Key; 
  1816 
  1817       /// \brief Subscript operator. 
  1818       ///
  1819       /// Subscript operator. It gives back always the item 
  1820       /// what was last assigned to the value.
  1821       Value operator[](const Key& key) const {
  1822 	return inverted(key);
  1823       }
  1824       
  1825     private:
  1826       const InvertableMap& inverted;
  1827     };
  1828 
  1829     /// \brief It gives back the just readable inverse map.
  1830     ///
  1831     /// It gives back the just readable inverse map.
  1832     InverseMap inverse() const {
  1833       return InverseMap(*this);
  1834     } 
  1835 
  1836 
  1837     
  1838   };
  1839 
  1840   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1841   /// item in the graph.
  1842   ///
  1843   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1844   /// descriptor (id) for each item of the same type (e.g. node) in the
  1845   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1846   /// different ids <li>\b continuous: the range of the ids is the set of
  1847   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1848   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1849   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1850   /// with its member class \c InverseMap.
  1851   ///
  1852   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1853   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1854   /// UEdge.
  1855   template <typename _Graph, typename _Item>
  1856   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
  1857 
  1858     typedef _Item Item;
  1859     typedef DefaultMap<_Graph, _Item, int> Map;
  1860 
  1861   public:
  1862     /// The graph class of DescriptorMap.
  1863     typedef _Graph Graph;
  1864 
  1865     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1866     typedef typename Map::Key Key;
  1867     /// The value type of DescriptorMap.
  1868     typedef typename Map::Value Value;
  1869 
  1870     /// \brief Constructor.
  1871     ///
  1872     /// Constructor for descriptor map.
  1873     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
  1874       Item it;
  1875       const typename Map::Notifier* nf = Map::notifier(); 
  1876       for (nf->first(it); it != INVALID; nf->next(it)) {
  1877 	Map::set(it, invMap.size());
  1878 	invMap.push_back(it);	
  1879       }      
  1880     }
  1881 
  1882   protected:
  1883 
  1884     /// \brief Add a new key to the map.
  1885     ///
  1886     /// Add a new key to the map. It is called by the
  1887     /// \c AlterationNotifier.
  1888     virtual void add(const Item& item) {
  1889       Map::add(item);
  1890       Map::set(item, invMap.size());
  1891       invMap.push_back(item);
  1892     }
  1893 
  1894     /// \brief Add more new keys to the map.
  1895     ///
  1896     /// Add more new keys to the map. It is called by the
  1897     /// \c AlterationNotifier.
  1898     virtual void add(const std::vector<Item>& items) {
  1899       Map::add(items);
  1900       for (int i = 0; i < int(items.size()); ++i) {
  1901 	Map::set(items[i], invMap.size());
  1902 	invMap.push_back(items[i]);
  1903       }
  1904     }
  1905 
  1906     /// \brief Erase the key from the map.
  1907     ///
  1908     /// Erase the key from the map. It is called by the
  1909     /// \c AlterationNotifier.
  1910     virtual void erase(const Item& item) {
  1911       Map::set(invMap.back(), Map::operator[](item));
  1912       invMap[Map::operator[](item)] = invMap.back();
  1913       invMap.pop_back();
  1914       Map::erase(item);
  1915     }
  1916 
  1917     /// \brief Erase more keys from the map.
  1918     ///
  1919     /// Erase more keys from the map. It is called by the
  1920     /// \c AlterationNotifier.
  1921     virtual void erase(const std::vector<Item>& items) {
  1922       for (int i = 0; i < int(items.size()); ++i) {
  1923 	Map::set(invMap.back(), Map::operator[](items[i]));
  1924 	invMap[Map::operator[](items[i])] = invMap.back();
  1925 	invMap.pop_back();
  1926       }
  1927       Map::erase(items);
  1928     }
  1929 
  1930     /// \brief Build the unique map.
  1931     ///
  1932     /// Build the unique map. It is called by the
  1933     /// \c AlterationNotifier.
  1934     virtual void build() {
  1935       Map::build();
  1936       Item it;
  1937       const typename Map::Notifier* nf = Map::notifier(); 
  1938       for (nf->first(it); it != INVALID; nf->next(it)) {
  1939 	Map::set(it, invMap.size());
  1940 	invMap.push_back(it);	
  1941       }      
  1942     }
  1943     
  1944     /// \brief Clear the keys from the map.
  1945     ///
  1946     /// Clear the keys from the map. It is called by the
  1947     /// \c AlterationNotifier.
  1948     virtual void clear() {
  1949       invMap.clear();
  1950       Map::clear();
  1951     }
  1952 
  1953   public:
  1954 
  1955     /// \brief Returns the maximal value plus one.
  1956     ///
  1957     /// Returns the maximal value plus one in the map.
  1958     unsigned int size() const {
  1959       return invMap.size();
  1960     }
  1961 
  1962     /// \brief Swaps the position of the two items in the map.
  1963     ///
  1964     /// Swaps the position of the two items in the map.
  1965     void swap(const Item& p, const Item& q) {
  1966       int pi = Map::operator[](p);
  1967       int qi = Map::operator[](q);
  1968       Map::set(p, qi);
  1969       invMap[qi] = p;
  1970       Map::set(q, pi);
  1971       invMap[pi] = q;
  1972     }
  1973 
  1974     /// \brief Gives back the \e descriptor of the item.
  1975     ///
  1976     /// Gives back the mutable and unique \e descriptor of the map.
  1977     int operator[](const Item& item) const {
  1978       return Map::operator[](item);
  1979     }
  1980 
  1981     /// \brief Gives back the item by its descriptor.
  1982     ///
  1983     /// Gives back th item by its descriptor.
  1984     Item operator()(int id) const {
  1985       return invMap[id];
  1986     }
  1987     
  1988   private:
  1989 
  1990     typedef std::vector<Item> Container;
  1991     Container invMap;
  1992 
  1993   public:
  1994     /// \brief The inverse map type of DescriptorMap.
  1995     ///
  1996     /// The inverse map type of DescriptorMap.
  1997     class InverseMap {
  1998     public:
  1999       /// \brief Constructor of the InverseMap.
  2000       ///
  2001       /// Constructor of the InverseMap.
  2002       explicit InverseMap(const DescriptorMap& _inverted) 
  2003 	: inverted(_inverted) {}
  2004 
  2005 
  2006       /// The value type of the InverseMap.
  2007       typedef typename DescriptorMap::Key Value;
  2008       /// The key type of the InverseMap.
  2009       typedef typename DescriptorMap::Value Key; 
  2010 
  2011       /// \brief Subscript operator. 
  2012       ///
  2013       /// Subscript operator. It gives back the item 
  2014       /// that the descriptor belongs to currently.
  2015       Value operator[](const Key& key) const {
  2016 	return inverted(key);
  2017       }
  2018 
  2019       /// \brief Size of the map.
  2020       ///
  2021       /// Returns the size of the map.
  2022       unsigned int size() const {
  2023 	return inverted.size();
  2024       }
  2025       
  2026     private:
  2027       const DescriptorMap& inverted;
  2028     };
  2029 
  2030     /// \brief Gives back the inverse of the map.
  2031     ///
  2032     /// Gives back the inverse of the map.
  2033     const InverseMap inverse() const {
  2034       return InverseMap(*this);
  2035     }
  2036   };
  2037 
  2038   /// \brief Returns the source of the given edge.
  2039   ///
  2040   /// The SourceMap gives back the source Node of the given edge. 
  2041   /// \see TargetMap
  2042   /// \author Balazs Dezso
  2043   template <typename Graph>
  2044   class SourceMap {
  2045   public:
  2046 
  2047     typedef typename Graph::Node Value;
  2048     typedef typename Graph::Edge Key;
  2049 
  2050     /// \brief Constructor
  2051     ///
  2052     /// Constructor
  2053     /// \param _graph The graph that the map belongs to.
  2054     explicit SourceMap(const Graph& _graph) : graph(_graph) {}
  2055 
  2056     /// \brief The subscript operator.
  2057     ///
  2058     /// The subscript operator.
  2059     /// \param edge The edge 
  2060     /// \return The source of the edge 
  2061     Value operator[](const Key& edge) const {
  2062       return graph.source(edge);
  2063     }
  2064 
  2065   private:
  2066     const Graph& graph;
  2067   };
  2068 
  2069   /// \brief Returns a \ref SourceMap class.
  2070   ///
  2071   /// This function just returns an \ref SourceMap class.
  2072   /// \relates SourceMap
  2073   template <typename Graph>
  2074   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  2075     return SourceMap<Graph>(graph);
  2076   } 
  2077 
  2078   /// \brief Returns the target of the given edge.
  2079   ///
  2080   /// The TargetMap gives back the target Node of the given edge. 
  2081   /// \see SourceMap
  2082   /// \author Balazs Dezso
  2083   template <typename Graph>
  2084   class TargetMap {
  2085   public:
  2086 
  2087     typedef typename Graph::Node Value;
  2088     typedef typename Graph::Edge Key;
  2089 
  2090     /// \brief Constructor
  2091     ///
  2092     /// Constructor
  2093     /// \param _graph The graph that the map belongs to.
  2094     explicit TargetMap(const Graph& _graph) : graph(_graph) {}
  2095 
  2096     /// \brief The subscript operator.
  2097     ///
  2098     /// The subscript operator.
  2099     /// \param e The edge 
  2100     /// \return The target of the edge 
  2101     Value operator[](const Key& e) const {
  2102       return graph.target(e);
  2103     }
  2104 
  2105   private:
  2106     const Graph& graph;
  2107   };
  2108 
  2109   /// \brief Returns a \ref TargetMap class.
  2110   ///
  2111   /// This function just returns a \ref TargetMap class.
  2112   /// \relates TargetMap
  2113   template <typename Graph>
  2114   inline TargetMap<Graph> targetMap(const Graph& graph) {
  2115     return TargetMap<Graph>(graph);
  2116   }
  2117 
  2118   /// \brief Returns the "forward" directed edge view of an undirected edge.
  2119   ///
  2120   /// Returns the "forward" directed edge view of an undirected edge.
  2121   /// \see BackwardMap
  2122   /// \author Balazs Dezso
  2123   template <typename Graph>
  2124   class ForwardMap {
  2125   public:
  2126 
  2127     typedef typename Graph::Edge Value;
  2128     typedef typename Graph::UEdge Key;
  2129 
  2130     /// \brief Constructor
  2131     ///
  2132     /// Constructor
  2133     /// \param _graph The graph that the map belongs to.
  2134     explicit ForwardMap(const Graph& _graph) : graph(_graph) {}
  2135 
  2136     /// \brief The subscript operator.
  2137     ///
  2138     /// The subscript operator.
  2139     /// \param key An undirected edge 
  2140     /// \return The "forward" directed edge view of undirected edge 
  2141     Value operator[](const Key& key) const {
  2142       return graph.direct(key, true);
  2143     }
  2144 
  2145   private:
  2146     const Graph& graph;
  2147   };
  2148 
  2149   /// \brief Returns a \ref ForwardMap class.
  2150   ///
  2151   /// This function just returns an \ref ForwardMap class.
  2152   /// \relates ForwardMap
  2153   template <typename Graph>
  2154   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  2155     return ForwardMap<Graph>(graph);
  2156   }
  2157 
  2158   /// \brief Returns the "backward" directed edge view of an undirected edge.
  2159   ///
  2160   /// Returns the "backward" directed edge view of an undirected edge.
  2161   /// \see ForwardMap
  2162   /// \author Balazs Dezso
  2163   template <typename Graph>
  2164   class BackwardMap {
  2165   public:
  2166 
  2167     typedef typename Graph::Edge Value;
  2168     typedef typename Graph::UEdge Key;
  2169 
  2170     /// \brief Constructor
  2171     ///
  2172     /// Constructor
  2173     /// \param _graph The graph that the map belongs to.
  2174     explicit BackwardMap(const Graph& _graph) : graph(_graph) {}
  2175 
  2176     /// \brief The subscript operator.
  2177     ///
  2178     /// The subscript operator.
  2179     /// \param key An undirected edge 
  2180     /// \return The "backward" directed edge view of undirected edge 
  2181     Value operator[](const Key& key) const {
  2182       return graph.direct(key, false);
  2183     }
  2184 
  2185   private:
  2186     const Graph& graph;
  2187   };
  2188 
  2189   /// \brief Returns a \ref BackwardMap class
  2190 
  2191   /// This function just returns a \ref BackwardMap class.
  2192   /// \relates BackwardMap
  2193   template <typename Graph>
  2194   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  2195     return BackwardMap<Graph>(graph);
  2196   }
  2197 
  2198   /// \brief Potential difference map
  2199   ///
  2200   /// If there is an potential map on the nodes then we
  2201   /// can get an edge map as we get the substraction of the
  2202   /// values of the target and source.
  2203   template <typename Graph, typename NodeMap>
  2204   class PotentialDifferenceMap {
  2205   public:
  2206     typedef typename Graph::Edge Key;
  2207     typedef typename NodeMap::Value Value;
  2208 
  2209     /// \brief Constructor
  2210     ///
  2211     /// Contructor of the map
  2212     explicit PotentialDifferenceMap(const Graph& _graph, 
  2213                                     const NodeMap& _potential) 
  2214       : graph(_graph), potential(_potential) {}
  2215 
  2216     /// \brief Const subscription operator
  2217     ///
  2218     /// Const subscription operator
  2219     Value operator[](const Key& edge) const {
  2220       return potential[graph.target(edge)] - potential[graph.source(edge)];
  2221     }
  2222 
  2223   private:
  2224     const Graph& graph;
  2225     const NodeMap& potential;
  2226   };
  2227 
  2228   /// \brief Returns a PotentialDifferenceMap.
  2229   ///
  2230   /// This function just returns a PotentialDifferenceMap.
  2231   /// \relates PotentialDifferenceMap
  2232   template <typename Graph, typename NodeMap>
  2233   PotentialDifferenceMap<Graph, NodeMap> 
  2234   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  2235     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  2236   }
  2237 
  2238   /// \brief Map of the node in-degrees.
  2239   ///
  2240   /// This map returns the in-degree of a node. Once it is constructed,
  2241   /// the degrees are stored in a standard NodeMap, so each query is done
  2242   /// in constant time. On the other hand, the values are updated automatically
  2243   /// whenever the graph changes.
  2244   ///
  2245   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2246   /// alternative ways to modify the graph. The correct behavior of InDegMap
  2247   /// is not guarantied if these additional features are used. For example
  2248   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2249   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2250   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2251   /// of \ref ListGraph will \e not update the degree values correctly.
  2252   ///
  2253   /// \sa OutDegMap
  2254 
  2255   template <typename _Graph>
  2256   class InDegMap  
  2257     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2258       ::ItemNotifier::ObserverBase {
  2259 
  2260   public:
  2261     
  2262     typedef _Graph Graph;
  2263     typedef int Value;
  2264     typedef typename Graph::Node Key;
  2265 
  2266     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2267     ::ItemNotifier::ObserverBase Parent;
  2268 
  2269   private:
  2270 
  2271     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2272     public:
  2273 
  2274       typedef DefaultMap<_Graph, Key, int> Parent;
  2275       typedef typename Parent::Graph Graph;
  2276 
  2277       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2278       
  2279       virtual void add(const Key& key) {
  2280 	Parent::add(key);
  2281 	Parent::set(key, 0);
  2282       }
  2283 
  2284       virtual void add(const std::vector<Key>& keys) {
  2285 	Parent::add(keys);
  2286 	for (int i = 0; i < int(keys.size()); ++i) {
  2287 	  Parent::set(keys[i], 0);
  2288 	}
  2289       }
  2290     };
  2291 
  2292   public:
  2293 
  2294     /// \brief Constructor.
  2295     ///
  2296     /// Constructor for creating in-degree map.
  2297     explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2298       Parent::attach(graph.notifier(typename _Graph::Edge()));
  2299       
  2300       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2301 	deg[it] = countInEdges(graph, it);
  2302       }
  2303     }
  2304     
  2305     /// Gives back the in-degree of a Node.
  2306     int operator[](const Key& key) const {
  2307       return deg[key];
  2308     }
  2309 
  2310   protected:
  2311     
  2312     typedef typename Graph::Edge Edge;
  2313 
  2314     virtual void add(const Edge& edge) {
  2315       ++deg[graph.target(edge)];
  2316     }
  2317 
  2318     virtual void add(const std::vector<Edge>& edges) {
  2319       for (int i = 0; i < int(edges.size()); ++i) {
  2320         ++deg[graph.target(edges[i])];
  2321       }
  2322     }
  2323 
  2324     virtual void erase(const Edge& edge) {
  2325       --deg[graph.target(edge)];
  2326     }
  2327 
  2328     virtual void erase(const std::vector<Edge>& edges) {
  2329       for (int i = 0; i < int(edges.size()); ++i) {
  2330         --deg[graph.target(edges[i])];
  2331       }
  2332     }
  2333 
  2334     virtual void build() {
  2335       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2336 	deg[it] = countInEdges(graph, it);
  2337       }      
  2338     }
  2339 
  2340     virtual void clear() {
  2341       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2342 	deg[it] = 0;
  2343       }
  2344     }
  2345   private:
  2346     
  2347     const _Graph& graph;
  2348     AutoNodeMap deg;
  2349   };
  2350 
  2351   /// \brief Map of the node out-degrees.
  2352   ///
  2353   /// This map returns the out-degree of a node. Once it is constructed,
  2354   /// the degrees are stored in a standard NodeMap, so each query is done
  2355   /// in constant time. On the other hand, the values are updated automatically
  2356   /// whenever the graph changes.
  2357   ///
  2358   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2359   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  2360   /// is not guarantied if these additional features are used. For example
  2361   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2362   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2363   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2364   /// of \ref ListGraph will \e not update the degree values correctly.
  2365   ///
  2366   /// \sa InDegMap
  2367 
  2368   template <typename _Graph>
  2369   class OutDegMap  
  2370     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2371       ::ItemNotifier::ObserverBase {
  2372 
  2373   public:
  2374 
  2375     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2376     ::ItemNotifier::ObserverBase Parent;
  2377     
  2378     typedef _Graph Graph;
  2379     typedef int Value;
  2380     typedef typename Graph::Node Key;
  2381 
  2382   private:
  2383 
  2384     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2385     public:
  2386 
  2387       typedef DefaultMap<_Graph, Key, int> Parent;
  2388       typedef typename Parent::Graph Graph;
  2389 
  2390       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2391       
  2392       virtual void add(const Key& key) {
  2393 	Parent::add(key);
  2394 	Parent::set(key, 0);
  2395       }
  2396       virtual void add(const std::vector<Key>& keys) {
  2397 	Parent::add(keys);
  2398 	for (int i = 0; i < int(keys.size()); ++i) {
  2399 	  Parent::set(keys[i], 0);
  2400 	}
  2401       }
  2402     };
  2403 
  2404   public:
  2405 
  2406     /// \brief Constructor.
  2407     ///
  2408     /// Constructor for creating out-degree map.
  2409     explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2410       Parent::attach(graph.notifier(typename _Graph::Edge()));
  2411       
  2412       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2413 	deg[it] = countOutEdges(graph, it);
  2414       }
  2415     }
  2416 
  2417     /// Gives back the out-degree of a Node.
  2418     int operator[](const Key& key) const {
  2419       return deg[key];
  2420     }
  2421 
  2422   protected:
  2423     
  2424     typedef typename Graph::Edge Edge;
  2425 
  2426     virtual void add(const Edge& edge) {
  2427       ++deg[graph.source(edge)];
  2428     }
  2429 
  2430     virtual void add(const std::vector<Edge>& edges) {
  2431       for (int i = 0; i < int(edges.size()); ++i) {
  2432         ++deg[graph.source(edges[i])];
  2433       }
  2434     }
  2435 
  2436     virtual void erase(const Edge& edge) {
  2437       --deg[graph.source(edge)];
  2438     }
  2439 
  2440     virtual void erase(const std::vector<Edge>& edges) {
  2441       for (int i = 0; i < int(edges.size()); ++i) {
  2442         --deg[graph.source(edges[i])];
  2443       }
  2444     }
  2445 
  2446     virtual void build() {
  2447       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2448 	deg[it] = countOutEdges(graph, it);
  2449       }      
  2450     }
  2451 
  2452     virtual void clear() {
  2453       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2454 	deg[it] = 0;
  2455       }
  2456     }
  2457   private:
  2458     
  2459     const _Graph& graph;
  2460     AutoNodeMap deg;
  2461   };
  2462 
  2463 
  2464   ///Fast edge look up between given endpoints.
  2465   
  2466   ///\ingroup gutils
  2467   ///Using this class, you can find an edge in a graph from a given
  2468   ///source to a given target in time <em>O(log d)</em>,
  2469   ///where <em>d</em> is the out-degree of the source node.
  2470   ///
  2471   ///It is not possible to find \e all parallel edges between two nodes.
  2472   ///Use \ref AllEdgeLookUp for this purpose.
  2473   ///
  2474   ///\warning This class is static, so you should refresh() (or at least
  2475   ///refresh(Node)) this data structure
  2476   ///whenever the graph changes. This is a time consuming (superlinearly
  2477   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2478   ///
  2479   ///\param G The type of the underlying graph.
  2480   ///
  2481   ///\sa AllEdgeLookUp  
  2482   template<class G>
  2483   class EdgeLookUp 
  2484   {
  2485   public:
  2486     GRAPH_TYPEDEFS(typename G)
  2487     typedef G Graph;
  2488 
  2489   protected:
  2490     const Graph &_g;
  2491     typename Graph::template NodeMap<Edge> _head;
  2492     typename Graph::template EdgeMap<Edge> _left;
  2493     typename Graph::template EdgeMap<Edge> _right;
  2494     
  2495     class EdgeLess {
  2496       const Graph &g;
  2497     public:
  2498       EdgeLess(const Graph &_g) : g(_g) {}
  2499       bool operator()(Edge a,Edge b) const 
  2500       {
  2501 	return g.target(a)<g.target(b);
  2502       }
  2503     };
  2504     
  2505   public:
  2506     
  2507     ///Constructor
  2508 
  2509     ///Constructor.
  2510     ///
  2511     ///It builds up the search database, which remains valid until the graph
  2512     ///changes.
  2513     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2514     
  2515   private:
  2516     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
  2517     {
  2518       int m=(a+b)/2;
  2519       Edge me=v[m];
  2520       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
  2521       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
  2522       return me;
  2523     }
  2524   public:
  2525     ///Refresh the data structure at a node.
  2526 
  2527     ///Build up the search database of node \c n.
  2528     ///
  2529     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2530     ///the number of the outgoing edges of \c n.
  2531     void refresh(Node n) 
  2532     {
  2533       std::vector<Edge> v;
  2534       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2535       if(v.size()) {
  2536 	std::sort(v.begin(),v.end(),EdgeLess(_g));
  2537 	_head[n]=refresh_rec(v,0,v.size()-1);
  2538       }
  2539       else _head[n]=INVALID;
  2540     }
  2541     ///Refresh the full data structure.
  2542 
  2543     ///Build up the full search database. In fact, it simply calls
  2544     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2545     ///
  2546     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2547     ///the number of the edges of \c n and <em>D</em> is the maximum
  2548     ///out-degree of the graph.
  2549 
  2550     void refresh() 
  2551     {
  2552       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2553     }
  2554     
  2555     ///Find an edge between two nodes.
  2556     
  2557     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
  2558     /// <em>d</em> is the number of outgoing edges of \c s.
  2559     ///\param s The source node
  2560     ///\param t The target node
  2561     ///\return An edge from \c s to \c t if there exists,
  2562     ///\ref INVALID otherwise.
  2563     ///
  2564     ///\warning If you change the graph, refresh() must be called before using
  2565     ///this operator. If you change the outgoing edges of
  2566     ///a single node \c n, then
  2567     ///\ref refresh(Node) "refresh(n)" is enough.
  2568     ///
  2569     Edge operator()(Node s, Node t) const
  2570     {
  2571       Edge e;
  2572       for(e=_head[s];
  2573 	  e!=INVALID&&_g.target(e)!=t;
  2574 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  2575       return e;
  2576     }
  2577 
  2578   };
  2579 
  2580   ///Fast look up of all edges between given endpoints.
  2581   
  2582   ///\ingroup gutils
  2583   ///This class is the same as \ref EdgeLookUp, with the addition
  2584   ///that it makes it possible to find all edges between given endpoints.
  2585   ///
  2586   ///\warning This class is static, so you should refresh() (or at least
  2587   ///refresh(Node)) this data structure
  2588   ///whenever the graph changes. This is a time consuming (superlinearly
  2589   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2590   ///
  2591   ///\param G The type of the underlying graph.
  2592   ///
  2593   ///\sa EdgeLookUp  
  2594   template<class G>
  2595   class AllEdgeLookUp : public EdgeLookUp<G>
  2596   {
  2597     using EdgeLookUp<G>::_g;
  2598     using EdgeLookUp<G>::_right;
  2599     using EdgeLookUp<G>::_left;
  2600     using EdgeLookUp<G>::_head;
  2601 
  2602     GRAPH_TYPEDEFS(typename G)
  2603     typedef G Graph;
  2604     
  2605     typename Graph::template EdgeMap<Edge> _next;
  2606     
  2607     Edge refreshNext(Edge head,Edge next=INVALID)
  2608     {
  2609       if(head==INVALID) return next;
  2610       else {
  2611 	next=refreshNext(_right[head],next);
  2612 // 	_next[head]=next;
  2613 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2614 	  ? next : INVALID;
  2615 	return refreshNext(_left[head],head);
  2616       }
  2617     }
  2618     
  2619     void refreshNext()
  2620     {
  2621       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2622     }
  2623     
  2624   public:
  2625     ///Constructor
  2626 
  2627     ///Constructor.
  2628     ///
  2629     ///It builds up the search database, which remains valid until the graph
  2630     ///changes.
  2631     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
  2632 
  2633     ///Refresh the data structure at a node.
  2634 
  2635     ///Build up the search database of node \c n.
  2636     ///
  2637     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2638     ///the number of the outgoing edges of \c n.
  2639     
  2640     void refresh(Node n) 
  2641     {
  2642       EdgeLookUp<G>::refresh(n);
  2643       refreshNext(_head[n]);
  2644     }
  2645     
  2646     ///Refresh the full data structure.
  2647 
  2648     ///Build up the full search database. In fact, it simply calls
  2649     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2650     ///
  2651     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2652     ///the number of the edges of \c n and <em>D</em> is the maximum
  2653     ///out-degree of the graph.
  2654 
  2655     void refresh() 
  2656     {
  2657       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2658     }
  2659     
  2660     ///Find an edge between two nodes.
  2661     
  2662     ///Find an edge between two nodes.
  2663     ///\param s The source node
  2664     ///\param t The target node
  2665     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
  2666     ///not given, the operator finds the first appropriate edge.
  2667     ///\return An edge from \c s to \c t after \c prev or
  2668     ///\ref INVALID if there is no more.
  2669     ///
  2670     ///For example, you can count the number of edges from \c u to \c v in the
  2671     ///following way.
  2672     ///\code
  2673     ///AllEdgeLookUp<ListGraph> ae(g);
  2674     ///...
  2675     ///int n=0;
  2676     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2677     ///\endcode
  2678     ///
  2679     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
  2680     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
  2681     ///consecutive edges are found in constant time.
  2682     ///
  2683     ///\warning If you change the graph, refresh() must be called before using
  2684     ///this operator. If you change the outgoing edges of
  2685     ///a single node \c n, then
  2686     ///\ref refresh(Node) "refresh(n)" is enough.
  2687     ///
  2688 #ifdef DOXYGEN
  2689     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
  2690 #else
  2691     using EdgeLookUp<G>::operator() ;
  2692     Edge operator()(Node s, Node t, Edge prev) const
  2693     {
  2694       return prev==INVALID?(*this)(s,t):_next[prev];
  2695     }
  2696 #endif
  2697       
  2698   };
  2699 
  2700   /// @}
  2701 
  2702 } //END OF NAMESPACE LEMON
  2703 
  2704 #endif