lemon/bfs.h
author ladanyi
Sat, 25 Aug 2007 10:12:03 +0000
changeset 2465 df09310da558
parent 2438 718479989797
child 2476 059dcdda37c5
permissions -rw-r--r--
Consider the CPXMIP_OPTIMAL_TOL status as OPTIMAL too.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BFS_H
    20 #define LEMON_BFS_H
    21 
    22 ///\ingroup search
    23 ///\file
    24 ///\brief Bfs algorithm.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/bits/path_dump.h>
    29 #include <lemon/bits/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 
    33 namespace lemon {
    34 
    35 
    36   
    37   ///Default traits class of Bfs class.
    38 
    39   ///Default traits class of Bfs class.
    40   ///\param GR Graph type.
    41   template<class GR>
    42   struct BfsDefaultTraits
    43   {
    44     ///The graph type the algorithm runs on. 
    45     typedef GR Graph;
    46     ///\brief The type of the map that stores the last
    47     ///edges of the shortest paths.
    48     /// 
    49     ///The type of the map that stores the last
    50     ///edges of the shortest paths.
    51     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    52     ///
    53     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    54     ///Instantiates a PredMap.
    55  
    56     ///This function instantiates a \ref PredMap. 
    57     ///\param G is the graph, to which we would like to define the PredMap.
    58     ///\todo The graph alone may be insufficient to initialize
    59     static PredMap *createPredMap(const GR &G) 
    60     {
    61       return new PredMap(G);
    62     }
    63     ///The type of the map that indicates which nodes are processed.
    64  
    65     ///The type of the map that indicates which nodes are processed.
    66     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    67     ///\todo named parameter to set this type, function to read and write.
    68     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
    69     ///Instantiates a ProcessedMap.
    70  
    71     ///This function instantiates a \ref ProcessedMap. 
    72     ///\param g is the graph, to which
    73     ///we would like to define the \ref ProcessedMap
    74 #ifdef DOXYGEN
    75     static ProcessedMap *createProcessedMap(const GR &g)
    76 #else
    77     static ProcessedMap *createProcessedMap(const GR &)
    78 #endif
    79     {
    80       return new ProcessedMap();
    81     }
    82     ///The type of the map that indicates which nodes are reached.
    83  
    84     ///The type of the map that indicates which nodes are reached.
    85     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    86     ///\todo named parameter to set this type, function to read and write.
    87     typedef typename Graph::template NodeMap<bool> ReachedMap;
    88     ///Instantiates a ReachedMap.
    89  
    90     ///This function instantiates a \ref ReachedMap. 
    91     ///\param G is the graph, to which
    92     ///we would like to define the \ref ReachedMap.
    93     static ReachedMap *createReachedMap(const GR &G)
    94     {
    95       return new ReachedMap(G);
    96     }
    97     ///The type of the map that stores the dists of the nodes.
    98  
    99     ///The type of the map that stores the dists of the nodes.
   100     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   101     ///
   102     typedef typename Graph::template NodeMap<int> DistMap;
   103     ///Instantiates a DistMap.
   104  
   105     ///This function instantiates a \ref DistMap. 
   106     ///\param G is the graph, to which we would like to define the \ref DistMap
   107     static DistMap *createDistMap(const GR &G)
   108     {
   109       return new DistMap(G);
   110     }
   111   };
   112   
   113   ///%BFS algorithm class.
   114   
   115   ///\ingroup search
   116   ///This class provides an efficient implementation of the %BFS algorithm.
   117   ///
   118   ///\param GR The graph type the algorithm runs on. The default value is
   119   ///\ref ListGraph. The value of GR is not used directly by Bfs, it
   120   ///is only passed to \ref BfsDefaultTraits.
   121   ///\param TR Traits class to set various data types used by the algorithm.
   122   ///The default traits class is
   123   ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
   124   ///See \ref BfsDefaultTraits for the documentation of
   125   ///a Bfs traits class.
   126   ///
   127   ///\author Alpar Juttner
   128 
   129 #ifdef DOXYGEN
   130   template <typename GR,
   131 	    typename TR>
   132 #else
   133   template <typename GR=ListGraph,
   134 	    typename TR=BfsDefaultTraits<GR> >
   135 #endif
   136   class Bfs {
   137   public:
   138     /**
   139      * \brief \ref Exception for uninitialized parameters.
   140      *
   141      * This error represents problems in the initialization
   142      * of the parameters of the algorithms.
   143      */
   144     class UninitializedParameter : public lemon::UninitializedParameter {
   145     public:
   146       virtual const char* what() const throw() {
   147 	return "lemon::Bfs::UninitializedParameter";
   148       }
   149     };
   150 
   151     typedef TR Traits;
   152     ///The type of the underlying graph.
   153     typedef typename TR::Graph Graph;
   154     ///\e
   155     typedef typename Graph::Node Node;
   156     ///\e
   157     typedef typename Graph::NodeIt NodeIt;
   158     ///\e
   159     typedef typename Graph::Edge Edge;
   160     ///\e
   161     typedef typename Graph::OutEdgeIt OutEdgeIt;
   162     
   163     ///\brief The type of the map that stores the last
   164     ///edges of the shortest paths.
   165     typedef typename TR::PredMap PredMap;
   166     ///The type of the map indicating which nodes are reached.
   167     typedef typename TR::ReachedMap ReachedMap;
   168     ///The type of the map indicating which nodes are processed.
   169     typedef typename TR::ProcessedMap ProcessedMap;
   170     ///The type of the map that stores the dists of the nodes.
   171     typedef typename TR::DistMap DistMap;
   172   private:
   173     /// Pointer to the underlying graph.
   174     const Graph *G;
   175     ///Pointer to the map of predecessors edges.
   176     PredMap *_pred;
   177     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   178     bool local_pred;
   179     ///Pointer to the map of distances.
   180     DistMap *_dist;
   181     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   182     bool local_dist;
   183     ///Pointer to the map of reached status of the nodes.
   184     ReachedMap *_reached;
   185     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   186     bool local_reached;
   187     ///Pointer to the map of processed status of the nodes.
   188     ProcessedMap *_processed;
   189     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   190     bool local_processed;
   191 
   192     std::vector<typename Graph::Node> _queue;
   193     int _queue_head,_queue_tail,_queue_next_dist;
   194     int _curr_dist;
   195 
   196     ///Creates the maps if necessary.
   197     
   198     ///\todo Better memory allocation (instead of new).
   199     void create_maps() 
   200     {
   201       if(!_pred) {
   202 	local_pred = true;
   203 	_pred = Traits::createPredMap(*G);
   204       }
   205       if(!_dist) {
   206 	local_dist = true;
   207 	_dist = Traits::createDistMap(*G);
   208       }
   209       if(!_reached) {
   210 	local_reached = true;
   211 	_reached = Traits::createReachedMap(*G);
   212       }
   213       if(!_processed) {
   214 	local_processed = true;
   215 	_processed = Traits::createProcessedMap(*G);
   216       }
   217     }
   218 
   219   protected:
   220     
   221     Bfs() {}
   222     
   223   public:
   224  
   225     typedef Bfs Create;
   226 
   227     ///\name Named template parameters
   228 
   229     ///@{
   230 
   231     template <class T>
   232     struct DefPredMapTraits : public Traits {
   233       typedef T PredMap;
   234       static PredMap *createPredMap(const Graph &) 
   235       {
   236 	throw UninitializedParameter();
   237       }
   238     };
   239     ///\ref named-templ-param "Named parameter" for setting PredMap type
   240 
   241     ///\ref named-templ-param "Named parameter" for setting PredMap type
   242     ///
   243     template <class T>
   244     struct DefPredMap : public Bfs< Graph, DefPredMapTraits<T> > { 
   245       typedef Bfs< Graph, DefPredMapTraits<T> > Create;
   246     };
   247     
   248     template <class T>
   249     struct DefDistMapTraits : public Traits {
   250       typedef T DistMap;
   251       static DistMap *createDistMap(const Graph &) 
   252       {
   253 	throw UninitializedParameter();
   254       }
   255     };
   256     ///\ref named-templ-param "Named parameter" for setting DistMap type
   257 
   258     ///\ref named-templ-param "Named parameter" for setting DistMap type
   259     ///
   260     template <class T>
   261     struct DefDistMap : public Bfs< Graph, DefDistMapTraits<T> > { 
   262       typedef Bfs< Graph, DefDistMapTraits<T> > Create;
   263     };
   264     
   265     template <class T>
   266     struct DefReachedMapTraits : public Traits {
   267       typedef T ReachedMap;
   268       static ReachedMap *createReachedMap(const Graph &) 
   269       {
   270 	throw UninitializedParameter();
   271       }
   272     };
   273     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   274 
   275     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   276     ///
   277     template <class T>
   278     struct DefReachedMap : public Bfs< Graph, DefReachedMapTraits<T> > { 
   279       typedef Bfs< Graph, DefReachedMapTraits<T> > Create;
   280     };
   281     
   282     template <class T>
   283     struct DefProcessedMapTraits : public Traits {
   284       typedef T ProcessedMap;
   285       static ProcessedMap *createProcessedMap(const Graph &) 
   286       {
   287 	throw UninitializedParameter();
   288       }
   289     };
   290     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   291 
   292     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   293     ///
   294     template <class T>
   295     struct DefProcessedMap : public Bfs< Graph, DefProcessedMapTraits<T> > {
   296       typedef Bfs< Graph, DefProcessedMapTraits<T> > Create;
   297     };
   298     
   299     struct DefGraphProcessedMapTraits : public Traits {
   300       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   301       static ProcessedMap *createProcessedMap(const Graph &G) 
   302       {
   303 	return new ProcessedMap(G);
   304       }
   305     };
   306     ///\brief \ref named-templ-param "Named parameter"
   307     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   308     ///
   309     ///\ref named-templ-param "Named parameter"
   310     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   311     ///If you don't set it explicitly, it will be automatically allocated.
   312     template <class T>
   313     struct DefProcessedMapToBeDefaultMap :
   314       public Bfs< Graph, DefGraphProcessedMapTraits> { 
   315       typedef Bfs< Graph, DefGraphProcessedMapTraits> Create;
   316     };
   317     
   318     ///@}
   319 
   320   public:      
   321     
   322     ///Constructor.
   323     
   324     ///\param _G the graph the algorithm will run on.
   325     ///
   326     Bfs(const Graph& _G) :
   327       G(&_G),
   328       _pred(NULL), local_pred(false),
   329       _dist(NULL), local_dist(false),
   330       _reached(NULL), local_reached(false),
   331       _processed(NULL), local_processed(false)
   332     { }
   333     
   334     ///Destructor.
   335     ~Bfs() 
   336     {
   337       if(local_pred) delete _pred;
   338       if(local_dist) delete _dist;
   339       if(local_reached) delete _reached;
   340       if(local_processed) delete _processed;
   341     }
   342 
   343     ///Sets the map storing the predecessor edges.
   344 
   345     ///Sets the map storing the predecessor edges.
   346     ///If you don't use this function before calling \ref run(),
   347     ///it will allocate one. The destructor deallocates this
   348     ///automatically allocated map, of course.
   349     ///\return <tt> (*this) </tt>
   350     Bfs &predMap(PredMap &m) 
   351     {
   352       if(local_pred) {
   353 	delete _pred;
   354 	local_pred=false;
   355       }
   356       _pred = &m;
   357       return *this;
   358     }
   359 
   360     ///Sets the map indicating the reached nodes.
   361 
   362     ///Sets the map indicating the reached nodes.
   363     ///If you don't use this function before calling \ref run(),
   364     ///it will allocate one. The destructor deallocates this
   365     ///automatically allocated map, of course.
   366     ///\return <tt> (*this) </tt>
   367     Bfs &reachedMap(ReachedMap &m) 
   368     {
   369       if(local_reached) {
   370 	delete _reached;
   371 	local_reached=false;
   372       }
   373       _reached = &m;
   374       return *this;
   375     }
   376 
   377     ///Sets the map indicating the processed nodes.
   378 
   379     ///Sets the map indicating the processed nodes.
   380     ///If you don't use this function before calling \ref run(),
   381     ///it will allocate one. The destructor deallocates this
   382     ///automatically allocated map, of course.
   383     ///\return <tt> (*this) </tt>
   384     Bfs &processedMap(ProcessedMap &m) 
   385     {
   386       if(local_processed) {
   387 	delete _processed;
   388 	local_processed=false;
   389       }
   390       _processed = &m;
   391       return *this;
   392     }
   393 
   394     ///Sets the map storing the distances calculated by the algorithm.
   395 
   396     ///Sets the map storing the distances calculated by the algorithm.
   397     ///If you don't use this function before calling \ref run(),
   398     ///it will allocate one. The destructor deallocates this
   399     ///automatically allocated map, of course.
   400     ///\return <tt> (*this) </tt>
   401     Bfs &distMap(DistMap &m) 
   402     {
   403       if(local_dist) {
   404 	delete _dist;
   405 	local_dist=false;
   406       }
   407       _dist = &m;
   408       return *this;
   409     }
   410 
   411   public:
   412     ///\name Execution control
   413     ///The simplest way to execute the algorithm is to use
   414     ///one of the member functions called \c run(...).
   415     ///\n
   416     ///If you need more control on the execution,
   417     ///first you must call \ref init(), then you can add several source nodes
   418     ///with \ref addSource().
   419     ///Finally \ref start() will perform the actual path
   420     ///computation.
   421 
   422     ///@{
   423 
   424     ///Initializes the internal data structures.
   425 
   426     ///Initializes the internal data structures.
   427     ///
   428     void init()
   429     {
   430       create_maps();
   431       _queue.resize(countNodes(*G));
   432       _queue_head=_queue_tail=0;
   433       _curr_dist=1;
   434       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   435 	_pred->set(u,INVALID);
   436 	_reached->set(u,false);
   437 	_processed->set(u,false);
   438       }
   439     }
   440     
   441     ///Adds a new source node.
   442 
   443     ///Adds a new source node to the set of nodes to be processed.
   444     ///
   445     void addSource(Node s)
   446     {
   447       if(!(*_reached)[s])
   448 	{
   449 	  _reached->set(s,true);
   450 	  _pred->set(s,INVALID);
   451 	  _dist->set(s,0);
   452 	  _queue[_queue_head++]=s;
   453 	  _queue_next_dist=_queue_head;
   454 	}
   455     }
   456     
   457     ///Processes the next node.
   458 
   459     ///Processes the next node.
   460     ///
   461     ///\return The processed node.
   462     ///
   463     ///\warning The queue must not be empty!
   464     Node processNextNode()
   465     {
   466       if(_queue_tail==_queue_next_dist) {
   467 	_curr_dist++;
   468 	_queue_next_dist=_queue_head;
   469       }
   470       Node n=_queue[_queue_tail++];
   471       _processed->set(n,true);
   472       Node m;
   473       for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   474 	if(!(*_reached)[m=G->target(e)]) {
   475 	  _queue[_queue_head++]=m;
   476 	  _reached->set(m,true);
   477 	  _pred->set(m,e);
   478 	  _dist->set(m,_curr_dist);
   479 	}
   480       return n;
   481     }
   482 
   483     ///Processes the next node.
   484 
   485     ///Processes the next node. And checks that the given target node
   486     ///is reached. If the target node is reachable from the processed
   487     ///node then the reached parameter will be set true. The reached
   488     ///parameter should be initially false.
   489     ///
   490     ///\param target The target node.
   491     ///\retval reach Indicates that the target node is reached.
   492     ///\return The processed node.
   493     ///
   494     ///\warning The queue must not be empty!
   495     Node processNextNode(Node target, bool& reach)
   496     {
   497       if(_queue_tail==_queue_next_dist) {
   498 	_curr_dist++;
   499 	_queue_next_dist=_queue_head;
   500       }
   501       Node n=_queue[_queue_tail++];
   502       _processed->set(n,true);
   503       Node m;
   504       for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   505 	if(!(*_reached)[m=G->target(e)]) {
   506 	  _queue[_queue_head++]=m;
   507 	  _reached->set(m,true);
   508 	  _pred->set(m,e);
   509 	  _dist->set(m,_curr_dist);
   510           reach = reach || (target == m);
   511 	}
   512       return n;
   513     }
   514 
   515     ///Processes the next node.
   516 
   517     ///Processes the next node. And checks that at least one of
   518     ///reached node has true value in the \c nm node map. If one node
   519     ///with true value is reachable from the processed node then the
   520     ///rnode parameter will be set to the first of such nodes.
   521     ///
   522     ///\param nm The node map of possible targets.
   523     ///\retval rnode The reached target node.
   524     ///\return The processed node.
   525     ///
   526     ///\warning The queue must not be empty!
   527     template<class NM>
   528     Node processNextNode(const NM& nm, Node& rnode)
   529     {
   530       if(_queue_tail==_queue_next_dist) {
   531 	_curr_dist++;
   532 	_queue_next_dist=_queue_head;
   533       }
   534       Node n=_queue[_queue_tail++];
   535       _processed->set(n,true);
   536       Node m;
   537       for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   538 	if(!(*_reached)[m=G->target(e)]) {
   539 	  _queue[_queue_head++]=m;
   540 	  _reached->set(m,true);
   541 	  _pred->set(m,e);
   542 	  _dist->set(m,_curr_dist);
   543 	  if (nm[m] && rnode == INVALID) rnode = m;
   544 	}
   545       return n;
   546     }
   547       
   548     ///Next node to be processed.
   549 
   550     ///Next node to be processed.
   551     ///
   552     ///\return The next node to be processed or INVALID if the queue is
   553     /// empty.
   554     Node nextNode()
   555     { 
   556       return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
   557     }
   558  
   559     ///\brief Returns \c false if there are nodes
   560     ///to be processed in the queue
   561     ///
   562     ///Returns \c false if there are nodes
   563     ///to be processed in the queue
   564     bool emptyQueue() { return _queue_tail==_queue_head; }
   565     ///Returns the number of the nodes to be processed.
   566     
   567     ///Returns the number of the nodes to be processed in the queue.
   568     int queueSize() { return _queue_head-_queue_tail; }
   569     
   570     ///Executes the algorithm.
   571 
   572     ///Executes the algorithm.
   573     ///
   574     ///\pre init() must be called and at least one node should be added
   575     ///with addSource() before using this function.
   576     ///
   577     ///This method runs the %BFS algorithm from the root node(s)
   578     ///in order to
   579     ///compute the
   580     ///shortest path to each node. The algorithm computes
   581     ///- The shortest path tree.
   582     ///- The distance of each node from the root(s).
   583     void start()
   584     {
   585       while ( !emptyQueue() ) processNextNode();
   586     }
   587     
   588     ///Executes the algorithm until \c dest is reached.
   589 
   590     ///Executes the algorithm until \c dest is reached.
   591     ///
   592     ///\pre init() must be called and at least one node should be added
   593     ///with addSource() before using this function.
   594     ///
   595     ///This method runs the %BFS algorithm from the root node(s)
   596     ///in order to
   597     ///compute the
   598     ///shortest path to \c dest. The algorithm computes
   599     ///- The shortest path to \c  dest.
   600     ///- The distance of \c dest from the root(s).
   601     void start(Node dest)
   602     {
   603       bool reach = false;
   604       while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
   605     }
   606     
   607     ///Executes the algorithm until a condition is met.
   608 
   609     ///Executes the algorithm until a condition is met.
   610     ///
   611     ///\pre init() must be called and at least one node should be added
   612     ///with addSource() before using this function.
   613     ///
   614     ///\param nm must be a bool (or convertible) node map. The
   615     ///algorithm will stop when it reaches a node \c v with
   616     /// <tt>nm[v]</tt> true.
   617     ///
   618     ///\return The reached node \c v with <tt>nm[v]<\tt> true or
   619     ///\c INVALID if no such node was found.
   620     template<class NM>
   621     Node start(const NM &nm)
   622     {
   623       Node rnode = INVALID;
   624       while ( !emptyQueue() && rnode == INVALID ) {
   625 	processNextNode(nm, rnode);
   626       }
   627       return rnode;
   628     }
   629     
   630     ///Runs %BFS algorithm from node \c s.
   631     
   632     ///This method runs the %BFS algorithm from a root node \c s
   633     ///in order to
   634     ///compute the
   635     ///shortest path to each node. The algorithm computes
   636     ///- The shortest path tree.
   637     ///- The distance of each node from the root.
   638     ///
   639     ///\note b.run(s) is just a shortcut of the following code.
   640     ///\code
   641     ///  b.init();
   642     ///  b.addSource(s);
   643     ///  b.start();
   644     ///\endcode
   645     void run(Node s) {
   646       init();
   647       addSource(s);
   648       start();
   649     }
   650     
   651     ///Finds the shortest path between \c s and \c t.
   652     
   653     ///Finds the shortest path between \c s and \c t.
   654     ///
   655     ///\return The length of the shortest s---t path if there exists one,
   656     ///0 otherwise.
   657     ///\note Apart from the return value, b.run(s) is
   658     ///just a shortcut of the following code.
   659     ///\code
   660     ///  b.init();
   661     ///  b.addSource(s);
   662     ///  b.start(t);
   663     ///\endcode
   664     int run(Node s,Node t) {
   665       init();
   666       addSource(s);
   667       start(t);
   668       return reached(t) ? _curr_dist : 0;
   669     }
   670     
   671     ///@}
   672 
   673     ///\name Query Functions
   674     ///The result of the %BFS algorithm can be obtained using these
   675     ///functions.\n
   676     ///Before the use of these functions,
   677     ///either run() or start() must be calleb.
   678     
   679     ///@{
   680 
   681     typedef PredMapPath<Graph, PredMap> Path;
   682 
   683     ///Gives back the shortest path.
   684     
   685     ///Gives back the shortest path.
   686     ///\pre The \c t should be reachable from the source.
   687     Path path(Node t) 
   688     {
   689       return Path(*G, *_pred, t);
   690     }
   691 
   692     ///The distance of a node from the root(s).
   693 
   694     ///Returns the distance of a node from the root(s).
   695     ///\pre \ref run() must be called before using this function.
   696     ///\warning If node \c v in unreachable from the root(s) the return value
   697     ///of this function is undefined.
   698     int dist(Node v) const { return (*_dist)[v]; }
   699 
   700     ///Returns the 'previous edge' of the shortest path tree.
   701 
   702     ///For a node \c v it returns the 'previous edge'
   703     ///of the shortest path tree,
   704     ///i.e. it returns the last edge of a shortest path from the root(s) to \c
   705     ///v. It is \ref INVALID
   706     ///if \c v is unreachable from the root(s) or \c v is a root. The
   707     ///shortest path tree used here is equal to the shortest path tree used in
   708     ///\ref predNode().
   709     ///\pre Either \ref run() or \ref start() must be called before using
   710     ///this function.
   711     Edge predEdge(Node v) const { return (*_pred)[v];}
   712 
   713     ///Returns the 'previous node' of the shortest path tree.
   714 
   715     ///For a node \c v it returns the 'previous node'
   716     ///of the shortest path tree,
   717     ///i.e. it returns the last but one node from a shortest path from the
   718     ///root(a) to \c /v.
   719     ///It is INVALID if \c v is unreachable from the root(s) or
   720     ///if \c v itself a root.
   721     ///The shortest path tree used here is equal to the shortest path
   722     ///tree used in \ref predEdge().
   723     ///\pre Either \ref run() or \ref start() must be called before
   724     ///using this function.
   725     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   726 				  G->source((*_pred)[v]); }
   727     
   728     ///Returns a reference to the NodeMap of distances.
   729 
   730     ///Returns a reference to the NodeMap of distances.
   731     ///\pre Either \ref run() or \ref init() must
   732     ///be called before using this function.
   733     const DistMap &distMap() const { return *_dist;}
   734  
   735     ///Returns a reference to the shortest path tree map.
   736 
   737     ///Returns a reference to the NodeMap of the edges of the
   738     ///shortest path tree.
   739     ///\pre Either \ref run() or \ref init()
   740     ///must be called before using this function.
   741     const PredMap &predMap() const { return *_pred;}
   742  
   743     ///Checks if a node is reachable from the root.
   744 
   745     ///Returns \c true if \c v is reachable from the root.
   746     ///\warning The source nodes are indicated as unreached.
   747     ///\pre Either \ref run() or \ref start()
   748     ///must be called before using this function.
   749     ///
   750     bool reached(Node v) { return (*_reached)[v]; }
   751     
   752     ///@}
   753   };
   754 
   755   ///Default traits class of Bfs function.
   756 
   757   ///Default traits class of Bfs function.
   758   ///\param GR Graph type.
   759   template<class GR>
   760   struct BfsWizardDefaultTraits
   761   {
   762     ///The graph type the algorithm runs on. 
   763     typedef GR Graph;
   764     ///\brief The type of the map that stores the last
   765     ///edges of the shortest paths.
   766     /// 
   767     ///The type of the map that stores the last
   768     ///edges of the shortest paths.
   769     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   770     ///
   771     typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
   772     ///Instantiates a PredMap.
   773  
   774     ///This function instantiates a \ref PredMap. 
   775     ///\param g is the graph, to which we would like to define the PredMap.
   776     ///\todo The graph alone may be insufficient to initialize
   777 #ifdef DOXYGEN
   778     static PredMap *createPredMap(const GR &g) 
   779 #else
   780     static PredMap *createPredMap(const GR &) 
   781 #endif
   782     {
   783       return new PredMap();
   784     }
   785 
   786     ///The type of the map that indicates which nodes are processed.
   787  
   788     ///The type of the map that indicates which nodes are processed.
   789     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   790     ///\todo named parameter to set this type, function to read and write.
   791     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   792     ///Instantiates a ProcessedMap.
   793  
   794     ///This function instantiates a \ref ProcessedMap. 
   795     ///\param g is the graph, to which
   796     ///we would like to define the \ref ProcessedMap
   797 #ifdef DOXYGEN
   798     static ProcessedMap *createProcessedMap(const GR &g)
   799 #else
   800     static ProcessedMap *createProcessedMap(const GR &)
   801 #endif
   802     {
   803       return new ProcessedMap();
   804     }
   805     ///The type of the map that indicates which nodes are reached.
   806  
   807     ///The type of the map that indicates which nodes are reached.
   808     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   809     ///\todo named parameter to set this type, function to read and write.
   810     typedef typename Graph::template NodeMap<bool> ReachedMap;
   811     ///Instantiates a ReachedMap.
   812  
   813     ///This function instantiates a \ref ReachedMap. 
   814     ///\param G is the graph, to which
   815     ///we would like to define the \ref ReachedMap.
   816     static ReachedMap *createReachedMap(const GR &G)
   817     {
   818       return new ReachedMap(G);
   819     }
   820     ///The type of the map that stores the dists of the nodes.
   821  
   822     ///The type of the map that stores the dists of the nodes.
   823     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   824     ///
   825     typedef NullMap<typename Graph::Node,int> DistMap;
   826     ///Instantiates a DistMap.
   827  
   828     ///This function instantiates a \ref DistMap. 
   829     ///\param g is the graph, to which we would like to define the \ref DistMap
   830 #ifdef DOXYGEN
   831     static DistMap *createDistMap(const GR &g)
   832 #else
   833     static DistMap *createDistMap(const GR &)
   834 #endif
   835     {
   836       return new DistMap();
   837     }
   838   };
   839   
   840   /// Default traits used by \ref BfsWizard
   841 
   842   /// To make it easier to use Bfs algorithm
   843   ///we have created a wizard class.
   844   /// This \ref BfsWizard class needs default traits,
   845   ///as well as the \ref Bfs class.
   846   /// The \ref BfsWizardBase is a class to be the default traits of the
   847   /// \ref BfsWizard class.
   848   template<class GR>
   849   class BfsWizardBase : public BfsWizardDefaultTraits<GR>
   850   {
   851 
   852     typedef BfsWizardDefaultTraits<GR> Base;
   853   protected:
   854     /// Type of the nodes in the graph.
   855     typedef typename Base::Graph::Node Node;
   856 
   857     /// Pointer to the underlying graph.
   858     void *_g;
   859     ///Pointer to the map of reached nodes.
   860     void *_reached;
   861     ///Pointer to the map of processed nodes.
   862     void *_processed;
   863     ///Pointer to the map of predecessors edges.
   864     void *_pred;
   865     ///Pointer to the map of distances.
   866     void *_dist;
   867     ///Pointer to the source node.
   868     Node _source;
   869     
   870     public:
   871     /// Constructor.
   872     
   873     /// This constructor does not require parameters, therefore it initiates
   874     /// all of the attributes to default values (0, INVALID).
   875     BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   876 			   _dist(0), _source(INVALID) {}
   877 
   878     /// Constructor.
   879     
   880     /// This constructor requires some parameters,
   881     /// listed in the parameters list.
   882     /// Others are initiated to 0.
   883     /// \param g is the initial value of  \ref _g
   884     /// \param s is the initial value of  \ref _source
   885     BfsWizardBase(const GR &g, Node s=INVALID) :
   886       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
   887       _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
   888 
   889   };
   890   
   891   /// A class to make the usage of Bfs algorithm easier
   892 
   893   /// This class is created to make it easier to use Bfs algorithm.
   894   /// It uses the functions and features of the plain \ref Bfs,
   895   /// but it is much simpler to use it.
   896   ///
   897   /// Simplicity means that the way to change the types defined
   898   /// in the traits class is based on functions that returns the new class
   899   /// and not on templatable built-in classes.
   900   /// When using the plain \ref Bfs
   901   /// the new class with the modified type comes from
   902   /// the original class by using the ::
   903   /// operator. In the case of \ref BfsWizard only
   904   /// a function have to be called and it will
   905   /// return the needed class.
   906   ///
   907   /// It does not have own \ref run method. When its \ref run method is called
   908   /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
   909   /// method of it.
   910   template<class TR>
   911   class BfsWizard : public TR
   912   {
   913     typedef TR Base;
   914 
   915     ///The type of the underlying graph.
   916     typedef typename TR::Graph Graph;
   917     //\e
   918     typedef typename Graph::Node Node;
   919     //\e
   920     typedef typename Graph::NodeIt NodeIt;
   921     //\e
   922     typedef typename Graph::Edge Edge;
   923     //\e
   924     typedef typename Graph::OutEdgeIt OutEdgeIt;
   925     
   926     ///\brief The type of the map that stores
   927     ///the reached nodes
   928     typedef typename TR::ReachedMap ReachedMap;
   929     ///\brief The type of the map that stores
   930     ///the processed nodes
   931     typedef typename TR::ProcessedMap ProcessedMap;
   932     ///\brief The type of the map that stores the last
   933     ///edges of the shortest paths.
   934     typedef typename TR::PredMap PredMap;
   935     ///The type of the map that stores the dists of the nodes.
   936     typedef typename TR::DistMap DistMap;
   937 
   938   public:
   939     /// Constructor.
   940     BfsWizard() : TR() {}
   941 
   942     /// Constructor that requires parameters.
   943 
   944     /// Constructor that requires parameters.
   945     /// These parameters will be the default values for the traits class.
   946     BfsWizard(const Graph &g, Node s=INVALID) :
   947       TR(g,s) {}
   948 
   949     ///Copy constructor
   950     BfsWizard(const TR &b) : TR(b) {}
   951 
   952     ~BfsWizard() {}
   953 
   954     ///Runs Bfs algorithm from a given node.
   955     
   956     ///Runs Bfs algorithm from a given node.
   957     ///The node can be given by the \ref source function.
   958     void run()
   959     {
   960       if(Base::_source==INVALID) throw UninitializedParameter();
   961       Bfs<Graph,TR> alg(*reinterpret_cast<const Graph*>(Base::_g));
   962       if(Base::_reached)
   963 	alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
   964       if(Base::_processed) 
   965         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
   966       if(Base::_pred) 
   967         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   968       if(Base::_dist) 
   969         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   970       alg.run(Base::_source);
   971     }
   972 
   973     ///Runs Bfs algorithm from the given node.
   974 
   975     ///Runs Bfs algorithm from the given node.
   976     ///\param s is the given source.
   977     void run(Node s)
   978     {
   979       Base::_source=s;
   980       run();
   981     }
   982 
   983     template<class T>
   984     struct DefPredMapBase : public Base {
   985       typedef T PredMap;
   986       static PredMap *createPredMap(const Graph &) { return 0; };
   987       DefPredMapBase(const TR &b) : TR(b) {}
   988     };
   989     
   990     ///\brief \ref named-templ-param "Named parameter"
   991     ///function for setting PredMap
   992     ///
   993     /// \ref named-templ-param "Named parameter"
   994     ///function for setting PredMap
   995     ///
   996     template<class T>
   997     BfsWizard<DefPredMapBase<T> > predMap(const T &t) 
   998     {
   999       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1000       return BfsWizard<DefPredMapBase<T> >(*this);
  1001     }
  1002     
  1003  
  1004     template<class T>
  1005     struct DefReachedMapBase : public Base {
  1006       typedef T ReachedMap;
  1007       static ReachedMap *createReachedMap(const Graph &) { return 0; };
  1008       DefReachedMapBase(const TR &b) : TR(b) {}
  1009     };
  1010     
  1011     ///\brief \ref named-templ-param "Named parameter"
  1012     ///function for setting ReachedMap
  1013     ///
  1014     /// \ref named-templ-param "Named parameter"
  1015     ///function for setting ReachedMap
  1016     ///
  1017     template<class T>
  1018     BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
  1019     {
  1020       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1021       return BfsWizard<DefReachedMapBase<T> >(*this);
  1022     }
  1023     
  1024 
  1025     template<class T>
  1026     struct DefProcessedMapBase : public Base {
  1027       typedef T ProcessedMap;
  1028       static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
  1029       DefProcessedMapBase(const TR &b) : TR(b) {}
  1030     };
  1031     
  1032     ///\brief \ref named-templ-param "Named parameter"
  1033     ///function for setting ProcessedMap
  1034     ///
  1035     /// \ref named-templ-param "Named parameter"
  1036     ///function for setting ProcessedMap
  1037     ///
  1038     template<class T>
  1039     BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
  1040     {
  1041       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1042       return BfsWizard<DefProcessedMapBase<T> >(*this);
  1043     }
  1044     
  1045    
  1046     template<class T>
  1047     struct DefDistMapBase : public Base {
  1048       typedef T DistMap;
  1049       static DistMap *createDistMap(const Graph &) { return 0; };
  1050       DefDistMapBase(const TR &b) : TR(b) {}
  1051     };
  1052     
  1053     ///\brief \ref named-templ-param "Named parameter"
  1054     ///function for setting DistMap type
  1055     ///
  1056     /// \ref named-templ-param "Named parameter"
  1057     ///function for setting DistMap type
  1058     ///
  1059     template<class T>
  1060     BfsWizard<DefDistMapBase<T> > distMap(const T &t) 
  1061     {
  1062       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1063       return BfsWizard<DefDistMapBase<T> >(*this);
  1064     }
  1065     
  1066     /// Sets the source node, from which the Bfs algorithm runs.
  1067 
  1068     /// Sets the source node, from which the Bfs algorithm runs.
  1069     /// \param s is the source node.
  1070     BfsWizard<TR> &source(Node s) 
  1071     {
  1072       Base::_source=s;
  1073       return *this;
  1074     }
  1075     
  1076   };
  1077   
  1078   ///Function type interface for Bfs algorithm.
  1079 
  1080   /// \ingroup search
  1081   ///Function type interface for Bfs algorithm.
  1082   ///
  1083   ///This function also has several
  1084   ///\ref named-templ-func-param "named parameters",
  1085   ///they are declared as the members of class \ref BfsWizard.
  1086   ///The following
  1087   ///example shows how to use these parameters.
  1088   ///\code
  1089   ///  bfs(g,source).predMap(preds).run();
  1090   ///\endcode
  1091   ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
  1092   ///to the end of the parameter list.
  1093   ///\sa BfsWizard
  1094   ///\sa Bfs
  1095   template<class GR>
  1096   BfsWizard<BfsWizardBase<GR> >
  1097   bfs(const GR &g,typename GR::Node s=INVALID)
  1098   {
  1099     return BfsWizard<BfsWizardBase<GR> >(g,s);
  1100   }
  1101 
  1102 #ifdef DOXYGEN
  1103   /// \brief Visitor class for bfs.
  1104   ///  
  1105   /// It gives a simple interface for a functional interface for bfs 
  1106   /// traversal. The traversal on a linear data structure. 
  1107   template <typename _Graph>
  1108   struct BfsVisitor {
  1109     typedef _Graph Graph;
  1110     typedef typename Graph::Edge Edge;
  1111     typedef typename Graph::Node Node;
  1112     /// \brief Called when the edge reach a node.
  1113     /// 
  1114     /// It is called when the bfs find an edge which target is not
  1115     /// reached yet.
  1116     void discover(const Edge& edge) {}
  1117     /// \brief Called when the node reached first time.
  1118     /// 
  1119     /// It is Called when the node reached first time.
  1120     void reach(const Node& node) {}
  1121     /// \brief Called when the edge examined but target of the edge 
  1122     /// already discovered.
  1123     /// 
  1124     /// It called when the edge examined but the target of the edge 
  1125     /// already discovered.
  1126     void examine(const Edge& edge) {}
  1127     /// \brief Called for the source node of the bfs.
  1128     /// 
  1129     /// It is called for the source node of the bfs.
  1130     void start(const Node& node) {}
  1131     /// \brief Called when the node processed.
  1132     /// 
  1133     /// It is Called when the node processed.
  1134     void process(const Node& node) {}
  1135   };
  1136 #else
  1137   template <typename _Graph>
  1138   struct BfsVisitor {
  1139     typedef _Graph Graph;
  1140     typedef typename Graph::Edge Edge;
  1141     typedef typename Graph::Node Node;
  1142     void discover(const Edge&) {}
  1143     void reach(const Node&) {}
  1144     void examine(const Edge&) {}
  1145     void start(const Node&) {}
  1146     void process(const Node&) {}
  1147 
  1148     template <typename _Visitor>
  1149     struct Constraints {
  1150       void constraints() {
  1151 	Edge edge;
  1152 	Node node;
  1153 	visitor.discover(edge);
  1154 	visitor.reach(node);
  1155 	visitor.examine(edge);
  1156 	visitor.start(node);
  1157         visitor.process(node);
  1158       }
  1159       _Visitor& visitor;
  1160     };
  1161   };
  1162 #endif
  1163 
  1164   /// \brief Default traits class of BfsVisit class.
  1165   ///
  1166   /// Default traits class of BfsVisit class.
  1167   /// \param _Graph Graph type.
  1168   template<class _Graph>
  1169   struct BfsVisitDefaultTraits {
  1170 
  1171     /// \brief The graph type the algorithm runs on. 
  1172     typedef _Graph Graph;
  1173 
  1174     /// \brief The type of the map that indicates which nodes are reached.
  1175     /// 
  1176     /// The type of the map that indicates which nodes are reached.
  1177     /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1178     /// \todo named parameter to set this type, function to read and write.
  1179     typedef typename Graph::template NodeMap<bool> ReachedMap;
  1180 
  1181     /// \brief Instantiates a ReachedMap.
  1182     ///
  1183     /// This function instantiates a \ref ReachedMap. 
  1184     /// \param graph is the graph, to which
  1185     /// we would like to define the \ref ReachedMap.
  1186     static ReachedMap *createReachedMap(const Graph &graph) {
  1187       return new ReachedMap(graph);
  1188     }
  1189 
  1190   };
  1191   
  1192   /// %BFS Visit algorithm class.
  1193   
  1194   /// \ingroup search
  1195   /// This class provides an efficient implementation of the %BFS algorithm
  1196   /// with visitor interface.
  1197   ///
  1198   /// The %BfsVisit class provides an alternative interface to the Bfs
  1199   /// class. It works with callback mechanism, the BfsVisit object calls
  1200   /// on every bfs event the \c Visitor class member functions. 
  1201   ///
  1202   /// \param _Graph The graph type the algorithm runs on. The default value is
  1203   /// \ref ListGraph. The value of _Graph is not used directly by Bfs, it
  1204   /// is only passed to \ref BfsDefaultTraits.
  1205   /// \param _Visitor The Visitor object for the algorithm. The 
  1206   /// \ref BfsVisitor "BfsVisitor<_Graph>" is an empty Visitor which
  1207   /// does not observe the Bfs events. If you want to observe the bfs
  1208   /// events you should implement your own Visitor class.
  1209   /// \param _Traits Traits class to set various data types used by the 
  1210   /// algorithm. The default traits class is
  1211   /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Graph>".
  1212   /// See \ref BfsVisitDefaultTraits for the documentation of
  1213   /// a Bfs visit traits class.
  1214   ///
  1215   /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
  1216 #ifdef DOXYGEN
  1217   template <typename _Graph, typename _Visitor, typename _Traits>
  1218 #else
  1219   template <typename _Graph = ListGraph,
  1220 	    typename _Visitor = BfsVisitor<_Graph>,
  1221 	    typename _Traits = BfsDefaultTraits<_Graph> >
  1222 #endif
  1223   class BfsVisit {
  1224   public:
  1225     
  1226     /// \brief \ref Exception for uninitialized parameters.
  1227     ///
  1228     /// This error represents problems in the initialization
  1229     /// of the parameters of the algorithms.
  1230     class UninitializedParameter : public lemon::UninitializedParameter {
  1231     public:
  1232       virtual const char* what() const throw() 
  1233       {
  1234 	return "lemon::BfsVisit::UninitializedParameter";
  1235       }
  1236     };
  1237 
  1238     typedef _Traits Traits;
  1239 
  1240     typedef typename Traits::Graph Graph;
  1241 
  1242     typedef _Visitor Visitor;
  1243 
  1244     ///The type of the map indicating which nodes are reached.
  1245     typedef typename Traits::ReachedMap ReachedMap;
  1246 
  1247   private:
  1248 
  1249     typedef typename Graph::Node Node;
  1250     typedef typename Graph::NodeIt NodeIt;
  1251     typedef typename Graph::Edge Edge;
  1252     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1253 
  1254     /// Pointer to the underlying graph.
  1255     const Graph *_graph;
  1256     /// Pointer to the visitor object.
  1257     Visitor *_visitor;
  1258     ///Pointer to the map of reached status of the nodes.
  1259     ReachedMap *_reached;
  1260     ///Indicates if \ref _reached is locally allocated (\c true) or not.
  1261     bool local_reached;
  1262 
  1263     std::vector<typename Graph::Node> _list;
  1264     int _list_front, _list_back;
  1265 
  1266     /// \brief Creates the maps if necessary.
  1267     ///
  1268     /// Creates the maps if necessary.
  1269     void create_maps() {
  1270       if(!_reached) {
  1271 	local_reached = true;
  1272 	_reached = Traits::createReachedMap(*_graph);
  1273       }
  1274     }
  1275 
  1276   protected:
  1277 
  1278     BfsVisit() {}
  1279     
  1280   public:
  1281 
  1282     typedef BfsVisit Create;
  1283 
  1284     /// \name Named template parameters
  1285 
  1286     ///@{
  1287     template <class T>
  1288     struct DefReachedMapTraits : public Traits {
  1289       typedef T ReachedMap;
  1290       static ReachedMap *createReachedMap(const Graph &graph) {
  1291 	throw UninitializedParameter();
  1292       }
  1293     };
  1294     /// \brief \ref named-templ-param "Named parameter" for setting 
  1295     /// ReachedMap type
  1296     ///
  1297     /// \ref named-templ-param "Named parameter" for setting ReachedMap type
  1298     template <class T>
  1299     struct DefReachedMap : public BfsVisit< Graph, Visitor,
  1300 					    DefReachedMapTraits<T> > {
  1301       typedef BfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
  1302     };
  1303     ///@}
  1304 
  1305   public:      
  1306     
  1307     /// \brief Constructor.
  1308     ///
  1309     /// Constructor.
  1310     ///
  1311     /// \param graph the graph the algorithm will run on.
  1312     /// \param visitor The visitor of the algorithm.
  1313     ///
  1314     BfsVisit(const Graph& graph, Visitor& visitor) 
  1315       : _graph(&graph), _visitor(&visitor),
  1316 	_reached(0), local_reached(false) {}
  1317     
  1318     /// \brief Destructor.
  1319     ///
  1320     /// Destructor.
  1321     ~BfsVisit() {
  1322       if(local_reached) delete _reached;
  1323     }
  1324 
  1325     /// \brief Sets the map indicating if a node is reached.
  1326     ///
  1327     /// Sets the map indicating if a node is reached.
  1328     /// If you don't use this function before calling \ref run(),
  1329     /// it will allocate one. The destuctor deallocates this
  1330     /// automatically allocated map, of course.
  1331     /// \return <tt> (*this) </tt>
  1332     BfsVisit &reachedMap(ReachedMap &m) {
  1333       if(local_reached) {
  1334 	delete _reached;
  1335 	local_reached = false;
  1336       }
  1337       _reached = &m;
  1338       return *this;
  1339     }
  1340 
  1341   public:
  1342     /// \name Execution control
  1343     /// The simplest way to execute the algorithm is to use
  1344     /// one of the member functions called \c run(...).
  1345     /// \n
  1346     /// If you need more control on the execution,
  1347     /// first you must call \ref init(), then you can adda source node
  1348     /// with \ref addSource().
  1349     /// Finally \ref start() will perform the actual path
  1350     /// computation.
  1351 
  1352     /// @{
  1353     /// \brief Initializes the internal data structures.
  1354     ///
  1355     /// Initializes the internal data structures.
  1356     ///
  1357     void init() {
  1358       create_maps();
  1359       _list.resize(countNodes(*_graph));
  1360       _list_front = _list_back = -1;
  1361       for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
  1362 	_reached->set(u, false);
  1363       }
  1364     }
  1365     
  1366     /// \brief Adds a new source node.
  1367     ///
  1368     /// Adds a new source node to the set of nodes to be processed.
  1369     void addSource(Node s) {
  1370       if(!(*_reached)[s]) {
  1371 	  _reached->set(s,true);
  1372 	  _visitor->start(s);
  1373 	  _visitor->reach(s);
  1374           _list[++_list_back] = s;
  1375 	}
  1376     }
  1377     
  1378     /// \brief Processes the next node.
  1379     ///
  1380     /// Processes the next node.
  1381     ///
  1382     /// \return The processed node.
  1383     ///
  1384     /// \pre The queue must not be empty!
  1385     Node processNextNode() { 
  1386       Node n = _list[++_list_front];
  1387       _visitor->process(n);
  1388       Edge e;
  1389       for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
  1390         Node m = _graph->target(e);
  1391         if (!(*_reached)[m]) {
  1392           _visitor->discover(e);
  1393           _visitor->reach(m);
  1394           _reached->set(m, true);
  1395           _list[++_list_back] = m;
  1396         } else {
  1397           _visitor->examine(e);
  1398         }
  1399       }
  1400       return n;
  1401     }
  1402 
  1403     /// \brief Processes the next node.
  1404     ///
  1405     /// Processes the next node. And checks that the given target node
  1406     /// is reached. If the target node is reachable from the processed
  1407     /// node then the reached parameter will be set true. The reached
  1408     /// parameter should be initially false.
  1409     ///
  1410     /// \param target The target node.
  1411     /// \retval reach Indicates that the target node is reached.
  1412     /// \return The processed node.
  1413     ///
  1414     /// \warning The queue must not be empty!
  1415     Node processNextNode(Node target, bool& reach) {
  1416       Node n = _list[++_list_front];
  1417       _visitor->process(n);
  1418       Edge e;
  1419       for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
  1420         Node m = _graph->target(e);
  1421         if (!(*_reached)[m]) {
  1422           _visitor->discover(e);
  1423           _visitor->reach(m);
  1424           _reached->set(m, true);
  1425           _list[++_list_back] = m;
  1426           reach = reach || (target == m);
  1427         } else {
  1428           _visitor->examine(e);
  1429         }
  1430       }
  1431       return n;
  1432     }
  1433 
  1434     /// \brief Processes the next node.
  1435     ///
  1436     /// Processes the next node. And checks that at least one of
  1437     /// reached node has true value in the \c nm node map. If one node
  1438     /// with true value is reachable from the processed node then the
  1439     /// rnode parameter will be set to the first of such nodes.
  1440     ///
  1441     /// \param nm The node map of possible targets.
  1442     /// \retval rnode The reached target node.
  1443     /// \return The processed node.
  1444     ///
  1445     /// \warning The queue must not be empty!
  1446     template <typename NM>
  1447     Node processNextNode(const NM& nm, Node& rnode) {
  1448       Node n = _list[++_list_front];
  1449       _visitor->process(n);
  1450       Edge e;
  1451       for (_graph->firstOut(e, n); e != INVALID; _graph->nextOut(e)) {
  1452         Node m = _graph->target(e);
  1453         if (!(*_reached)[m]) {
  1454           _visitor->discover(e);
  1455           _visitor->reach(m);
  1456           _reached->set(m, true);
  1457           _list[++_list_back] = m;
  1458           if (nm[m] && rnode == INVALID) rnode = m;
  1459         } else {
  1460           _visitor->examine(e);
  1461         }
  1462       }
  1463       return n;
  1464     }
  1465 
  1466     /// \brief Next node to be processed.
  1467     ///
  1468     /// Next node to be processed.
  1469     ///
  1470     /// \return The next node to be processed or INVALID if the stack is
  1471     /// empty.
  1472     Node nextNode() { 
  1473       return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
  1474     }
  1475 
  1476     /// \brief Returns \c false if there are nodes
  1477     /// to be processed in the queue
  1478     ///
  1479     /// Returns \c false if there are nodes
  1480     /// to be processed in the queue
  1481     bool emptyQueue() { return _list_front == _list_back; }
  1482 
  1483     /// \brief Returns the number of the nodes to be processed.
  1484     ///
  1485     /// Returns the number of the nodes to be processed in the queue.
  1486     int queueSize() { return _list_back - _list_front; }
  1487     
  1488     /// \brief Executes the algorithm.
  1489     ///
  1490     /// Executes the algorithm.
  1491     ///
  1492     /// \pre init() must be called and at least one node should be added
  1493     /// with addSource() before using this function.
  1494     void start() {
  1495       while ( !emptyQueue() ) processNextNode();
  1496     }
  1497     
  1498     /// \brief Executes the algorithm until \c dest is reached.
  1499     ///
  1500     /// Executes the algorithm until \c dest is reached.
  1501     ///
  1502     /// \pre init() must be called and at least one node should be added
  1503     /// with addSource() before using this function.
  1504     void start(Node dest) {
  1505       bool reach = false;
  1506       while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
  1507     }
  1508     
  1509     /// \brief Executes the algorithm until a condition is met.
  1510     ///
  1511     /// Executes the algorithm until a condition is met.
  1512     ///
  1513     /// \pre init() must be called and at least one node should be added
  1514     /// with addSource() before using this function.
  1515     ///
  1516     ///\param nm must be a bool (or convertible) node map. The
  1517     ///algorithm will stop when it reaches a node \c v with
  1518     /// <tt>nm[v]</tt> true.
  1519     ///
  1520     ///\return The reached node \c v with <tt>nm[v]<\tt> true or
  1521     ///\c INVALID if no such node was found.
  1522     template <typename NM>
  1523     Node start(const NM &nm) {
  1524       Node rnode = INVALID;
  1525       while ( !emptyQueue() && rnode == INVALID ) {
  1526 	processNextNode(nm, rnode);
  1527       }
  1528       return rnode;
  1529     }
  1530 
  1531     /// \brief Runs %BFSVisit algorithm from node \c s.
  1532     ///
  1533     /// This method runs the %BFS algorithm from a root node \c s.
  1534     /// \note b.run(s) is just a shortcut of the following code.
  1535     ///\code
  1536     ///   b.init();
  1537     ///   b.addSource(s);
  1538     ///   b.start();
  1539     ///\endcode
  1540     void run(Node s) {
  1541       init();
  1542       addSource(s);
  1543       start();
  1544     }
  1545 
  1546     /// \brief Runs %BFSVisit algorithm to visit all nodes in the graph.
  1547     ///    
  1548     /// This method runs the %BFS algorithm in order to
  1549     /// compute the %BFS path to each node. The algorithm computes
  1550     /// - The %BFS tree.
  1551     /// - The distance of each node from the root in the %BFS tree.
  1552     ///
  1553     ///\note b.run() is just a shortcut of the following code.
  1554     ///\code
  1555     ///  b.init();
  1556     ///  for (NodeIt it(graph); it != INVALID; ++it) {
  1557     ///    if (!b.reached(it)) {
  1558     ///      b.addSource(it);
  1559     ///      b.start();
  1560     ///    }
  1561     ///  }
  1562     ///\endcode
  1563     void run() {
  1564       init();
  1565       for (NodeIt it(*_graph); it != INVALID; ++it) {
  1566         if (!reached(it)) {
  1567           addSource(it);
  1568           start();
  1569         }
  1570       }
  1571     }
  1572     ///@}
  1573 
  1574     /// \name Query Functions
  1575     /// The result of the %BFS algorithm can be obtained using these
  1576     /// functions.\n
  1577     /// Before the use of these functions,
  1578     /// either run() or start() must be called.
  1579     ///@{
  1580 
  1581     /// \brief Checks if a node is reachable from the root.
  1582     ///
  1583     /// Returns \c true if \c v is reachable from the root(s).
  1584     /// \warning The source nodes are inditated as unreachable.
  1585     /// \pre Either \ref run() or \ref start()
  1586     /// must be called before using this function.
  1587     ///
  1588     bool reached(Node v) { return (*_reached)[v]; }
  1589     ///@}
  1590   };
  1591 
  1592 } //END OF NAMESPACE LEMON
  1593 
  1594 #endif
  1595