Consider the CPXMIP_OPTIMAL_TOL status as OPTIMAL too.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BITS_VARIANT_H
20 #define LEMON_BITS_VARIANT_H
22 #include <lemon/error.h>
25 /// \brief Variant types
29 namespace _variant_bits {
31 template <int left, int right>
33 static const int value = left < right ? right : left;
39 /// \brief Simple Variant type for two types
41 /// Simple Variant type for two types. The Variant type is a type
42 /// safe union. The C++ has strong limitations for using unions, by
43 /// example we can not store type with non default constructor or
44 /// destructor in an union. This class always knowns the current
45 /// state of the variant and it cares for the proper construction
47 template <typename _First, typename _Second>
51 /// \brief The \c First type.
53 /// \brief The \c Second type.
54 typedef _Second Second;
56 struct WrongStateError : public lemon::LogicError {
58 virtual const char* what() const throw() {
59 return "lemon::BiVariant::WrongStateError";
63 /// \brief Constructor
65 /// This constructor initalizes to the default value of the \c First
69 new(reinterpret_cast<First*>(data)) First();
72 /// \brief Constructor
74 /// This constructor initalizes to the given value of the \c First
76 BiVariant(const First& f) {
78 new(reinterpret_cast<First*>(data)) First(f);
81 /// \brief Constructor
83 /// This constructor initalizes to the given value of the \c
85 BiVariant(const Second& s) {
87 new(reinterpret_cast<Second*>(data)) Second(s);
90 /// \brief Copy constructor
93 BiVariant(const BiVariant& bivariant) {
94 flag = bivariant.flag;
96 new(reinterpret_cast<First*>(data)) First(bivariant.first());
98 new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
102 /// \brief Destrcutor
109 /// \brief Set to the default value of the \c First type.
111 /// This function sets the variant to the default value of the \c
113 BiVariant& setFirst() {
116 new(reinterpret_cast<First*>(data)) First();
120 /// \brief Set to the given value of the \c First type.
122 /// This function sets the variant to the given value of the \c
124 BiVariant& setFirst(const First& f) {
127 new(reinterpret_cast<First*>(data)) First(f);
131 /// \brief Set to the default value of the \c Second type.
133 /// This function sets the variant to the default value of the \c
135 BiVariant& setSecond() {
138 new(reinterpret_cast<Second*>(data)) Second();
142 /// \brief Set to the given value of the \c Second type.
144 /// This function sets the variant to the given value of the \c
146 BiVariant& setSecond(const Second& s) {
149 new(reinterpret_cast<Second*>(data)) Second(s);
153 /// \brief Operator form of the \c setFirst()
154 BiVariant& operator=(const First& f) {
158 /// \brief Operator form of the \c setSecond()
159 BiVariant& operator=(const Second& s) {
163 /// \brief Assign operator
164 BiVariant& operator=(const BiVariant& bivariant) {
165 if (this == &bivariant) return *this;
167 flag = bivariant.flag;
169 new(reinterpret_cast<First*>(data)) First(bivariant.first());
171 new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
176 /// \brief Reference to the value
178 /// Reference to the value of the \c First type.
179 /// \pre The BiVariant should store value of \c First type.
181 LEMON_ASSERT(flag, WrongStateError());
182 return *reinterpret_cast<First*>(data);
185 /// \brief Const reference to the value
187 /// Const reference to the value of the \c First type.
188 /// \pre The BiVariant should store value of \c First type.
189 const First& first() const {
190 LEMON_ASSERT(flag, WrongStateError());
191 return *reinterpret_cast<const First*>(data);
194 /// \brief Operator form of the \c first()
195 operator First&() { return first(); }
196 /// \brief Operator form of the const \c first()
197 operator const First&() const { return first(); }
199 /// \brief Reference to the value
201 /// Reference to the value of the \c Second type.
202 /// \pre The BiVariant should store value of \c Second type.
204 LEMON_ASSERT(!flag, WrongStateError());
205 return *reinterpret_cast<Second*>(data);
208 /// \brief Const reference to the value
210 /// Const reference to the value of the \c Second type.
211 /// \pre The BiVariant should store value of \c Second type.
212 const Second& second() const {
213 LEMON_ASSERT(!flag, WrongStateError());
214 return *reinterpret_cast<const Second*>(data);
217 /// \brief Operator form of the \c second()
218 operator Second&() { return second(); }
219 /// \brief Operator form of the const \c second()
220 operator const Second&() const { return second(); }
222 /// \brief %True when the variant is in the first state
224 /// %True when the variant stores value of the \c First type.
225 bool firstState() const { return flag; }
227 /// \brief %True when the variant is in the second state
229 /// %True when the variant stores value of the \c Second type.
230 bool secondState() const { return !flag; }
236 reinterpret_cast<First*>(data)->~First();
238 reinterpret_cast<Second*>(data)->~Second();
242 char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
246 namespace _variant_bits {
248 template <int _idx, typename _TypeMap>
251 typedef typename _TypeMap::template Map<_idx>::Type Current;
253 static void destroy(int index, char* place) {
255 reinterpret_cast<Current*>(place)->~Current();
257 Memory<_idx - 1, _TypeMap>::destroy(index, place);
261 static void copy(int index, char* to, const char* from) {
263 new (reinterpret_cast<Current*>(to))
264 Current(reinterpret_cast<const Current*>(from));
266 Memory<_idx - 1, _TypeMap>::copy(index, to, from);
272 template <typename _TypeMap>
273 struct Memory<-1, _TypeMap> {
275 static void destroy(int, char*) {
276 LEMON_ASSERT(false, "Wrong Variant Index.");
279 static void copy(int, char*, const char*) {
280 LEMON_ASSERT(false, "Wrong Variant Index.");
284 template <int _idx, typename _TypeMap>
286 static const int value =
287 CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
288 Size<_idx - 1, _TypeMap>::value>::value;
291 template <typename _TypeMap>
292 struct Size<0, _TypeMap> {
293 static const int value =
294 sizeof(typename _TypeMap::template Map<0>::Type);
299 /// \brief Variant type
301 /// Simple Variant type. The Variant type is a type safe union. The
302 /// C++ has strong limitations for using unions, by example we
303 /// cannot store type with non default constructor or destructor in
304 /// a union. This class always knowns the current state of the
305 /// variant and it cares for the proper construction and
308 /// \param _num The number of the types which can be stored in the
310 /// \param _TypeMap This class describes the types of the Variant. The
311 /// _TypeMap::Map<index>::Type should be a valid type for each index
312 /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
313 /// class to define such type mappings up to 10 types.
315 /// And the usage of the class:
317 /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
320 /// std::cout << var.get<0>() << std::endl;
321 /// var.set<1>("alpha");
322 /// std::cout << var.get<1>() << std::endl;
323 /// var.set<2>(0.75);
324 /// std::cout << var.get<2>() << std::endl;
327 /// The result of course:
333 template <int _num, typename _TypeMap>
337 static const int num = _num;
339 typedef _TypeMap TypeMap;
341 struct WrongStateError : public lemon::LogicError {
343 virtual const char* what() const throw() {
344 return "lemon::Variant::WrongStateError";
348 /// \brief Constructor
350 /// This constructor initalizes to the default value of the \c type
354 new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
355 typename TypeMap::template Map<0>::Type();
359 /// \brief Copy constructor
362 Variant(const Variant& variant) {
364 _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
367 /// \brief Assign operator
370 Variant& operator=(const Variant& variant) {
371 if (this == &variant) return *this;
372 _variant_bits::Memory<num - 1, TypeMap>::
375 _variant_bits::Memory<num - 1, TypeMap>::
376 copy(flag, data, variant.data);
380 /// \brief Destrcutor
384 _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
387 /// \brief Set to the default value of the type with \c _idx index.
389 /// This function sets the variant to the default value of the
390 /// type with \c _idx index.
393 _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
395 new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
396 typename TypeMap::template Map<_idx>::Type();
400 /// \brief Set to the given value of the type with \c _idx index.
402 /// This function sets the variant to the given value of the type
403 /// with \c _idx index.
405 Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
406 _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
408 new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
409 typename TypeMap::template Map<_idx>::Type(init);
413 /// \brief Gets the current value of the type with \c _idx index.
415 /// Gets the current value of the type with \c _idx index.
417 const typename TypeMap::template Map<_idx>::Type& get() const {
418 LEMON_ASSERT(_idx == flag, "Wrong Variant Index.");
419 return *reinterpret_cast<const typename TypeMap::
420 template Map<_idx>::Type*>(data);
423 /// \brief Gets the current value of the type with \c _idx index.
425 /// Gets the current value of the type with \c _idx index.
427 typename _TypeMap::template Map<_idx>::Type& get() {
428 LEMON_ASSERT(_idx == flag, "Wrong Variant Index.");
429 return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
433 /// \brief Returns the current state of the variant.
435 /// Returns the current state of the variant.
442 char data[_variant_bits::Size<num - 1, TypeMap>::value];
446 namespace _variant_bits {
448 template <int _index, typename _List>
450 typedef typename Get<_index - 1, typename _List::Next>::Type Type;
453 template <typename _List>
454 struct Get<0, _List> {
455 typedef typename _List::Type Type;
460 template <typename _Type, typename _List>
466 template <int _idx, typename _T0, typename _T1, typename _T2,
467 typename _T3, typename _T5, typename _T4, typename _T6,
468 typename _T7, typename _T8, typename _T9>
471 typedef Insert<_T9, L10> L9;
472 typedef Insert<_T8, L9> L8;
473 typedef Insert<_T7, L8> L7;
474 typedef Insert<_T6, L7> L6;
475 typedef Insert<_T5, L6> L5;
476 typedef Insert<_T4, L5> L4;
477 typedef Insert<_T3, L4> L3;
478 typedef Insert<_T2, L3> L2;
479 typedef Insert<_T1, L2> L1;
480 typedef Insert<_T0, L1> L0;
481 typedef typename Get<_idx, L0>::Type Type;
486 /// \brief Helper class for Variant
488 /// Helper class to define type mappings for Variant. This class
489 /// converts the template parameters to be mappable by integer.
493 typename _T1 = void, typename _T2 = void, typename _T3 = void,
494 typename _T5 = void, typename _T4 = void, typename _T6 = void,
495 typename _T7 = void, typename _T8 = void, typename _T9 = void>
496 struct VariantTypeMap {
499 typedef typename _variant_bits::
500 Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type