3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef HYPERCUBE_GRAPH_H
20 #define HYPERCUBE_GRAPH_H
24 #include <lemon/invalid.h>
25 #include <lemon/utility.h>
26 #include <lemon/error.h>
28 #include <lemon/bits/iterable_graph_extender.h>
29 #include <lemon/bits/alteration_notifier.h>
30 #include <lemon/bits/static_map.h>
31 #include <lemon/bits/graph_extender.h>
35 ///\brief HyperCubeGraph class.
39 /// \brief Base graph for HyperCubeGraph.
41 /// Base graph for hyper-cube graph. It describes some member functions
42 /// which can be used in the HyperCubeGraph.
44 /// \warning Always use the HyperCubeGraph instead of this.
45 /// \see HyperCubeGraph
46 class HyperCubeGraphBase {
50 typedef HyperCubeGraphBase Graph;
57 HyperCubeGraphBase() {}
61 /// \brief Creates a hypercube graph with the given size.
63 /// Creates a hypercube graph with the given size.
64 void construct(int dim) {
72 typedef True NodeNumTag;
73 typedef True EdgeNumTag;
76 int nodeNum() const { return _nodeNum; }
78 int edgeNum() const { return _nodeNum * _dim; }
84 int maxNodeId() const { return nodeNum() - 1; }
89 int maxEdgeId() const { return edgeNum() - 1; }
91 /// \brief Gives back the source node of an edge.
93 /// Gives back the source node of an edge.
94 Node source(Edge e) const {
98 /// \brief Gives back the target node of an edge.
100 /// Gives back the target node of an edge.
101 Node target(Edge e) const {
102 return (e.id / _dim) ^ ( 1 << (e.id % _dim));
107 /// The ID of a valid Node is a nonnegative integer not greater than
108 /// \ref maxNodeId(). The range of the ID's is not surely continuous
109 /// and the greatest node ID can be actually less then \ref maxNodeId().
111 /// The ID of the \ref INVALID node is -1.
112 ///\return The ID of the node \c v.
114 static int id(Node v) { return v.id; }
117 /// The ID of a valid Edge is a nonnegative integer not greater than
118 /// \ref maxEdgeId(). The range of the ID's is not surely continuous
119 /// and the greatest edge ID can be actually less then \ref maxEdgeId().
121 /// The ID of the \ref INVALID edge is -1.
122 ///\return The ID of the edge \c e.
123 static int id(Edge e) { return e.id; }
125 static Node nodeFromId(int id) { return Node(id);}
127 static Edge edgeFromId(int id) { return Edge(id);}
130 friend class HyperCubeGraphBase;
134 Node(int _id) { id = _id;}
137 Node (Invalid) { id = -1; }
138 bool operator==(const Node node) const {return id == node.id;}
139 bool operator!=(const Node node) const {return id != node.id;}
140 bool operator<(const Node node) const {return id < node.id;}
144 friend class HyperCubeGraphBase;
149 Edge(int _id) : id(_id) {}
153 Edge (Invalid) { id = -1; }
154 bool operator==(const Edge edge) const {return id == edge.id;}
155 bool operator!=(const Edge edge) const {return id != edge.id;}
156 bool operator<(const Edge edge) const {return id < edge.id;}
159 void first(Node& node) const {
160 node.id = nodeNum() - 1;
163 static void next(Node& node) {
167 void first(Edge& edge) const {
168 edge.id = edgeNum() - 1;
171 static void next(Edge& edge) {
175 void firstOut(Edge& edge, const Node& node) const {
176 edge.id = node.id * _dim;
179 void nextOut(Edge& edge) const {
181 if (edge.id % _dim == 0) edge.id = -1;
184 void firstIn(Edge& edge, const Node& node) const {
185 edge.id = (node.id ^ 1) * _dim;
188 void nextIn(Edge& edge) const {
189 int cnt = edge.id % _dim;
190 if ((cnt + 1) % _dim == 0) {
193 edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
197 /// \brief Gives back the number of the dimensions.
199 /// Gives back the number of the dimensions.
200 int dimension() const {
204 /// \brief Returns true if the n'th bit of the node is one.
206 /// Returns true if the n'th bit of the node is one.
207 bool projection(Node node, int n) const {
208 return (bool)(node.id & (1 << n));
211 /// \brief The dimension id of the edge.
213 /// It returns the dimension id of the edge. It can
214 /// be in the ${0, 1, dim-1}$ intervall.
215 int dimension(Edge edge) const {
216 return edge.id % _dim;
219 /// \brief Gives back the index of the node.
221 /// Gives back the index of the node. The lower bits of the
222 /// integer describe the node.
223 int index(Node node) const {
227 /// \brief Gives back the node by its index.
229 /// Gives back the node by its index.
230 Node node(int index) const {
239 typedef StaticMappableGraphExtender<
240 IterableGraphExtender<
241 AlterableGraphExtender<
243 HyperCubeGraphBase> > > > ExtendedHyperCubeGraphBase;
247 /// \brief HyperCube graph class
249 /// This class implements a special graph type. The nodes of the
250 /// graph can be indiced with integers with at most \c dim binary length.
251 /// Two nodes are connected in the graph if the indices differ only
252 /// on one position in the binary form.
254 /// \note The type of the \c ids is chosen to \c int because efficiency
255 /// reasons. This way the maximal dimension of this implementation
258 /// The graph type is fully conform to the \ref concept::StaticGraph
259 /// concept but it does not conform to the \ref concept::UGraph.
261 /// \see HyperCubeGraphBase
262 /// \author Balazs Dezso
263 class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
266 /// \brief Construct a graph with \c dim dimension.
268 /// Construct a graph with \c dim dimension.
269 HyperCubeGraph(int dim) { construct(dim); }
271 /// \brief Linear combination map.
273 /// It makes possible to give back a linear combination
274 /// for each node. This function works like the \c std::accumulate
275 /// so it accumulates the \c bf binary function with the \c fv
276 /// first value. The map accumulates only on that dimensions where
277 /// the node's index is one. The accumulated values should be
278 /// given by the \c begin and \c end iterators and this range's length
279 /// should be the dimension number of the graph.
282 /// const int DIM = 3;
283 /// HyperCubeGraph graph(DIM);
284 /// xy<double> base[DIM];
285 /// for (int k = 0; k < DIM; ++k) {
286 /// base[k].x = rand() / (RAND_MAX + 1.0);
287 /// base[k].y = rand() / (RAND_MAX + 1.0);
289 /// HyperCubeGraph::HyperMap<xy<double> >
290 /// pos(graph, base, base + DIM, xy<double>(0.0, 0.0));
293 /// \see HyperCubeGraph
294 template <typename T, typename BF = std::plus<T> >
302 /// \brief Constructor for HyperMap.
304 /// Construct a HyperMap for the given graph. The accumulated values
305 /// should be given by the \c begin and \c end iterators and this
306 /// range's length should be the dimension number of the graph.
308 /// This function accumulates the \c bf binary function with
309 /// the \c fv first value. The map accumulates only on that dimensions
310 /// where the node's index is one.
311 template <typename It>
312 HyperMap(const Graph& graph, It begin, It end,
313 T fv = 0.0, const BF& bf = BF())
314 : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
315 LEMON_ASSERT(_values.size() == graph.dimension(),
316 "Wrong size of dimension");
319 /// \brief Gives back the partial accumulated value.
321 /// Gives back the partial accumulated value.
322 Value operator[](Key k) const {
323 Value val = _first_value;
324 int id = _graph.index(k);
328 val = _bin_func(_values[n], _first_value);
338 std::vector<T> _values;