lemon/simann.h
author deba
Mon, 06 Feb 2006 20:32:29 +0000
changeset 1964 df0b07457083
parent 1932 c65711e5a26d
child 2035 e92071fadd3f
permissions -rw-r--r--
Bug fix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_SIMANN_H
    20 #define LEMON_SIMANN_H
    21 
    22 /// \ingroup experimental
    23 /// \file
    24 /// \brief Simulated annealing framework.
    25 ///
    26 /// \todo A test and some demo should be added
    27 /// \todo Doc should be improved
    28 /// \author Akos Ladanyi
    29 
    30 #include <cstdlib>
    31 #include <cmath>
    32 #include <limits>
    33 #include <lemon/time_measure.h>
    34 
    35 namespace lemon {
    36 
    37 /// \addtogroup experimental
    38 /// @{
    39 
    40   class SimAnnBase;
    41 
    42   /// \brief A base class for controllers.
    43   class ControllerBase {
    44   public:
    45     friend class SimAnnBase;
    46     /// \brief Pointer to the simulated annealing base class.
    47     SimAnnBase *simann;
    48     /// \brief Initializes the controller.
    49     virtual void init() {}
    50     /// \brief This is called by the simulated annealing class when a
    51     /// neighbouring state gets accepted.
    52     virtual void acceptEvent() {}
    53     /// \brief This is called by the simulated annealing class when the
    54     /// accepted neighbouring state's cost is less than the best found one's.
    55     virtual void improveEvent() {}
    56     /// \brief This is called by the simulated annealing class when a
    57     /// neighbouring state gets rejected.
    58     virtual void rejectEvent() {}
    59     /// \brief Decides whether to continue the annealing process or not.
    60     virtual bool next() = 0;
    61     /// \brief Decides whether to accept the current solution or not.
    62     virtual bool accept() = 0;
    63     /// \brief Destructor.
    64     virtual ~ControllerBase() {}
    65   };
    66 
    67   /// \brief Skeleton of an entity class.
    68   class EntityBase {
    69   public:
    70     /// \brief Makes a minor change to the entity.
    71     /// \return the new cost
    72     virtual double mutate() = 0;
    73     /// \brief Restores the entity to its previous state i.e. reverts the
    74     /// effects of the last mutate().
    75     virtual void revert() = 0;
    76     /// \brief Makes a copy of the entity.
    77     virtual EntityBase* clone() = 0;
    78     /// \brief Makes a major change to the entity.
    79     virtual void randomize() = 0;
    80     /// \brief Destructor.
    81     virtual ~EntityBase() {}
    82   };
    83 
    84   /// \brief Simulated annealing abstract base class.
    85   /// Can be used to derive a custom simulated annealing class if \ref SimAnn
    86   /// doesn't fit your needs.
    87   class SimAnnBase {
    88   private:
    89     /// \brief Pointer to the controller.
    90     ControllerBase *controller;
    91     /// \brief Cost of the current solution.
    92     double curr_cost;
    93     /// \brief Cost of the best solution.
    94     double best_cost;
    95     /// \brief Cost of the previous solution.
    96     double prev_cost;
    97     /// \brief Cost of the solution preceding the previous one.
    98     double prev_prev_cost;
    99     /// \brief Number of iterations.
   100     long iter;
   101     /// \brief Number of iterations which did not improve the solution since
   102     /// the last improvement.
   103     long last_impr;
   104   protected:
   105     /// \brief Step to a neighbouring state.
   106     virtual double mutate() = 0;
   107     /// \brief Reverts the last mutate().
   108     virtual void revert() = 0;
   109     /// \brief Saves the current solution as the best one.
   110     virtual void saveAsBest() = 0;
   111     /// \brief Does initializations before each run.
   112     virtual void init() {
   113       controller->init();
   114       curr_cost = prev_cost = prev_prev_cost = best_cost =
   115         std::numeric_limits<double>::infinity();
   116       iter = last_impr = 0;
   117     }
   118   public:
   119     /// \brief Sets the controller class to use.
   120     void setController(ControllerBase &_controller) {
   121       controller = &_controller;
   122       controller->simann = this;
   123     }
   124     /// \brief Returns the cost of the current solution.
   125     double getCurrCost() const { return curr_cost; }
   126     /// \brief Returns the cost of the previous solution.
   127     double getPrevCost() const { return prev_cost; }
   128     /// \brief Returns the cost of the best solution.
   129     double getBestCost() const { return best_cost; }
   130     /// \brief Returns the number of iterations done.
   131     long getIter() const { return iter; }
   132     /// \brief Returns the ordinal number of the last iteration when the
   133     /// solution was improved.
   134     long getLastImpr() const { return last_impr; }
   135     /// \brief Performs one iteration.
   136     bool step() {
   137       iter++;
   138       prev_prev_cost = prev_cost;
   139       prev_cost = curr_cost;
   140       curr_cost = mutate();
   141       if (controller->accept()) {
   142         controller->acceptEvent();
   143         last_impr = iter;
   144         if (curr_cost < best_cost) {
   145           best_cost = curr_cost;
   146           saveAsBest();
   147           controller->improveEvent();
   148         }
   149       }
   150       else {
   151         revert();
   152         curr_cost = prev_cost;
   153         prev_cost = prev_prev_cost;
   154         controller->rejectEvent();
   155       }
   156       return controller->next();
   157     }
   158     /// \brief Performs a given number of iterations.
   159     /// \param n the number of iterations
   160     bool step(int n) {
   161       for(; n > 0 && step(); --n) ;
   162       return !n;
   163     }
   164     /// \brief Starts the annealing process.
   165     void run() {
   166       init();
   167       do { } while (step());
   168     }
   169     /// \brief Destructor.
   170     virtual ~SimAnnBase() {}
   171   };
   172 
   173   /// \brief Simulated annealing class.
   174   class SimAnn : public SimAnnBase {
   175   private:
   176     /// \brief Pointer to the current entity.
   177     EntityBase *curr_ent;
   178     /// \brief Pointer to the best entity.
   179     EntityBase *best_ent;
   180     /// \brief Does initializations before each run.
   181     void init() {
   182       SimAnnBase::init();
   183       if (best_ent) delete best_ent;
   184       best_ent = NULL;
   185       curr_ent->randomize();
   186     }
   187   public:
   188     /// \brief Constructor.
   189     SimAnn() : curr_ent(NULL), best_ent(NULL) {}
   190     /// \brief Destructor.
   191     virtual ~SimAnn() {
   192       if (best_ent) delete best_ent;
   193     }
   194     /// \brief Step to a neighbouring state.
   195     double mutate() {
   196       return curr_ent->mutate();
   197     }
   198     /// \brief Reverts the last mutate().
   199     void revert() {
   200       curr_ent->revert();
   201     }
   202     /// \brief Saves the current solution as the best one.
   203     void saveAsBest() { 
   204       if (best_ent) delete best_ent;
   205       best_ent = curr_ent->clone();
   206     }
   207     /// \brief Sets the current entity.
   208     void setEntity(EntityBase &_ent) {
   209       curr_ent = &_ent;
   210     }
   211     /// \brief Returns a copy of the best found entity.
   212     EntityBase* getBestEntity() { return best_ent->clone(); }
   213   };
   214 
   215   /// \brief A simple controller for the simulated annealing class.
   216   /// This controller starts from a given initial temperature and evenly
   217   /// decreases it.
   218   class SimpleController : public ControllerBase {
   219   private:
   220     /// \brief Maximum number of iterations.
   221     long max_iter;
   222     /// \brief Maximum number of iterations which do not improve the
   223     /// solution.
   224     long max_no_impr;
   225     /// \brief Temperature.
   226     double temp;
   227     /// \brief Annealing factor.
   228     double ann_fact;
   229     /// \brief Constructor.
   230     /// \param _max_iter maximum number of iterations
   231     /// \param _max_no_impr maximum number of consecutive iterations which do
   232     ///        not yield a better solution
   233     /// \param _temp initial temperature
   234     /// \param _ann_fact annealing factor
   235   public:
   236     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   237     double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
   238       max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
   239     {
   240       srand48(time(0));
   241     }
   242     /// \brief This is called when a neighbouring state gets accepted.
   243     void acceptEvent() {}
   244     /// \brief This is called when the accepted neighbouring state's cost is
   245     /// less than the best found one's.
   246     void improveEvent() {}
   247     /// \brief This is called when a neighbouring state gets rejected.
   248     void rejectEvent() {}
   249     /// \brief Decides whether to continue the annealing process or not. Also
   250     /// decreases the temperature.
   251     bool next() {
   252       temp *= ann_fact;
   253       bool quit = (simann->getIter() > max_iter) ||
   254         (simann->getIter() - simann->getLastImpr() > max_no_impr);
   255       return !quit;
   256     }
   257     /// \brief Decides whether to accept the current solution or not.
   258     bool accept() {
   259       double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   260       return (drand48() <= exp(-(cost_diff / temp)));
   261     }
   262     /// \brief Destructor.
   263     virtual ~SimpleController() {}
   264   };
   265 
   266   /// \brief A controller with preset running time for the simulated annealing
   267   /// class.
   268   /// With this controller you can set the running time of the annealing
   269   /// process in advance. It works the following way: the controller measures
   270   /// a kind of divergence. The divergence is the difference of the average
   271   /// cost of the recently found solutions the cost of the best found one. In
   272   /// case this divergence is greater than a given threshold, then we decrease
   273   /// the annealing factor, that is we cool the system faster. In case the
   274   /// divergence is lower than the threshold, then we increase the temperature.
   275   /// The threshold is a function of the elapsed time which reaches zero at the
   276   /// desired end time.
   277   class AdvancedController : public ControllerBase {
   278   private:
   279     /// \brief Timer class to measure the elapsed time.
   280     Timer timer;
   281     /// \brief Calculates the threshold value.
   282     /// \param time the elapsed time in seconds
   283     virtual double threshold(double time) {
   284       return (-1.0) * start_threshold / end_time * time + start_threshold;
   285     }
   286     /// \brief Parameter used to calculate the running average.
   287     double alpha;
   288     /// \brief Parameter used to decrease the annealing factor.
   289     double beta;
   290     /// \brief Parameter used to increase the temperature.
   291     double gamma;
   292     /// \brief The time at the end of the algorithm.
   293     double end_time;
   294     /// \brief The time at the start of the algorithm.
   295     double start_time;
   296     /// \brief Starting threshold.
   297     double start_threshold;
   298     /// \brief Average cost of recent solutions.
   299     double avg_cost;
   300     /// \brief Temperature.
   301     double temp;
   302     /// \brief Annealing factor.
   303     double ann_fact;
   304     /// \brief Initial annealing factor.
   305     double init_ann_fact;
   306     /// \brief True when the annealing process has been started.
   307     bool start;
   308   public:
   309     /// \brief Constructor.
   310     /// \param _end_time running time in seconds
   311     /// \param _alpha parameter used to calculate the running average
   312     /// \param _beta parameter used to decrease the annealing factor
   313     /// \param _gamma parameter used to increase the temperature
   314     /// \param _ann_fact initial annealing factor
   315     AdvancedController(double _end_time, double _alpha = 0.2,
   316     double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
   317     alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
   318     ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
   319     {
   320       srand48(time(0));
   321     }
   322     /// \brief Does initializations before each run.
   323     void init() {
   324       avg_cost = simann->getCurrCost();
   325     }
   326     /// \brief This is called when a neighbouring state gets accepted.
   327     void acceptEvent() {
   328       avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
   329       if (!start) {
   330         static int cnt = 0;
   331         cnt++;
   332         if (cnt >= 100) {
   333           // calculate starting threshold and starting temperature
   334           start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
   335           temp = 10000.0;
   336           start = true;
   337           timer.restart();
   338         }
   339       }
   340     }
   341     /// \brief Decides whether to continue the annealing process or not.
   342     bool next() {
   343       if (!start) {
   344         return true;
   345       }
   346       else {
   347         double elapsed_time = timer.realTime();
   348         if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
   349           // decrease the annealing factor
   350           ann_fact *= beta;
   351         }
   352         else {
   353           // increase the temperature
   354           temp *= gamma;
   355           // reset the annealing factor
   356           ann_fact = init_ann_fact;
   357         }
   358         temp *= ann_fact;
   359         return elapsed_time < end_time;
   360       }
   361     }
   362     /// \brief Decides whether to accept the current solution or not.
   363     bool accept() {
   364       if (!start) {
   365         return true;
   366       }
   367       else {
   368         double cost_diff = simann->getCurrCost() - simann->getPrevCost();
   369         return (drand48() <= exp(-(cost_diff / temp)));
   370       }
   371     }
   372     /// \brief Destructor.
   373     virtual ~AdvancedController() {}
   374   };
   375 
   376 /// @}
   377 
   378 }
   379 
   380 #endif