3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_PREFLOW_H
20 #define LEMON_PREFLOW_H
25 #include <lemon/error.h>
26 #include <lemon/bits/invalid.h>
27 #include <lemon/tolerance.h>
28 #include <lemon/maps.h>
29 #include <lemon/graph_utils.h>
33 /// \brief Implementation of the preflow algorithm.
38 ///\brief %Preflow algorithms class.
40 ///This class provides an implementation of the \e preflow \e
41 ///algorithm producing a flow of maximum value in a directed
42 ///graph. The preflow algorithms are the fastest known max flow algorithms.
43 ///The \e source node, the \e target node, the \e
44 ///capacity of the edges and the \e starting \e flow value of the
45 ///edges should be passed to the algorithm through the
46 ///constructor. It is possible to change these quantities using the
47 ///functions \ref source, \ref target, \ref capacityMap and \ref
50 ///After running \ref lemon::Preflow::phase1() "phase1()"
51 ///or \ref lemon::Preflow::run() "run()", the maximal flow
52 ///value can be obtained by calling \ref flowValue(). The minimum
53 ///value cut can be written into a <tt>bool</tt> node map by
54 ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
55 ///the inclusionwise minimum and maximum of the minimum value cuts,
58 ///\param Graph The directed graph type the algorithm runs on.
59 ///\param Num The number type of the capacities and the flow values.
60 ///\param CapacityMap The capacity map type.
61 ///\param FlowMap The flow map type.
62 ///\param Tolerance The tolerance type.
64 ///\author Jacint Szabo
65 ///\todo Second template parameter is superfluous
66 template <typename Graph, typename Num,
67 typename CapacityMap=typename Graph::template EdgeMap<Num>,
68 typename FlowMap=typename Graph::template EdgeMap<Num>,
69 typename Tolerance=Tolerance<Num> >
72 typedef typename Graph::Node Node;
73 typedef typename Graph::NodeIt NodeIt;
74 typedef typename Graph::EdgeIt EdgeIt;
75 typedef typename Graph::OutEdgeIt OutEdgeIt;
76 typedef typename Graph::InEdgeIt InEdgeIt;
78 typedef typename Graph::template NodeMap<Node> NNMap;
79 typedef typename std::vector<Node> VecNode;
84 const CapacityMap* _capacity;
89 int _node_num; //the number of nodes of G
91 typename Graph::template NodeMap<int> level;
92 typename Graph::template NodeMap<Num> excess;
94 // constants used for heuristics
95 static const int H0=20;
96 static const int H1=1;
100 ///\ref Exception for the case when s=t.
102 ///\ref Exception for the case when the source equals the target.
103 class InvalidArgument : public lemon::LogicError {
105 virtual const char* what() const throw() {
106 return "lemon::Preflow::InvalidArgument";
111 ///Indicates the property of the starting flow map.
113 ///Indicates the property of the starting flow map.
116 ///indicates an unspecified edge map. \c flow will be
117 ///set to the constant zero flow in the beginning of
118 ///the algorithm in this case.
120 ///constant zero flow
122 ///any flow, i.e. the sum of the in-flows equals to
123 ///the sum of the out-flows in every node except the \c source and
126 ///any preflow, i.e. the sum of the in-flows is at
127 ///least the sum of the out-flows in every node except the \c source.
131 ///Indicates the state of the preflow algorithm.
133 ///Indicates the state of the preflow algorithm.
136 ///before running the algorithm or
137 ///at an unspecified state.
139 ///right after running \ref phase1()
140 AFTER_PREFLOW_PHASE_1,
141 ///after running \ref phase2()
142 AFTER_PREFLOW_PHASE_2
147 StatusEnum status; // Do not needle this flag only if necessary.
150 ///The constructor of the class.
152 ///The constructor of the class.
153 ///\param _gr The directed graph the algorithm runs on.
154 ///\param _s The source node.
155 ///\param _t The target node.
156 ///\param _cap The capacity of the edges.
157 ///\param _f The flow of the edges.
158 ///\param _sr Tolerance class.
159 ///Except the graph, all of these parameters can be reset by
160 ///calling \ref source, \ref target, \ref capacityMap and \ref
162 Preflow(const Graph& _gr, Node _s, Node _t,
163 const CapacityMap& _cap, FlowMap& _f,
164 const Tolerance &_sr=Tolerance()) :
165 _g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
166 _flow(&_f), _surely(_sr),
167 _node_num(countNodes(_gr)), level(_gr), excess(_gr,0),
168 flow_prop(NO_FLOW), status(AFTER_NOTHING) {
169 if ( _source==_target )
170 throw InvalidArgument();
173 ///Give a reference to the tolerance handler class
175 ///Give a reference to the tolerance handler class
177 Tolerance &tolerance() { return _surely; }
179 ///Runs the preflow algorithm.
181 ///Runs the preflow algorithm.
188 ///Runs the preflow algorithm.
190 ///Runs the preflow algorithm.
191 ///\pre The starting flow map must be
192 /// - a constant zero flow if \c fp is \c ZERO_FLOW,
193 /// - an arbitrary flow if \c fp is \c GEN_FLOW,
194 /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
195 /// - any map if \c fp is NO_FLOW.
196 ///If the starting flow map is a flow or a preflow then
197 ///the algorithm terminates faster.
198 void run(FlowEnum fp) {
203 ///Runs the first phase of the preflow algorithm.
205 ///The preflow algorithm consists of two phases, this method runs
206 ///the first phase. After the first phase the maximum flow value
207 ///and a minimum value cut can already be computed, although a
208 ///maximum flow is not yet obtained. So after calling this method
209 ///\ref flowValue returns the value of a maximum flow and \ref
210 ///minCut returns a minimum cut.
211 ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
212 ///value cuts unless calling \ref phase2.
213 ///\pre The starting flow must be
214 ///- a constant zero flow if \c fp is \c ZERO_FLOW,
215 ///- an arbitary flow if \c fp is \c GEN_FLOW,
216 ///- an arbitary preflow if \c fp is \c PRE_FLOW,
217 ///- any map if \c fp is NO_FLOW.
218 void phase1(FlowEnum fp)
225 ///Runs the first phase of the preflow algorithm.
227 ///The preflow algorithm consists of two phases, this method runs
228 ///the first phase. After the first phase the maximum flow value
229 ///and a minimum value cut can already be computed, although a
230 ///maximum flow is not yet obtained. So after calling this method
231 ///\ref flowValue returns the value of a maximum flow and \ref
232 ///minCut returns a minimum cut.
233 ///\warning \ref minMinCut() and \ref maxMinCut() do not
234 ///give minimum value cuts unless calling \ref phase2().
237 int heur0=(int)(H0*_node_num); //time while running 'bound decrease'
238 int heur1=(int)(H1*_node_num); //time while running 'highest label'
239 int heur=heur1; //starting time interval (#of relabels)
243 //It is 0 in case 'bound decrease' and 1 in case 'highest label'
246 //Needed for 'bound decrease', true means no active
247 //nodes are above bound b.
249 int k=_node_num-2; //bound on the highest level under n containing a node
250 int b=k; //bound on the highest level under n containing an active node
252 VecNode first(_node_num, INVALID);
253 NNMap next(*_g, INVALID);
255 NNMap left(*_g, INVALID);
256 NNMap right(*_g, INVALID);
257 VecNode level_list(_node_num,INVALID);
258 //List of the nodes in level i<n, set to n.
260 preflowPreproc(first, next, level_list, left, right);
262 //Push/relabel on the highest level active nodes.
265 if ( !what_heur && !end && k > 0 ) {
271 if ( first[b]==INVALID ) --b;
276 int newlevel=push(w, next, first);
277 if ( excess[w] != 0 ) {
278 relabel(w, newlevel, first, next, level_list,
279 left, right, b, k, what_heur);
283 if ( numrelabel >= heur ) {
298 status=AFTER_PREFLOW_PHASE_1;
303 // list 'level_list' on the nodes on level i implemented by hand
304 // stack 'active' on the active nodes on level i
305 // runs heuristic 'highest label' for H1*n relabels
306 // runs heuristic 'bound decrease' for H0*n relabels,
307 // starts with 'highest label'
308 // Parameters H0 and H1 are initialized to 20 and 1.
311 ///Runs the second phase of the preflow algorithm.
313 ///The preflow algorithm consists of two phases, this method runs
314 ///the second phase. After calling \ref phase1() and then
316 /// \ref flowMap() return a maximum flow, \ref flowValue
317 ///returns the value of a maximum flow, \ref minCut returns a
318 ///minimum cut, while the methods \ref minMinCut and \ref
319 ///maxMinCut return the inclusionwise minimum and maximum cuts of
320 ///minimum value, resp. \pre \ref phase1 must be called before.
322 /// \todo The inexact computation can cause positive excess on a set of
323 /// unpushable nodes. We may have to watch the empty level in this case
324 /// due to avoid the terrible long running time.
328 int k=_node_num-2; //bound on the highest level under n containing a node
329 int b=k; //bound on the highest level under n of an active node
332 VecNode first(_node_num, INVALID);
333 NNMap next(*_g, INVALID);
334 level.set(_source,0);
335 std::queue<Node> bfs_queue;
336 bfs_queue.push(_source);
338 while ( !bfs_queue.empty() ) {
340 Node v=bfs_queue.front();
344 for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
345 if ( !_surely.positive((*_capacity)[e] - (*_flow)[e])) continue;
346 Node u=_g->source(e);
347 if ( level[u] >= _node_num ) {
350 if ( excess[u] != 0 ) {
351 next.set(u,first[l]);
357 for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
358 if ( !_surely.positive((*_flow)[e]) ) continue;
359 Node u=_g->target(e);
360 if ( level[u] >= _node_num ) {
363 if ( excess[u] != 0 ) {
364 next.set(u,first[l]);
375 if ( first[b]==INVALID ) --b;
379 int newlevel=push(w,next, first);
381 if ( newlevel == _node_num) {
383 level.set(w,_node_num);
386 if ( excess[w] != 0 ) {
387 level.set(w,++newlevel);
388 next.set(w,first[newlevel]);
395 status=AFTER_PREFLOW_PHASE_2;
398 /// Returns the value of the maximum flow.
400 /// Returns the value of the maximum flow by returning the excess
401 /// of the target node \c t. This value equals to the value of
402 /// the maximum flow already after running \ref phase1.
403 Num flowValue() const {
404 return excess[_target];
408 ///Returns a minimum value cut.
410 ///Sets \c M to the characteristic vector of a minimum value
411 ///cut. This method can be called both after running \ref
412 ///phase1 and \ref phase2. It is much faster after
413 ///\ref phase1. \pre M should be a bool-valued node-map. \pre
414 ///If \ref minCut() is called after \ref phase2() then M should
415 ///be initialized to false.
416 template<typename _CutMap>
417 void minCut(_CutMap& M) const {
419 case AFTER_PREFLOW_PHASE_1:
420 for(NodeIt v(*_g); v!=INVALID; ++v) {
421 if (level[v] < _node_num) {
428 case AFTER_PREFLOW_PHASE_2:
436 ///Returns the inclusionwise minimum of the minimum value cuts.
438 ///Sets \c M to the characteristic vector of the minimum value cut
439 ///which is inclusionwise minimum. It is computed by processing a
440 ///bfs from the source node \c s in the residual graph. \pre M
441 ///should be a node map of bools initialized to false. \pre \ref
442 ///phase2 should already be run.
443 template<typename _CutMap>
444 void minMinCut(_CutMap& M) const {
446 std::queue<Node> queue;
450 while (!queue.empty()) {
451 Node w=queue.front();
454 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
455 Node v=_g->target(e);
456 if (!M[v] && _surely.positive((*_capacity)[e] -(*_flow)[e]) ) {
462 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
463 Node v=_g->source(e);
464 if (!M[v] && _surely.positive((*_flow)[e]) ) {
472 ///Returns the inclusionwise maximum of the minimum value cuts.
474 ///Sets \c M to the characteristic vector of the minimum value cut
475 ///which is inclusionwise maximum. It is computed by processing a
476 ///backward bfs from the target node \c t in the residual graph.
477 ///\pre \ref phase2() or run() should already be run.
478 template<typename _CutMap>
479 void maxMinCut(_CutMap& M) const {
481 for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
483 std::queue<Node> queue;
485 M.set(_target,false);
488 while (!queue.empty()) {
489 Node w=queue.front();
492 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
493 Node v=_g->source(e);
494 if (M[v] && _surely.positive((*_capacity)[e] - (*_flow)[e]) ) {
500 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
501 Node v=_g->target(e);
502 if (M[v] && _surely.positive((*_flow)[e]) ) {
510 ///Sets the source node to \c _s.
512 ///Sets the source node to \c _s.
514 void source(Node _s) {
516 if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
517 status=AFTER_NOTHING;
520 ///Returns the source node.
522 ///Returns the source node.
524 Node source() const {
528 ///Sets the target node to \c _t.
530 ///Sets the target node to \c _t.
532 void target(Node _t) {
534 if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
535 status=AFTER_NOTHING;
538 ///Returns the target node.
540 ///Returns the target node.
542 Node target() const {
546 /// Sets the edge map of the capacities to _cap.
548 /// Sets the edge map of the capacities to _cap.
550 void capacityMap(const CapacityMap& _cap) {
552 status=AFTER_NOTHING;
554 /// Returns a reference to capacity map.
556 /// Returns a reference to capacity map.
558 const CapacityMap &capacityMap() const {
562 /// Sets the edge map of the flows to _flow.
564 /// Sets the edge map of the flows to _flow.
566 void flowMap(FlowMap& _f) {
569 status=AFTER_NOTHING;
572 /// Returns a reference to flow map.
574 /// Returns a reference to flow map.
576 const FlowMap &flowMap() const {
582 int push(Node w, NNMap& next, VecNode& first) {
586 int newlevel=_node_num; //bound on the next level of w
588 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
589 if ( !_surely.positive((*_capacity)[e] - (*_flow)[e])) continue;
590 Node v=_g->target(e);
592 if( lev > level[v] ) { //Push is allowed now
594 if ( excess[v] == 0 && v!=_target && v!=_source ) {
595 next.set(v,first[level[v]]);
599 Num cap=(*_capacity)[e];
603 if ( ! _surely.less(remcap, exc) ) { //A nonsaturating push.
605 _flow->set(e, flo+exc);
606 excess.set(v, excess[v]+exc);
610 } else { //A saturating push.
612 excess.set(v, excess[v]+remcap);
615 } else if ( newlevel > level[v] ) newlevel = level[v];
619 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
621 if ( !_surely.positive((*_flow)[e]) ) continue;
622 Node v=_g->source(e);
624 if( lev > level[v] ) { //Push is allowed now
626 if ( excess[v] == 0 && v!=_target && v!=_source ) {
627 next.set(v,first[level[v]]);
633 if ( !_surely.less(flo, exc) ) { //A nonsaturating push.
635 _flow->set(e, flo-exc);
636 excess.set(v, excess[v]+exc);
639 } else { //A saturating push.
641 excess.set(v, excess[v]+flo);
645 } else if ( newlevel > level[v] ) newlevel = level[v];
648 } // if w still has excess after the out edge for cycle
657 void preflowPreproc(VecNode& first, NNMap& next,
658 VecNode& level_list, NNMap& left, NNMap& right)
660 for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
661 std::queue<Node> bfs_queue;
663 if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
664 //Reverse_bfs from t in the residual graph,
665 //to find the starting level.
666 level.set(_target,0);
667 bfs_queue.push(_target);
669 while ( !bfs_queue.empty() ) {
671 Node v=bfs_queue.front();
675 for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
676 if ( !_surely.positive((*_capacity)[e] - (*_flow)[e] )) continue;
677 Node w=_g->source(e);
678 if ( level[w] == _node_num && w != _source ) {
680 Node z=level_list[l];
681 if ( z!=INVALID ) left.set(z,w);
688 for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
689 if ( !_surely.positive((*_flow)[e]) ) continue;
690 Node w=_g->target(e);
691 if ( level[w] == _node_num && w != _source ) {
693 Node z=level_list[l];
694 if ( z!=INVALID ) left.set(z,w);
706 for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
708 for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
710 //Reverse_bfs from t, to find the starting level.
711 level.set(_target,0);
712 bfs_queue.push(_target);
714 while ( !bfs_queue.empty() ) {
716 Node v=bfs_queue.front();
720 for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
721 Node w=_g->source(e);
722 if ( level[w] == _node_num && w != _source ) {
724 Node z=level_list[l];
725 if ( z!=INVALID ) left.set(z,w);
734 for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
735 Num c=(*_capacity)[e];
736 if ( !_surely.positive(c) ) continue;
737 Node w=_g->target(e);
738 if ( level[w] < _node_num ) {
739 if ( excess[w] == 0 && w!=_target ) { //putting into the stack
740 next.set(w,first[level[w]]);
744 excess.set(w, excess[w]+c);
750 for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
753 for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
754 for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
755 if (!_surely.positive(exc)) {
758 excess.set(_target,exc);
762 for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e) {
763 Num rem=(*_capacity)[e]-(*_flow)[e];
764 if ( !_surely.positive(rem) ) continue;
765 Node w=_g->target(e);
766 if ( level[w] < _node_num ) {
767 if ( excess[w] == 0 && w!=_target ) { //putting into the stack
768 next.set(w,first[level[w]]);
771 _flow->set(e, (*_capacity)[e]);
772 excess.set(w, excess[w]+rem);
776 for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
777 if ( !_surely.positive((*_flow)[e]) ) continue;
778 Node w=_g->source(e);
779 if ( level[w] < _node_num ) {
780 if ( excess[w] == 0 && w!=_target ) {
781 next.set(w,first[level[w]]);
784 excess.set(w, excess[w]+(*_flow)[e]);
792 for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
793 Num rem=(*_capacity)[e]-(*_flow)[e];
794 if ( !_surely.positive(rem) ) continue;
795 Node w=_g->target(e);
796 if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
799 for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
800 if ( !_surely.positive((*_flow)[e]) ) continue;
801 Node w=_g->source(e);
802 if ( level[w] < _node_num ) _flow->set(e, 0);
805 //computing the excess
806 for(NodeIt w(*_g); w!=INVALID; ++w) {
808 for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
809 for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
810 if (!_surely.positive(exc)) {
815 //putting the active nodes into the stack
817 if ( exc != 0 && lev < _node_num && Node(w) != _target ) {
818 next.set(w,first[lev]);
827 void relabel(Node w, int newlevel, VecNode& first, NNMap& next,
828 VecNode& level_list, NNMap& left,
829 NNMap& right, int& b, int& k, bool what_heur )
834 Node right_n=right[w];
838 if ( right_n!=INVALID ) {
839 if ( left_n!=INVALID ) {
840 right.set(left_n, right_n);
841 left.set(right_n, left_n);
843 level_list[lev]=right_n;
844 left.set(right_n, INVALID);
847 if ( left_n!=INVALID ) {
848 right.set(left_n, INVALID);
850 level_list[lev]=INVALID;
855 if ( level_list[lev]==INVALID ) {
858 for (int i=lev; i!=k ; ) {
859 Node v=level_list[++i];
860 while ( v!=INVALID ) {
861 level.set(v,_node_num);
864 level_list[i]=INVALID;
865 if ( !what_heur ) first[i]=INVALID;
868 level.set(w,_node_num);
875 if ( newlevel == _node_num ) level.set(w,_node_num);
877 level.set(w,++newlevel);
878 next.set(w,first[newlevel]);
880 if ( what_heur ) b=newlevel;
881 if ( k < newlevel ) ++k; //now k=newlevel
882 Node z=level_list[newlevel];
883 if ( z!=INVALID ) left.set(z,w);
886 level_list[newlevel]=w;
894 ///\brief Function type interface for Preflow algorithm.
896 ///Function type interface for Preflow algorithm.
898 template<class GR, class CM, class FM>
899 Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
900 typename GR::Node source,
901 typename GR::Node target,
906 return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
911 #endif //LEMON_PREFLOW_H