lemon/graph_utils.h
author deba
Mon, 18 Dec 2006 14:35:33 +0000
changeset 2331 e389580e3348
parent 2329 3f4a04a9b7bf
child 2350 eb371753e814
permissions -rw-r--r--
Easier inverse than m.inverse()[a] => m(a)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 ///
    40 ///
    41 
    42 
    43 namespace lemon {
    44 
    45   /// \addtogroup gutils
    46   /// @{
    47 
    48   ///Creates convenience typedefs for the graph types and iterators
    49 
    50   ///This \c \#define creates convenience typedefs for the following types
    51   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    52   ///\c OutEdgeIt
    53   ///\note If \c G it a template parameter, it should be used in this way.
    54   ///\code
    55   ///  GRAPH_TYPEDEFS(typename G)
    56   ///\endcode
    57   ///
    58   ///\warning There are no typedefs for the graph maps because of the lack of
    59   ///template typedefs in C++.
    60 #define GRAPH_TYPEDEFS(Graph)				\
    61   typedef Graph::     Node      Node;			\
    62     typedef Graph::   NodeIt    NodeIt;			\
    63     typedef Graph::   Edge      Edge;			\
    64     typedef Graph::   EdgeIt    EdgeIt;			\
    65     typedef Graph:: InEdgeIt  InEdgeIt;			\
    66     typedef Graph::OutEdgeIt OutEdgeIt;			
    67 
    68   ///Creates convenience typedefs for the undirected graph types and iterators
    69 
    70   ///This \c \#define creates the same convenience typedefs as defined by
    71   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    72   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    73   ///
    74   ///\note If \c G it a template parameter, it should be used in this way.
    75   ///\code
    76   ///  UGRAPH_TYPEDEFS(typename G)
    77   ///\endcode
    78   ///
    79   ///\warning There are no typedefs for the graph maps because of the lack of
    80   ///template typedefs in C++.
    81 #define UGRAPH_TYPEDEFS(Graph)				\
    82   GRAPH_TYPEDEFS(Graph)						\
    83     typedef Graph:: UEdge   UEdge;			\
    84     typedef Graph:: UEdgeIt UEdgeIt;			\
    85     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    86 
    87   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    88   ///types and iterators
    89 
    90   ///This \c \#define creates the same convenience typedefs as defined by
    91   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    92   ///\c ANodeIt, \c BNodeIt, 
    93   ///
    94   ///\note If \c G it a template parameter, it should be used in this way.
    95   ///\code
    96   ///  BPUGRAPH_TYPEDEFS(typename G)
    97   ///\endcode
    98   ///
    99   ///\warning There are no typedefs for the graph maps because of the lack of
   100   ///template typedefs in C++.
   101 #define BPUGRAPH_TYPEDEFS(Graph)            \
   102   UGRAPH_TYPEDEFS(Graph)                    \
   103     typedef Graph::ANode ANode;             \
   104     typedef Graph::BNode BNode;             \
   105     typedef Graph::ANodeIt ANodeIt;	    \
   106     typedef Graph::BNodeIt BNodeIt;
   107 
   108   /// \brief Function to count the items in the graph.
   109   ///
   110   /// This function counts the items (nodes, edges etc) in the graph.
   111   /// The complexity of the function is O(n) because
   112   /// it iterates on all of the items.
   113 
   114   template <typename Graph, typename Item>
   115   inline int countItems(const Graph& g) {
   116     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   117     int num = 0;
   118     for (ItemIt it(g); it != INVALID; ++it) {
   119       ++num;
   120     }
   121     return num;
   122   }
   123 
   124   // Node counting:
   125 
   126   namespace _graph_utils_bits {
   127     
   128     template <typename Graph, typename Enable = void>
   129     struct CountNodesSelector {
   130       static int count(const Graph &g) {
   131         return countItems<Graph, typename Graph::Node>(g);
   132       }
   133     };
   134 
   135     template <typename Graph>
   136     struct CountNodesSelector<
   137       Graph, typename 
   138       enable_if<typename Graph::NodeNumTag, void>::type> 
   139     {
   140       static int count(const Graph &g) {
   141         return g.nodeNum();
   142       }
   143     };    
   144   }
   145 
   146   /// \brief Function to count the nodes in the graph.
   147   ///
   148   /// This function counts the nodes in the graph.
   149   /// The complexity of the function is O(n) but for some
   150   /// graph structures it is specialized to run in O(1).
   151   ///
   152   /// \todo refer how to specialize it
   153 
   154   template <typename Graph>
   155   inline int countNodes(const Graph& g) {
   156     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   157   }
   158 
   159   namespace _graph_utils_bits {
   160     
   161     template <typename Graph, typename Enable = void>
   162     struct CountANodesSelector {
   163       static int count(const Graph &g) {
   164         return countItems<Graph, typename Graph::ANode>(g);
   165       }
   166     };
   167 
   168     template <typename Graph>
   169     struct CountANodesSelector<
   170       Graph, typename 
   171       enable_if<typename Graph::NodeNumTag, void>::type> 
   172     {
   173       static int count(const Graph &g) {
   174         return g.aNodeNum();
   175       }
   176     };    
   177   }
   178 
   179   /// \brief Function to count the anodes in the graph.
   180   ///
   181   /// This function counts the anodes in the graph.
   182   /// The complexity of the function is O(an) but for some
   183   /// graph structures it is specialized to run in O(1).
   184   ///
   185   /// \todo refer how to specialize it
   186 
   187   template <typename Graph>
   188   inline int countANodes(const Graph& g) {
   189     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   190   }
   191 
   192   namespace _graph_utils_bits {
   193     
   194     template <typename Graph, typename Enable = void>
   195     struct CountBNodesSelector {
   196       static int count(const Graph &g) {
   197         return countItems<Graph, typename Graph::BNode>(g);
   198       }
   199     };
   200 
   201     template <typename Graph>
   202     struct CountBNodesSelector<
   203       Graph, typename 
   204       enable_if<typename Graph::NodeNumTag, void>::type> 
   205     {
   206       static int count(const Graph &g) {
   207         return g.bNodeNum();
   208       }
   209     };    
   210   }
   211 
   212   /// \brief Function to count the bnodes in the graph.
   213   ///
   214   /// This function counts the bnodes in the graph.
   215   /// The complexity of the function is O(bn) but for some
   216   /// graph structures it is specialized to run in O(1).
   217   ///
   218   /// \todo refer how to specialize it
   219 
   220   template <typename Graph>
   221   inline int countBNodes(const Graph& g) {
   222     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   223   }
   224 
   225 
   226   // Edge counting:
   227 
   228   namespace _graph_utils_bits {
   229     
   230     template <typename Graph, typename Enable = void>
   231     struct CountEdgesSelector {
   232       static int count(const Graph &g) {
   233         return countItems<Graph, typename Graph::Edge>(g);
   234       }
   235     };
   236 
   237     template <typename Graph>
   238     struct CountEdgesSelector<
   239       Graph, 
   240       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   241     {
   242       static int count(const Graph &g) {
   243         return g.edgeNum();
   244       }
   245     };    
   246   }
   247 
   248   /// \brief Function to count the edges in the graph.
   249   ///
   250   /// This function counts the edges in the graph.
   251   /// The complexity of the function is O(e) but for some
   252   /// graph structures it is specialized to run in O(1).
   253 
   254   template <typename Graph>
   255   inline int countEdges(const Graph& g) {
   256     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   257   }
   258 
   259   // Undirected edge counting:
   260   namespace _graph_utils_bits {
   261     
   262     template <typename Graph, typename Enable = void>
   263     struct CountUEdgesSelector {
   264       static int count(const Graph &g) {
   265         return countItems<Graph, typename Graph::UEdge>(g);
   266       }
   267     };
   268 
   269     template <typename Graph>
   270     struct CountUEdgesSelector<
   271       Graph, 
   272       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   273     {
   274       static int count(const Graph &g) {
   275         return g.uEdgeNum();
   276       }
   277     };    
   278   }
   279 
   280   /// \brief Function to count the undirected edges in the graph.
   281   ///
   282   /// This function counts the undirected edges in the graph.
   283   /// The complexity of the function is O(e) but for some
   284   /// graph structures it is specialized to run in O(1).
   285 
   286   template <typename Graph>
   287   inline int countUEdges(const Graph& g) {
   288     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   289 
   290   }
   291 
   292 
   293   template <typename Graph, typename DegIt>
   294   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   295     int num = 0;
   296     for (DegIt it(_g, _n); it != INVALID; ++it) {
   297       ++num;
   298     }
   299     return num;
   300   }
   301 
   302   /// \brief Function to count the number of the out-edges from node \c n.
   303   ///
   304   /// This function counts the number of the out-edges from node \c n
   305   /// in the graph.  
   306   template <typename Graph>
   307   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   308     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   309   }
   310 
   311   /// \brief Function to count the number of the in-edges to node \c n.
   312   ///
   313   /// This function counts the number of the in-edges to node \c n
   314   /// in the graph.  
   315   template <typename Graph>
   316   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   317     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   318   }
   319 
   320   /// \brief Function to count the number of the inc-edges to node \c n.
   321   ///
   322   /// This function counts the number of the inc-edges to node \c n
   323   /// in the graph.  
   324   template <typename Graph>
   325   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   326     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   327   }
   328 
   329   namespace _graph_utils_bits {
   330     
   331     template <typename Graph, typename Enable = void>
   332     struct FindEdgeSelector {
   333       typedef typename Graph::Node Node;
   334       typedef typename Graph::Edge Edge;
   335       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   336         if (e == INVALID) {
   337           g.firstOut(e, u);
   338         } else {
   339           g.nextOut(e);
   340         }
   341         while (e != INVALID && g.target(e) != v) {
   342           g.nextOut(e);
   343         }
   344         return e;
   345       }
   346     };
   347 
   348     template <typename Graph>
   349     struct FindEdgeSelector<
   350       Graph, 
   351       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   352     {
   353       typedef typename Graph::Node Node;
   354       typedef typename Graph::Edge Edge;
   355       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   356         return g.findEdge(u, v, prev);
   357       }
   358     };    
   359   }
   360 
   361   /// \brief Finds an edge between two nodes of a graph.
   362   ///
   363   /// Finds an edge from node \c u to node \c v in graph \c g.
   364   ///
   365   /// If \c prev is \ref INVALID (this is the default value), then
   366   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   367   /// the next edge from \c u to \c v after \c prev.
   368   /// \return The found edge or \ref INVALID if there is no such an edge.
   369   ///
   370   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   371   ///\code
   372   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   ///   ...
   374   /// }
   375   ///\endcode
   376   ///
   377   ///\sa EdgeLookUp
   378   ///\se AllEdgeLookup
   379   ///\sa ConEdgeIt
   380   template <typename Graph>
   381   inline typename Graph::Edge 
   382   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   383            typename Graph::Edge prev = INVALID) {
   384     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   385   }
   386 
   387   /// \brief Iterator for iterating on edges connected the same nodes.
   388   ///
   389   /// Iterator for iterating on edges connected the same nodes. It is 
   390   /// higher level interface for the findEdge() function. You can
   391   /// use it the following way:
   392   ///\code
   393   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   394   ///   ...
   395   /// }
   396   ///\endcode
   397   /// 
   398   ///\sa findEdge()
   399   ///\sa EdgeLookUp
   400   ///\se AllEdgeLookup
   401   ///
   402   /// \author Balazs Dezso 
   403   template <typename _Graph>
   404   class ConEdgeIt : public _Graph::Edge {
   405   public:
   406 
   407     typedef _Graph Graph;
   408     typedef typename Graph::Edge Parent;
   409 
   410     typedef typename Graph::Edge Edge;
   411     typedef typename Graph::Node Node;
   412 
   413     /// \brief Constructor.
   414     ///
   415     /// Construct a new ConEdgeIt iterating on the edges which
   416     /// connects the \c u and \c v node.
   417     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   418       Parent::operator=(findEdge(graph, u, v));
   419     }
   420 
   421     /// \brief Constructor.
   422     ///
   423     /// Construct a new ConEdgeIt which continues the iterating from 
   424     /// the \c e edge.
   425     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   426     
   427     /// \brief Increment operator.
   428     ///
   429     /// It increments the iterator and gives back the next edge.
   430     ConEdgeIt& operator++() {
   431       Parent::operator=(findEdge(graph, graph.source(*this), 
   432 				 graph.target(*this), *this));
   433       return *this;
   434     }
   435   private:
   436     const Graph& graph;
   437   };
   438 
   439   namespace _graph_utils_bits {
   440     
   441     template <typename Graph, typename Enable = void>
   442     struct FindUEdgeSelector {
   443       typedef typename Graph::Node Node;
   444       typedef typename Graph::UEdge UEdge;
   445       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   446         bool b;
   447         if (u != v) {
   448           if (e == INVALID) {
   449             g.firstInc(e, b, u);
   450           } else {
   451             b = g.source(e) == u;
   452             g.nextInc(e, b);
   453           }
   454           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   455             g.nextInc(e, b);
   456           }
   457         } else {
   458           if (e == INVALID) {
   459             g.firstInc(e, b, u);
   460           } else {
   461             b = true;
   462             g.nextInc(e, b);
   463           }
   464           while (e != INVALID && (!b || g.target(e) != v)) {
   465             g.nextInc(e, b);
   466           }
   467         }
   468         return e;
   469       }
   470     };
   471 
   472     template <typename Graph>
   473     struct FindUEdgeSelector<
   474       Graph, 
   475       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   476     {
   477       typedef typename Graph::Node Node;
   478       typedef typename Graph::UEdge UEdge;
   479       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   480         return g.findUEdge(u, v, prev);
   481       }
   482     };    
   483   }
   484 
   485   /// \brief Finds an uedge between two nodes of a graph.
   486   ///
   487   /// Finds an uedge from node \c u to node \c v in graph \c g.
   488   /// If the node \c u and node \c v is equal then each loop edge
   489   /// will be enumerated.
   490   ///
   491   /// If \c prev is \ref INVALID (this is the default value), then
   492   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   493   /// the next edge from \c u to \c v after \c prev.
   494   /// \return The found edge or \ref INVALID if there is no such an edge.
   495   ///
   496   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   497   ///\code
   498   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   499   ///     e = findUEdge(g,u,v,e)) {
   500   ///   ...
   501   /// }
   502   ///\endcode
   503   ///
   504   ///\sa ConEdgeIt
   505 
   506   template <typename Graph>
   507   inline typename Graph::UEdge 
   508   findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   509             typename Graph::UEdge p = INVALID) {
   510     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   511   }
   512 
   513   /// \brief Iterator for iterating on uedges connected the same nodes.
   514   ///
   515   /// Iterator for iterating on uedges connected the same nodes. It is 
   516   /// higher level interface for the findUEdge() function. You can
   517   /// use it the following way:
   518   ///\code
   519   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   520   ///   ...
   521   /// }
   522   ///\endcode
   523   ///
   524   ///\sa findUEdge()
   525   ///
   526   /// \author Balazs Dezso 
   527   template <typename _Graph>
   528   class ConUEdgeIt : public _Graph::UEdge {
   529   public:
   530 
   531     typedef _Graph Graph;
   532     typedef typename Graph::UEdge Parent;
   533 
   534     typedef typename Graph::UEdge UEdge;
   535     typedef typename Graph::Node Node;
   536 
   537     /// \brief Constructor.
   538     ///
   539     /// Construct a new ConUEdgeIt iterating on the edges which
   540     /// connects the \c u and \c v node.
   541     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   542       Parent::operator=(findUEdge(graph, u, v));
   543     }
   544 
   545     /// \brief Constructor.
   546     ///
   547     /// Construct a new ConUEdgeIt which continues the iterating from 
   548     /// the \c e edge.
   549     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   550     
   551     /// \brief Increment operator.
   552     ///
   553     /// It increments the iterator and gives back the next edge.
   554     ConUEdgeIt& operator++() {
   555       Parent::operator=(findUEdge(graph, graph.source(*this), 
   556 				      graph.target(*this), *this));
   557       return *this;
   558     }
   559   private:
   560     const Graph& graph;
   561   };
   562 
   563   /// \brief Copy a map.
   564   ///
   565   /// This function copies the \c source map to the \c target map. It uses the
   566   /// given iterator to iterate on the data structure and it uses the \c ref
   567   /// mapping to convert the source's keys to the target's keys.
   568   template <typename Target, typename Source, 
   569 	    typename ItemIt, typename Ref>	    
   570   void copyMap(Target& target, const Source& source, 
   571 	       ItemIt it, const Ref& ref) {
   572     for (; it != INVALID; ++it) {
   573       target[ref[it]] = source[it];
   574     }
   575   }
   576 
   577   /// \brief Copy the source map to the target map.
   578   ///
   579   /// Copy the \c source map to the \c target map. It uses the given iterator
   580   /// to iterate on the data structure.
   581   template <typename Target, typename Source, typename ItemIt>	    
   582   void copyMap(Target& target, const Source& source, ItemIt it) {
   583     for (; it != INVALID; ++it) {
   584       target[it] = source[it];
   585     }
   586   }
   587 
   588   namespace _graph_utils_bits {
   589 
   590     template <typename Graph, typename Item, typename RefMap>
   591     class MapCopyBase {
   592     public:
   593       virtual void copy(const Graph& source, const RefMap& refMap) = 0;
   594       
   595       virtual ~MapCopyBase() {}
   596     };
   597 
   598     template <typename Graph, typename Item, typename RefMap, 
   599               typename TargetMap, typename SourceMap>
   600     class MapCopy : public MapCopyBase<Graph, Item, RefMap> {
   601     public:
   602 
   603       MapCopy(TargetMap& tmap, const SourceMap& map) 
   604         : _tmap(tmap), _map(map) {}
   605       
   606       virtual void copy(const Graph& graph, const RefMap& refMap) {
   607         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   608         for (ItemIt it(graph); it != INVALID; ++it) {
   609           _tmap.set(refMap[it], _map[it]);
   610         }
   611       }
   612 
   613     private:
   614       TargetMap& _tmap;
   615       const SourceMap& _map;
   616     };
   617 
   618     template <typename Graph, typename Item, typename RefMap, typename It>
   619     class ItemCopy : public MapCopyBase<Graph, Item, RefMap> {
   620     public:
   621 
   622       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
   623       
   624       virtual void copy(const Graph&, const RefMap& refMap) {
   625         _it = refMap[_item];
   626       }
   627 
   628     private:
   629       It& _it;
   630       Item _item;
   631     };
   632 
   633     template <typename Graph, typename Item, typename RefMap, typename Ref>
   634     class RefCopy : public MapCopyBase<Graph, Item, RefMap> {
   635     public:
   636 
   637       RefCopy(Ref& map) : _map(map) {}
   638       
   639       virtual void copy(const Graph& graph, const RefMap& refMap) {
   640         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   641         for (ItemIt it(graph); it != INVALID; ++it) {
   642           _map.set(it, refMap[it]);
   643         }
   644       }
   645 
   646     private:
   647       Ref& _map;
   648     };
   649 
   650     template <typename Graph, typename Item, typename RefMap, 
   651               typename CrossRef>
   652     class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> {
   653     public:
   654 
   655       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   656       
   657       virtual void copy(const Graph& graph, const RefMap& refMap) {
   658         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   659         for (ItemIt it(graph); it != INVALID; ++it) {
   660           _cmap.set(refMap[it], it);
   661         }
   662       }
   663 
   664     private:
   665       CrossRef& _cmap;
   666     };
   667 
   668     template <typename Graph, typename Enable = void>
   669     struct GraphCopySelector {
   670       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   671       static void copy(Graph &target, const Source& source,
   672                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   673         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   674           nodeRefMap[it] = target.addNode();
   675         }
   676         for (typename Source::EdgeIt it(source); it != INVALID; ++it) {
   677           edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   678                                           nodeRefMap[source.target(it)]);
   679         }
   680       }
   681     };
   682 
   683     template <typename Graph>
   684     struct GraphCopySelector<
   685       Graph, 
   686       typename enable_if<typename Graph::BuildTag, void>::type> 
   687     {
   688       template <typename Source, typename NodeRefMap, typename EdgeRefMap>
   689       static void copy(Graph &target, const Source& source,
   690                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   691         target.build(source, nodeRefMap, edgeRefMap);
   692       }
   693     };
   694 
   695     template <typename UGraph, typename Enable = void>
   696     struct UGraphCopySelector {
   697       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   698       static void copy(UGraph &target, const Source& source,
   699                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   700         for (typename Source::NodeIt it(source); it != INVALID; ++it) {
   701           nodeRefMap[it] = target.addNode();
   702         }
   703         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   704           uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   705                                           nodeRefMap[source.target(it)]);
   706         }
   707       }
   708     };
   709 
   710     template <typename UGraph>
   711     struct UGraphCopySelector<
   712       UGraph, 
   713       typename enable_if<typename UGraph::BuildTag, void>::type> 
   714     {
   715       template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
   716       static void copy(UGraph &target, const Source& source,
   717                        NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
   718         target.build(source, nodeRefMap, uEdgeRefMap);
   719       }
   720     };
   721 
   722     template <typename BpUGraph, typename Enable = void>
   723     struct BpUGraphCopySelector {
   724       template <typename Source, typename ANodeRefMap, 
   725                 typename BNodeRefMap, typename UEdgeRefMap>
   726       static void copy(BpUGraph &target, const Source& source,
   727                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   728                        UEdgeRefMap& uEdgeRefMap) {
   729         for (typename Source::ANodeIt it(source); it != INVALID; ++it) {
   730           aNodeRefMap[it] = target.addANode();
   731         }
   732         for (typename Source::BNodeIt it(source); it != INVALID; ++it) {
   733           bNodeRefMap[it] = target.addBNode();
   734         }
   735         for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
   736           uEdgeRefMap[it] = target.addEdge(aNodeRefMap[source.aNode(it)], 
   737                                            bNodeRefMap[source.bNode(it)]);
   738         }
   739       }
   740     };
   741 
   742     template <typename BpUGraph>
   743     struct BpUGraphCopySelector<
   744       BpUGraph, 
   745       typename enable_if<typename BpUGraph::BuildTag, void>::type> 
   746     {
   747       template <typename Source, typename ANodeRefMap, 
   748                 typename BNodeRefMap, typename UEdgeRefMap>
   749       static void copy(BpUGraph &target, const Source& source,
   750                        ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
   751                        UEdgeRefMap& uEdgeRefMap) {
   752         target.build(source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
   753       }
   754     };
   755     
   756 
   757   }
   758 
   759   /// \brief Class to copy a graph.
   760   ///
   761   /// Class to copy a graph to another graph (duplicate a graph). The
   762   /// simplest way of using it is through the \c copyGraph() function.
   763   template <typename Target, typename Source>
   764   class GraphCopy {
   765   private:
   766 
   767     typedef typename Source::Node Node;
   768     typedef typename Source::NodeIt NodeIt;
   769     typedef typename Source::Edge Edge;
   770     typedef typename Source::EdgeIt EdgeIt;
   771 
   772     typedef typename Target::Node TNode;
   773     typedef typename Target::Edge TEdge;
   774 
   775     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   776     typedef typename Source::template EdgeMap<TEdge> EdgeRefMap;
   777     
   778     
   779   public: 
   780 
   781 
   782     /// \brief Constructor for the GraphCopy.
   783     ///
   784     /// It copies the content of the \c _source graph into the
   785     /// \c _target graph.
   786     GraphCopy(Target& _target, const Source& _source) 
   787       : source(_source), target(_target) {}
   788 
   789     /// \brief Destructor of the GraphCopy
   790     ///
   791     /// Destructor of the GraphCopy
   792     ~GraphCopy() {
   793       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   794         delete nodeMapCopies[i];
   795       }
   796       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
   797         delete edgeMapCopies[i];
   798       }
   799 
   800     }
   801 
   802     /// \brief Copies the node references into the given map.
   803     ///
   804     /// Copies the node references into the given map.
   805     template <typename NodeRef>
   806     GraphCopy& nodeRef(NodeRef& map) {
   807       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
   808                               NodeRefMap, NodeRef>(map));
   809       return *this;
   810     }
   811 
   812     /// \brief Copies the node cross references into the given map.
   813     ///
   814     ///  Copies the node cross references (reverse references) into
   815     ///  the given map.
   816     template <typename NodeCrossRef>
   817     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   818       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
   819                               NodeRefMap, NodeCrossRef>(map));
   820       return *this;
   821     }
   822 
   823     /// \brief Make copy of the given map.
   824     ///
   825     /// Makes copy of the given map for the newly created graph. 
   826     /// The new map's key type is the target graph's node type,
   827     /// and the copied map's key type is the source graph's node
   828     /// type.  
   829     template <typename TargetMap, typename SourceMap>
   830     GraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
   831       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
   832                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
   833       return *this;
   834     }
   835 
   836     /// \brief Make a copy of the given node.
   837     ///
   838     /// Make a copy of the given node.
   839     GraphCopy& node(TNode& tnode, const Node& node) {
   840       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
   841                               NodeRefMap, TNode>(tnode, node));
   842       return *this;
   843     }
   844 
   845     /// \brief Copies the edge references into the given map.
   846     ///
   847     /// Copies the edge references into the given map.
   848     template <typename EdgeRef>
   849     GraphCopy& edgeRef(EdgeRef& map) {
   850       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
   851                               EdgeRefMap, EdgeRef>(map));
   852       return *this;
   853     }
   854 
   855     /// \brief Copies the edge cross references into the given map.
   856     ///
   857     ///  Copies the edge cross references (reverse references) into
   858     ///  the given map.
   859     template <typename EdgeCrossRef>
   860     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   861       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
   862                               EdgeRefMap, EdgeCrossRef>(map));
   863       return *this;
   864     }
   865 
   866     /// \brief Make copy of the given map.
   867     ///
   868     /// Makes copy of the given map for the newly created graph. 
   869     /// The new map's key type is the target graph's edge type,
   870     /// and the copied map's key type is the source graph's edge
   871     /// type.  
   872     template <typename TargetMap, typename SourceMap>
   873     GraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
   874       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
   875                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
   876       return *this;
   877     }
   878 
   879     /// \brief Make a copy of the given edge.
   880     ///
   881     /// Make a copy of the given edge.
   882     GraphCopy& edge(TEdge& tedge, const Edge& edge) {
   883       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
   884                               EdgeRefMap, TEdge>(tedge, edge));
   885       return *this;
   886     }
   887 
   888     /// \brief Executes the copies.
   889     ///
   890     /// Executes the copies.
   891     void run() {
   892       NodeRefMap nodeRefMap(source);
   893       EdgeRefMap edgeRefMap(source);
   894       _graph_utils_bits::GraphCopySelector<Target>::
   895         copy(target, source, nodeRefMap, edgeRefMap);
   896       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   897         nodeMapCopies[i]->copy(source, nodeRefMap);
   898       }
   899       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
   900         edgeMapCopies[i]->copy(source, edgeRefMap);
   901       }      
   902     }
   903 
   904   protected:
   905 
   906 
   907     const Source& source;
   908     Target& target;
   909 
   910     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
   911     nodeMapCopies;
   912 
   913     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
   914     edgeMapCopies;
   915 
   916   };
   917 
   918   /// \brief Copy a graph to another graph.
   919   ///
   920   /// Copy a graph to another graph.
   921   /// The usage of the function:
   922   /// 
   923   ///\code
   924   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
   925   ///\endcode
   926   /// 
   927   /// After the copy the \c nr map will contain the mapping from the
   928   /// source graph's nodes to the target graph's nodes and the \c ecr will
   929   /// contain the mapping from the target graph's edges to the source's
   930   /// edges.
   931   ///
   932   /// \see GraphCopy 
   933   template <typename Target, typename Source>
   934   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   935     return GraphCopy<Target, Source>(target, source);
   936   }
   937 
   938   /// \brief Class to copy an undirected graph.
   939   ///
   940   /// Class to copy an undirected graph to another graph (duplicate a graph).
   941   /// The simplest way of using it is through the \c copyUGraph() function.
   942   template <typename Target, typename Source>
   943   class UGraphCopy {
   944   private:
   945 
   946     typedef typename Source::Node Node;
   947     typedef typename Source::NodeIt NodeIt;
   948     typedef typename Source::Edge Edge;
   949     typedef typename Source::EdgeIt EdgeIt;
   950     typedef typename Source::UEdge UEdge;
   951     typedef typename Source::UEdgeIt UEdgeIt;
   952 
   953     typedef typename Target::Node TNode;
   954     typedef typename Target::Edge TEdge;
   955     typedef typename Target::UEdge TUEdge;
   956 
   957     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   958     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
   959 
   960     struct EdgeRefMap {
   961       EdgeRefMap(const Target& _target, const Source& _source,
   962                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
   963         : target(_target), source(_source), 
   964           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
   965 
   966       typedef typename Source::Edge Key;
   967       typedef typename Target::Edge Value;
   968 
   969       Value operator[](const Key& key) const {
   970         bool forward = (source.direction(key) == 
   971                         (node_ref[source.source((UEdge)key)] == 
   972                          target.source(uedge_ref[(UEdge)key])));
   973 	return target.direct(uedge_ref[key], forward); 
   974       }
   975       
   976       const Target& target;
   977       const Source& source;
   978       const UEdgeRefMap& uedge_ref;
   979       const NodeRefMap& node_ref;
   980     };
   981 
   982     
   983   public: 
   984 
   985 
   986     /// \brief Constructor for the GraphCopy.
   987     ///
   988     /// It copies the content of the \c _source graph into the
   989     /// \c _target graph.
   990     UGraphCopy(Target& _target, const Source& _source) 
   991       : source(_source), target(_target) {}
   992 
   993     /// \brief Destructor of the GraphCopy
   994     ///
   995     /// Destructor of the GraphCopy
   996     ~UGraphCopy() {
   997       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   998         delete nodeMapCopies[i];
   999       }
  1000       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
  1001         delete edgeMapCopies[i];
  1002       }
  1003       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
  1004         delete uEdgeMapCopies[i];
  1005       }
  1006 
  1007     }
  1008 
  1009     /// \brief Copies the node references into the given map.
  1010     ///
  1011     /// Copies the node references into the given map.
  1012     template <typename NodeRef>
  1013     UGraphCopy& nodeRef(NodeRef& map) {
  1014       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1015                               NodeRefMap, NodeRef>(map));
  1016       return *this;
  1017     }
  1018 
  1019     /// \brief Copies the node cross references into the given map.
  1020     ///
  1021     ///  Copies the node cross references (reverse references) into
  1022     ///  the given map.
  1023     template <typename NodeCrossRef>
  1024     UGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1025       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1026                               NodeRefMap, NodeCrossRef>(map));
  1027       return *this;
  1028     }
  1029 
  1030     /// \brief Make copy of the given map.
  1031     ///
  1032     /// Makes copy of the given map for the newly created graph. 
  1033     /// The new map's key type is the target graph's node type,
  1034     /// and the copied map's key type is the source graph's node
  1035     /// type.  
  1036     template <typename TargetMap, typename SourceMap>
  1037     UGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1038       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1039                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1040       return *this;
  1041     }
  1042 
  1043     /// \brief Make a copy of the given node.
  1044     ///
  1045     /// Make a copy of the given node.
  1046     UGraphCopy& node(TNode& tnode, const Node& node) {
  1047       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1048                               NodeRefMap, TNode>(tnode, node));
  1049       return *this;
  1050     }
  1051 
  1052     /// \brief Copies the edge references into the given map.
  1053     ///
  1054     /// Copies the edge references into the given map.
  1055     template <typename EdgeRef>
  1056     UGraphCopy& edgeRef(EdgeRef& map) {
  1057       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1058                               EdgeRefMap, EdgeRef>(map));
  1059       return *this;
  1060     }
  1061 
  1062     /// \brief Copies the edge cross references into the given map.
  1063     ///
  1064     ///  Copies the edge cross references (reverse references) into
  1065     ///  the given map.
  1066     template <typename EdgeCrossRef>
  1067     UGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1068       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1069                               EdgeRefMap, EdgeCrossRef>(map));
  1070       return *this;
  1071     }
  1072 
  1073     /// \brief Make copy of the given map.
  1074     ///
  1075     /// Makes copy of the given map for the newly created graph. 
  1076     /// The new map's key type is the target graph's edge type,
  1077     /// and the copied map's key type is the source graph's edge
  1078     /// type.  
  1079     template <typename TargetMap, typename SourceMap>
  1080     UGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1081       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1082                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1083       return *this;
  1084     }
  1085 
  1086     /// \brief Make a copy of the given edge.
  1087     ///
  1088     /// Make a copy of the given edge.
  1089     UGraphCopy& edge(TEdge& tedge, const Edge& edge) {
  1090       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1091                               EdgeRefMap, TEdge>(tedge, edge));
  1092       return *this;
  1093     }
  1094 
  1095     /// \brief Copies the undirected edge references into the given map.
  1096     ///
  1097     /// Copies the undirected edge references into the given map.
  1098     template <typename UEdgeRef>
  1099     UGraphCopy& uEdgeRef(UEdgeRef& map) {
  1100       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1101                                UEdgeRefMap, UEdgeRef>(map));
  1102       return *this;
  1103     }
  1104 
  1105     /// \brief Copies the undirected edge cross references into the given map.
  1106     ///
  1107     /// Copies the undirected edge cross references (reverse
  1108     /// references) into the given map.
  1109     template <typename UEdgeCrossRef>
  1110     UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1111       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1112                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1113       return *this;
  1114     }
  1115 
  1116     /// \brief Make copy of the given map.
  1117     ///
  1118     /// Makes copy of the given map for the newly created graph. 
  1119     /// The new map's key type is the target graph's undirected edge type,
  1120     /// and the copied map's key type is the source graph's undirected edge
  1121     /// type.  
  1122     template <typename TargetMap, typename SourceMap>
  1123     UGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1124       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1125                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1126       return *this;
  1127     }
  1128 
  1129     /// \brief Make a copy of the given undirected edge.
  1130     ///
  1131     /// Make a copy of the given undirected edge.
  1132     UGraphCopy& uEdge(TUEdge& tuedge, const UEdge& uedge) {
  1133       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1134                                UEdgeRefMap, TUEdge>(tuedge, uedge));
  1135       return *this;
  1136     }
  1137 
  1138     /// \brief Executes the copies.
  1139     ///
  1140     /// Executes the copies.
  1141     void run() {
  1142       NodeRefMap nodeRefMap(source);
  1143       UEdgeRefMap uEdgeRefMap(source);
  1144       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1145       _graph_utils_bits::UGraphCopySelector<Target>::
  1146         copy(target, source, nodeRefMap, uEdgeRefMap);
  1147       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
  1148         nodeMapCopies[i]->copy(source, nodeRefMap);
  1149       }
  1150       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
  1151         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1152       }
  1153       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
  1154         edgeMapCopies[i]->copy(source, edgeRefMap);
  1155       }
  1156     }
  1157 
  1158   private:
  1159     
  1160     const Source& source;
  1161     Target& target;
  1162 
  1163     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1164     nodeMapCopies;
  1165 
  1166     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1167     edgeMapCopies;
  1168 
  1169     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1170     uEdgeMapCopies;
  1171 
  1172   };
  1173 
  1174   /// \brief Copy an undirected graph to another graph.
  1175   ///
  1176   /// Copy an undirected graph to another graph.
  1177   /// The usage of the function:
  1178   /// 
  1179   ///\code
  1180   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
  1181   ///\endcode
  1182   /// 
  1183   /// After the copy the \c nr map will contain the mapping from the
  1184   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1185   /// contain the mapping from the target graph's edges to the source's
  1186   /// edges.
  1187   ///
  1188   /// \see UGraphCopy 
  1189   template <typename Target, typename Source>
  1190   UGraphCopy<Target, Source> 
  1191   copyUGraph(Target& target, const Source& source) {
  1192     return UGraphCopy<Target, Source>(target, source);
  1193   }
  1194 
  1195   /// \brief Class to copy a bipartite undirected graph.
  1196   ///
  1197   /// Class to copy a bipartite undirected graph to another graph
  1198   /// (duplicate a graph).  The simplest way of using it is through
  1199   /// the \c copyBpUGraph() function.
  1200   template <typename Target, typename Source>
  1201   class BpUGraphCopy {
  1202   private:
  1203 
  1204     typedef typename Source::Node Node;
  1205     typedef typename Source::ANode ANode;
  1206     typedef typename Source::BNode BNode;
  1207     typedef typename Source::NodeIt NodeIt;
  1208     typedef typename Source::Edge Edge;
  1209     typedef typename Source::EdgeIt EdgeIt;
  1210     typedef typename Source::UEdge UEdge;
  1211     typedef typename Source::UEdgeIt UEdgeIt;
  1212 
  1213     typedef typename Target::Node TNode;
  1214     typedef typename Target::Edge TEdge;
  1215     typedef typename Target::UEdge TUEdge;
  1216 
  1217     typedef typename Source::template ANodeMap<TNode> ANodeRefMap;
  1218     typedef typename Source::template BNodeMap<TNode> BNodeRefMap;
  1219     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
  1220 
  1221     struct NodeRefMap {
  1222       NodeRefMap(const Source& _source, const ANodeRefMap& _anode_ref,
  1223                  const BNodeRefMap& _bnode_ref)
  1224         : source(_source), anode_ref(_anode_ref), bnode_ref(_bnode_ref) {}
  1225 
  1226       typedef typename Source::Node Key;
  1227       typedef typename Target::Node Value;
  1228 
  1229       Value operator[](const Key& key) const {
  1230 	return source.aNode(key) ? anode_ref[key] : bnode_ref[key]; 
  1231       }
  1232       
  1233       const Source& source;
  1234       const ANodeRefMap& anode_ref;
  1235       const BNodeRefMap& bnode_ref;
  1236     };
  1237 
  1238     struct EdgeRefMap {
  1239       EdgeRefMap(const Target& _target, const Source& _source,
  1240                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
  1241         : target(_target), source(_source), 
  1242           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
  1243 
  1244       typedef typename Source::Edge Key;
  1245       typedef typename Target::Edge Value;
  1246 
  1247       Value operator[](const Key& key) const {
  1248         bool forward = (source.direction(key) == 
  1249                         (node_ref[source.source((UEdge)key)] == 
  1250                          target.source(uedge_ref[(UEdge)key])));
  1251 	return target.direct(uedge_ref[key], forward); 
  1252       }
  1253       
  1254       const Target& target;
  1255       const Source& source;
  1256       const UEdgeRefMap& uedge_ref;
  1257       const NodeRefMap& node_ref;
  1258     };
  1259     
  1260   public: 
  1261 
  1262 
  1263     /// \brief Constructor for the GraphCopy.
  1264     ///
  1265     /// It copies the content of the \c _source graph into the
  1266     /// \c _target graph.
  1267     BpUGraphCopy(Target& _target, const Source& _source) 
  1268       : source(_source), target(_target) {}
  1269 
  1270     /// \brief Destructor of the GraphCopy
  1271     ///
  1272     /// Destructor of the GraphCopy
  1273     ~BpUGraphCopy() {
  1274       for (int i = 0; i < (int)aNodeMapCopies.size(); ++i) {
  1275         delete aNodeMapCopies[i];
  1276       }
  1277       for (int i = 0; i < (int)bNodeMapCopies.size(); ++i) {
  1278         delete bNodeMapCopies[i];
  1279       }
  1280       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
  1281         delete nodeMapCopies[i];
  1282       }
  1283       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
  1284         delete edgeMapCopies[i];
  1285       }
  1286       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
  1287         delete uEdgeMapCopies[i];
  1288       }
  1289 
  1290     }
  1291 
  1292     /// \brief Copies the A-node references into the given map.
  1293     ///
  1294     /// Copies the A-node references into the given map.
  1295     template <typename ANodeRef>
  1296     BpUGraphCopy& aNodeRef(ANodeRef& map) {
  1297       aNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, ANode, 
  1298                                ANodeRefMap, ANodeRef>(map));
  1299       return *this;
  1300     }
  1301 
  1302     /// \brief Copies the A-node cross references into the given map.
  1303     ///
  1304     /// Copies the A-node cross references (reverse references) into
  1305     /// the given map.
  1306     template <typename ANodeCrossRef>
  1307     BpUGraphCopy& aNodeCrossRef(ANodeCrossRef& map) {
  1308       aNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1309                                ANode, ANodeRefMap, ANodeCrossRef>(map));
  1310       return *this;
  1311     }
  1312 
  1313     /// \brief Make copy of the given A-node map.
  1314     ///
  1315     /// Makes copy of the given map for the newly created graph. 
  1316     /// The new map's key type is the target graph's node type,
  1317     /// and the copied map's key type is the source graph's node
  1318     /// type.  
  1319     template <typename TargetMap, typename SourceMap>
  1320     BpUGraphCopy& aNodeMap(TargetMap& tmap, const SourceMap& map) {
  1321       aNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, ANode, 
  1322                                ANodeRefMap, TargetMap, SourceMap>(tmap, map));
  1323       return *this;
  1324     }
  1325 
  1326     /// \brief Copies the B-node references into the given map.
  1327     ///
  1328     /// Copies the B-node references into the given map.
  1329     template <typename BNodeRef>
  1330     BpUGraphCopy& bNodeRef(BNodeRef& map) {
  1331       bNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, BNode, 
  1332                                BNodeRefMap, BNodeRef>(map));
  1333       return *this;
  1334     }
  1335 
  1336     /// \brief Copies the B-node cross references into the given map.
  1337     ///
  1338     ///  Copies the B-node cross references (reverse references) into
  1339     ///  the given map.
  1340     template <typename BNodeCrossRef>
  1341     BpUGraphCopy& bNodeCrossRef(BNodeCrossRef& map) {
  1342       bNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1343                               BNode, BNodeRefMap, BNodeCrossRef>(map));
  1344       return *this;
  1345     }
  1346 
  1347     /// \brief Make copy of the given B-node map.
  1348     ///
  1349     /// Makes copy of the given map for the newly created graph. 
  1350     /// The new map's key type is the target graph's node type,
  1351     /// and the copied map's key type is the source graph's node
  1352     /// type.  
  1353     template <typename TargetMap, typename SourceMap>
  1354     BpUGraphCopy& bNodeMap(TargetMap& tmap, const SourceMap& map) {
  1355       bNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, BNode, 
  1356                                BNodeRefMap, TargetMap, SourceMap>(tmap, map));
  1357       return *this;
  1358     }
  1359     /// \brief Copies the node references into the given map.
  1360     ///
  1361     /// Copies the node references into the given map.
  1362     template <typename NodeRef>
  1363     BpUGraphCopy& nodeRef(NodeRef& map) {
  1364       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
  1365                               NodeRefMap, NodeRef>(map));
  1366       return *this;
  1367     }
  1368 
  1369     /// \brief Copies the node cross references into the given map.
  1370     ///
  1371     ///  Copies the node cross references (reverse references) into
  1372     ///  the given map.
  1373     template <typename NodeCrossRef>
  1374     BpUGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1375       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
  1376                               NodeRefMap, NodeCrossRef>(map));
  1377       return *this;
  1378     }
  1379 
  1380     /// \brief Make copy of the given map.
  1381     ///
  1382     /// Makes copy of the given map for the newly created graph. 
  1383     /// The new map's key type is the target graph's node type,
  1384     /// and the copied map's key type is the source graph's node
  1385     /// type.  
  1386     template <typename TargetMap, typename SourceMap>
  1387     BpUGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
  1388       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
  1389                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
  1390       return *this;
  1391     }
  1392 
  1393     /// \brief Make a copy of the given node.
  1394     ///
  1395     /// Make a copy of the given node.
  1396     BpUGraphCopy& node(TNode& tnode, const Node& node) {
  1397       nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
  1398                               NodeRefMap, TNode>(tnode, node));
  1399       return *this;
  1400     }
  1401 
  1402     /// \brief Copies the edge references into the given map.
  1403     ///
  1404     /// Copies the edge references into the given map.
  1405     template <typename EdgeRef>
  1406     BpUGraphCopy& edgeRef(EdgeRef& map) {
  1407       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
  1408                               EdgeRefMap, EdgeRef>(map));
  1409       return *this;
  1410     }
  1411 
  1412     /// \brief Copies the edge cross references into the given map.
  1413     ///
  1414     ///  Copies the edge cross references (reverse references) into
  1415     ///  the given map.
  1416     template <typename EdgeCrossRef>
  1417     BpUGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1418       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
  1419                               EdgeRefMap, EdgeCrossRef>(map));
  1420       return *this;
  1421     }
  1422 
  1423     /// \brief Make copy of the given map.
  1424     ///
  1425     /// Makes copy of the given map for the newly created graph. 
  1426     /// The new map's key type is the target graph's edge type,
  1427     /// and the copied map's key type is the source graph's edge
  1428     /// type.  
  1429     template <typename TargetMap, typename SourceMap>
  1430     BpUGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
  1431       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
  1432                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1433       return *this;
  1434     }
  1435 
  1436     /// \brief Make a copy of the given edge.
  1437     ///
  1438     /// Make a copy of the given edge.
  1439     BpUGraphCopy& edge(TEdge& tedge, const Edge& edge) {
  1440       edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
  1441                               EdgeRefMap, TEdge>(tedge, edge));
  1442       return *this;
  1443     }
  1444 
  1445     /// \brief Copies the undirected edge references into the given map.
  1446     ///
  1447     /// Copies the undirected edge references into the given map.
  1448     template <typename UEdgeRef>
  1449     BpUGraphCopy& uEdgeRef(UEdgeRef& map) {
  1450       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
  1451                                UEdgeRefMap, UEdgeRef>(map));
  1452       return *this;
  1453     }
  1454 
  1455     /// \brief Copies the undirected edge cross references into the given map.
  1456     ///
  1457     /// Copies the undirected edge cross references (reverse
  1458     /// references) into the given map.
  1459     template <typename UEdgeCrossRef>
  1460     BpUGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
  1461       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
  1462                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
  1463       return *this;
  1464     }
  1465 
  1466     /// \brief Make copy of the given map.
  1467     ///
  1468     /// Makes copy of the given map for the newly created graph. 
  1469     /// The new map's key type is the target graph's undirected edge type,
  1470     /// and the copied map's key type is the source graph's undirected edge
  1471     /// type.  
  1472     template <typename TargetMap, typename SourceMap>
  1473     BpUGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
  1474       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
  1475                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
  1476       return *this;
  1477     }
  1478 
  1479     /// \brief Make a copy of the given undirected edge.
  1480     ///
  1481     /// Make a copy of the given undirected edge.
  1482     BpUGraphCopy& uEdge(TUEdge& tuedge, const UEdge& uedge) {
  1483       uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
  1484                                UEdgeRefMap, TUEdge>(tuedge, uedge));
  1485       return *this;
  1486     }
  1487 
  1488     /// \brief Executes the copies.
  1489     ///
  1490     /// Executes the copies.
  1491     void run() {
  1492       ANodeRefMap aNodeRefMap(source);
  1493       BNodeRefMap bNodeRefMap(source);
  1494       NodeRefMap nodeRefMap(source, aNodeRefMap, bNodeRefMap);
  1495       UEdgeRefMap uEdgeRefMap(source);
  1496       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
  1497       _graph_utils_bits::BpUGraphCopySelector<Target>::
  1498         copy(target, source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
  1499       for (int i = 0; i < (int)aNodeMapCopies.size(); ++i) {
  1500         aNodeMapCopies[i]->copy(source, aNodeRefMap);
  1501       }
  1502       for (int i = 0; i < (int)bNodeMapCopies.size(); ++i) {
  1503         bNodeMapCopies[i]->copy(source, bNodeRefMap);
  1504       }
  1505       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
  1506         nodeMapCopies[i]->copy(source, nodeRefMap);
  1507       }
  1508       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
  1509         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1510       }
  1511       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
  1512         edgeMapCopies[i]->copy(source, edgeRefMap);
  1513       }
  1514     }
  1515 
  1516   private:
  1517     
  1518     const Source& source;
  1519     Target& target;
  1520 
  1521     std::vector<_graph_utils_bits::MapCopyBase<Source, ANode, ANodeRefMap>* > 
  1522     aNodeMapCopies;
  1523 
  1524     std::vector<_graph_utils_bits::MapCopyBase<Source, BNode, BNodeRefMap>* > 
  1525     bNodeMapCopies;
  1526 
  1527     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1528     nodeMapCopies;
  1529 
  1530     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1531     edgeMapCopies;
  1532 
  1533     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1534     uEdgeMapCopies;
  1535 
  1536   };
  1537 
  1538   /// \brief Copy a bipartite undirected graph to another graph.
  1539   ///
  1540   /// Copy a bipartite undirected graph to another graph.
  1541   /// The usage of the function:
  1542   /// 
  1543   ///\code
  1544   /// copyBpUGraph(trg, src).aNodeRef(anr).edgeCrossRef(ecr).run();
  1545   ///\endcode
  1546   /// 
  1547   /// After the copy the \c nr map will contain the mapping from the
  1548   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1549   /// contain the mapping from the target graph's edges to the source's
  1550   /// edges.
  1551   ///
  1552   /// \see BpUGraphCopy
  1553   template <typename Target, typename Source>
  1554   BpUGraphCopy<Target, Source> 
  1555   copyBpUGraph(Target& target, const Source& source) {
  1556     return BpUGraphCopy<Target, Source>(target, source);
  1557   }
  1558 
  1559 
  1560   /// @}
  1561 
  1562   /// \addtogroup graph_maps
  1563   /// @{
  1564 
  1565   /// Provides an immutable and unique id for each item in the graph.
  1566 
  1567   /// The IdMap class provides a unique and immutable id for each item of the
  1568   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
  1569   /// different items (nodes) get different ids <li>\b immutable: the id of an
  1570   /// item (node) does not change (even if you delete other nodes).  </ul>
  1571   /// Through this map you get access (i.e. can read) the inner id values of
  1572   /// the items stored in the graph. This map can be inverted with its member
  1573   /// class \c InverseMap.
  1574   ///
  1575   template <typename _Graph, typename _Item>
  1576   class IdMap {
  1577   public:
  1578     typedef _Graph Graph;
  1579     typedef int Value;
  1580     typedef _Item Item;
  1581     typedef _Item Key;
  1582 
  1583     /// \brief Constructor.
  1584     ///
  1585     /// Constructor of the map.
  1586     explicit IdMap(const Graph& _graph) : graph(&_graph) {}
  1587 
  1588     /// \brief Gives back the \e id of the item.
  1589     ///
  1590     /// Gives back the immutable and unique \e id of the item.
  1591     int operator[](const Item& item) const { return graph->id(item);}
  1592 
  1593     /// \brief Gives back the item by its id.
  1594     ///
  1595     /// Gives back the item by its id.
  1596     Item operator()(int id) { return graph->fromId(id, Item()); }
  1597 
  1598   private:
  1599     const Graph* graph;
  1600 
  1601   public:
  1602 
  1603     /// \brief The class represents the inverse of its owner (IdMap).
  1604     ///
  1605     /// The class represents the inverse of its owner (IdMap).
  1606     /// \see inverse()
  1607     class InverseMap {
  1608     public:
  1609 
  1610       /// \brief Constructor.
  1611       ///
  1612       /// Constructor for creating an id-to-item map.
  1613       explicit InverseMap(const Graph& _graph) : graph(&_graph) {}
  1614 
  1615       /// \brief Constructor.
  1616       ///
  1617       /// Constructor for creating an id-to-item map.
  1618       explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
  1619 
  1620       /// \brief Gives back the given item from its id.
  1621       ///
  1622       /// Gives back the given item from its id.
  1623       /// 
  1624       Item operator[](int id) const { return graph->fromId(id, Item());}
  1625 
  1626     private:
  1627       const Graph* graph;
  1628     };
  1629 
  1630     /// \brief Gives back the inverse of the map.
  1631     ///
  1632     /// Gives back the inverse of the IdMap.
  1633     InverseMap inverse() const { return InverseMap(*graph);} 
  1634 
  1635   };
  1636 
  1637   
  1638   /// \brief General invertable graph-map type.
  1639 
  1640   /// This type provides simple invertable graph-maps. 
  1641   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1642   /// and if a key is set to a new value then store it
  1643   /// in the inverse map.
  1644   ///
  1645   /// The values of the map can be accessed
  1646   /// with stl compatible forward iterator.
  1647   ///
  1648   /// \param _Graph The graph type.
  1649   /// \param _Item The item type of the graph.
  1650   /// \param _Value The value type of the map.
  1651   ///
  1652   /// \see IterableValueMap
  1653   template <typename _Graph, typename _Item, typename _Value>
  1654   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
  1655   private:
  1656     
  1657     typedef DefaultMap<_Graph, _Item, _Value> Map;
  1658     typedef _Graph Graph;
  1659 
  1660     typedef std::map<_Value, _Item> Container;
  1661     Container invMap;    
  1662 
  1663   public:
  1664  
  1665     /// The key type of InvertableMap (Node, Edge, UEdge).
  1666     typedef typename Map::Key Key;
  1667     /// The value type of the InvertableMap.
  1668     typedef typename Map::Value Value;
  1669 
  1670 
  1671 
  1672     /// \brief Constructor.
  1673     ///
  1674     /// Construct a new InvertableMap for the graph.
  1675     ///
  1676     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
  1677 
  1678     /// \brief Forward iterator for values.
  1679     ///
  1680     /// This iterator is an stl compatible forward
  1681     /// iterator on the values of the map. The values can
  1682     /// be accessed in the [beginValue, endValue) range.
  1683     ///
  1684     class ValueIterator 
  1685       : public std::iterator<std::forward_iterator_tag, Value> {
  1686       friend class InvertableMap;
  1687     private:
  1688       ValueIterator(typename Container::const_iterator _it) 
  1689         : it(_it) {}
  1690     public:
  1691       
  1692       ValueIterator() {}
  1693 
  1694       ValueIterator& operator++() { ++it; return *this; }
  1695       ValueIterator operator++(int) { 
  1696         ValueIterator tmp(*this); 
  1697         operator++();
  1698         return tmp; 
  1699       }
  1700 
  1701       const Value& operator*() const { return it->first; }
  1702       const Value* operator->() const { return &(it->first); }
  1703 
  1704       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1705       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1706       
  1707     private:
  1708       typename Container::const_iterator it;
  1709     };
  1710 
  1711     /// \brief Returns an iterator to the first value.
  1712     ///
  1713     /// Returns an stl compatible iterator to the 
  1714     /// first value of the map. The values of the
  1715     /// map can be accessed in the [beginValue, endValue)
  1716     /// range.
  1717     ValueIterator beginValue() const {
  1718       return ValueIterator(invMap.begin());
  1719     }
  1720 
  1721     /// \brief Returns an iterator after the last value.
  1722     ///
  1723     /// Returns an stl compatible iterator after the 
  1724     /// last value of the map. The values of the
  1725     /// map can be accessed in the [beginValue, endValue)
  1726     /// range.
  1727     ValueIterator endValue() const {
  1728       return ValueIterator(invMap.end());
  1729     }
  1730     
  1731     /// \brief The setter function of the map.
  1732     ///
  1733     /// Sets the mapped value.
  1734     void set(const Key& key, const Value& val) {
  1735       Value oldval = Map::operator[](key);
  1736       typename Container::iterator it = invMap.find(oldval);
  1737       if (it != invMap.end() && it->second == key) {
  1738 	invMap.erase(it);
  1739       }      
  1740       invMap.insert(make_pair(val, key));
  1741       Map::set(key, val);
  1742     }
  1743 
  1744     /// \brief The getter function of the map.
  1745     ///
  1746     /// It gives back the value associated with the key.
  1747     typename MapTraits<Map>::ConstReturnValue 
  1748     operator[](const Key& key) const {
  1749       return Map::operator[](key);
  1750     }
  1751 
  1752     /// \brief Gives back the item by its value.
  1753     ///
  1754     /// Gives back the item by its value.
  1755     Key operator()(const Value& key) const {
  1756       typename Container::const_iterator it = invMap.find(key);
  1757       return it != invMap.end() ? it->second : INVALID;
  1758     }
  1759 
  1760   protected:
  1761 
  1762     /// \brief Erase the key from the map.
  1763     ///
  1764     /// Erase the key to the map. It is called by the
  1765     /// \c AlterationNotifier.
  1766     virtual void erase(const Key& key) {
  1767       Value val = Map::operator[](key);
  1768       typename Container::iterator it = invMap.find(val);
  1769       if (it != invMap.end() && it->second == key) {
  1770 	invMap.erase(it);
  1771       }
  1772       Map::erase(key);
  1773     }
  1774 
  1775     /// \brief Erase more keys from the map.
  1776     ///
  1777     /// Erase more keys from the map. It is called by the
  1778     /// \c AlterationNotifier.
  1779     virtual void erase(const std::vector<Key>& keys) {
  1780       for (int i = 0; i < (int)keys.size(); ++i) {
  1781 	Value val = Map::operator[](keys[i]);
  1782 	typename Container::iterator it = invMap.find(val);
  1783 	if (it != invMap.end() && it->second == keys[i]) {
  1784 	  invMap.erase(it);
  1785 	}
  1786       }
  1787       Map::erase(keys);
  1788     }
  1789 
  1790     /// \brief Clear the keys from the map and inverse map.
  1791     ///
  1792     /// Clear the keys from the map and inverse map. It is called by the
  1793     /// \c AlterationNotifier.
  1794     virtual void clear() {
  1795       invMap.clear();
  1796       Map::clear();
  1797     }
  1798 
  1799   public:
  1800 
  1801     /// \brief The inverse map type.
  1802     ///
  1803     /// The inverse of this map. The subscript operator of the map
  1804     /// gives back always the item what was last assigned to the value. 
  1805     class InverseMap {
  1806     public:
  1807       /// \brief Constructor of the InverseMap.
  1808       ///
  1809       /// Constructor of the InverseMap.
  1810       explicit InverseMap(const InvertableMap& _inverted) 
  1811         : inverted(_inverted) {}
  1812 
  1813       /// The value type of the InverseMap.
  1814       typedef typename InvertableMap::Key Value;
  1815       /// The key type of the InverseMap.
  1816       typedef typename InvertableMap::Value Key; 
  1817 
  1818       /// \brief Subscript operator. 
  1819       ///
  1820       /// Subscript operator. It gives back always the item 
  1821       /// what was last assigned to the value.
  1822       Value operator[](const Key& key) const {
  1823 	return inverted(key);
  1824       }
  1825       
  1826     private:
  1827       const InvertableMap& inverted;
  1828     };
  1829 
  1830     /// \brief It gives back the just readable inverse map.
  1831     ///
  1832     /// It gives back the just readable inverse map.
  1833     InverseMap inverse() const {
  1834       return InverseMap(*this);
  1835     } 
  1836 
  1837 
  1838     
  1839   };
  1840 
  1841   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1842   /// item in the graph.
  1843   ///
  1844   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1845   /// descriptor (id) for each item of the same type (e.g. node) in the
  1846   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1847   /// different ids <li>\b continuous: the range of the ids is the set of
  1848   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1849   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1850   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1851   /// with its member class \c InverseMap.
  1852   ///
  1853   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1854   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1855   /// UEdge.
  1856   template <typename _Graph, typename _Item>
  1857   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
  1858 
  1859     typedef _Item Item;
  1860     typedef DefaultMap<_Graph, _Item, int> Map;
  1861 
  1862   public:
  1863     /// The graph class of DescriptorMap.
  1864     typedef _Graph Graph;
  1865 
  1866     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1867     typedef typename Map::Key Key;
  1868     /// The value type of DescriptorMap.
  1869     typedef typename Map::Value Value;
  1870 
  1871     /// \brief Constructor.
  1872     ///
  1873     /// Constructor for descriptor map.
  1874     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
  1875       Item it;
  1876       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1877       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1878 	Map::set(it, invMap.size());
  1879 	invMap.push_back(it);	
  1880       }      
  1881     }
  1882 
  1883   protected:
  1884 
  1885     /// \brief Add a new key to the map.
  1886     ///
  1887     /// Add a new key to the map. It is called by the
  1888     /// \c AlterationNotifier.
  1889     virtual void add(const Item& item) {
  1890       Map::add(item);
  1891       Map::set(item, invMap.size());
  1892       invMap.push_back(item);
  1893     }
  1894 
  1895     /// \brief Add more new keys to the map.
  1896     ///
  1897     /// Add more new keys to the map. It is called by the
  1898     /// \c AlterationNotifier.
  1899     virtual void add(const std::vector<Item>& items) {
  1900       Map::add(items);
  1901       for (int i = 0; i < (int)items.size(); ++i) {
  1902 	Map::set(items[i], invMap.size());
  1903 	invMap.push_back(items[i]);
  1904       }
  1905     }
  1906 
  1907     /// \brief Erase the key from the map.
  1908     ///
  1909     /// Erase the key from the map. It is called by the
  1910     /// \c AlterationNotifier.
  1911     virtual void erase(const Item& item) {
  1912       Map::set(invMap.back(), Map::operator[](item));
  1913       invMap[Map::operator[](item)] = invMap.back();
  1914       invMap.pop_back();
  1915       Map::erase(item);
  1916     }
  1917 
  1918     /// \brief Erase more keys from the map.
  1919     ///
  1920     /// Erase more keys from the map. It is called by the
  1921     /// \c AlterationNotifier.
  1922     virtual void erase(const std::vector<Item>& items) {
  1923       for (int i = 0; i < (int)items.size(); ++i) {
  1924 	Map::set(invMap.back(), Map::operator[](items[i]));
  1925 	invMap[Map::operator[](items[i])] = invMap.back();
  1926 	invMap.pop_back();
  1927       }
  1928       Map::erase(items);
  1929     }
  1930 
  1931     /// \brief Build the unique map.
  1932     ///
  1933     /// Build the unique map. It is called by the
  1934     /// \c AlterationNotifier.
  1935     virtual void build() {
  1936       Map::build();
  1937       Item it;
  1938       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1939       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1940 	Map::set(it, invMap.size());
  1941 	invMap.push_back(it);	
  1942       }      
  1943     }
  1944     
  1945     /// \brief Clear the keys from the map.
  1946     ///
  1947     /// Clear the keys from the map. It is called by the
  1948     /// \c AlterationNotifier.
  1949     virtual void clear() {
  1950       invMap.clear();
  1951       Map::clear();
  1952     }
  1953 
  1954   public:
  1955 
  1956     /// \brief Returns the maximal value plus one.
  1957     ///
  1958     /// Returns the maximal value plus one in the map.
  1959     unsigned int size() const {
  1960       return invMap.size();
  1961     }
  1962 
  1963     /// \brief Swaps the position of the two items in the map.
  1964     ///
  1965     /// Swaps the position of the two items in the map.
  1966     void swap(const Item& p, const Item& q) {
  1967       int pi = Map::operator[](p);
  1968       int qi = Map::operator[](q);
  1969       Map::set(p, qi);
  1970       invMap[qi] = p;
  1971       Map::set(q, pi);
  1972       invMap[pi] = q;
  1973     }
  1974 
  1975     /// \brief Gives back the \e descriptor of the item.
  1976     ///
  1977     /// Gives back the mutable and unique \e descriptor of the map.
  1978     int operator[](const Item& item) const {
  1979       return Map::operator[](item);
  1980     }
  1981 
  1982     /// \brief Gives back the item by its descriptor.
  1983     ///
  1984     /// Gives back th item by its descriptor.
  1985     Item operator()(int id) const {
  1986       return invMap[id];
  1987     }
  1988     
  1989   private:
  1990 
  1991     typedef std::vector<Item> Container;
  1992     Container invMap;
  1993 
  1994   public:
  1995     /// \brief The inverse map type of DescriptorMap.
  1996     ///
  1997     /// The inverse map type of DescriptorMap.
  1998     class InverseMap {
  1999     public:
  2000       /// \brief Constructor of the InverseMap.
  2001       ///
  2002       /// Constructor of the InverseMap.
  2003       explicit InverseMap(const DescriptorMap& _inverted) 
  2004 	: inverted(_inverted) {}
  2005 
  2006 
  2007       /// The value type of the InverseMap.
  2008       typedef typename DescriptorMap::Key Value;
  2009       /// The key type of the InverseMap.
  2010       typedef typename DescriptorMap::Value Key; 
  2011 
  2012       /// \brief Subscript operator. 
  2013       ///
  2014       /// Subscript operator. It gives back the item 
  2015       /// that the descriptor belongs to currently.
  2016       Value operator[](const Key& key) const {
  2017 	return inverted(key);
  2018       }
  2019 
  2020       /// \brief Size of the map.
  2021       ///
  2022       /// Returns the size of the map.
  2023       unsigned int size() const {
  2024 	return inverted.size();
  2025       }
  2026       
  2027     private:
  2028       const DescriptorMap& inverted;
  2029     };
  2030 
  2031     /// \brief Gives back the inverse of the map.
  2032     ///
  2033     /// Gives back the inverse of the map.
  2034     const InverseMap inverse() const {
  2035       return InverseMap(*this);
  2036     }
  2037   };
  2038 
  2039   /// \brief Returns the source of the given edge.
  2040   ///
  2041   /// The SourceMap gives back the source Node of the given edge. 
  2042   /// \author Balazs Dezso
  2043   template <typename Graph>
  2044   class SourceMap {
  2045   public:
  2046 
  2047     typedef typename Graph::Node Value;
  2048     typedef typename Graph::Edge Key;
  2049 
  2050     /// \brief Constructor
  2051     ///
  2052     /// Constructor
  2053     /// \param _graph The graph that the map belongs to.
  2054     explicit SourceMap(const Graph& _graph) : graph(_graph) {}
  2055 
  2056     /// \brief The subscript operator.
  2057     ///
  2058     /// The subscript operator.
  2059     /// \param edge The edge 
  2060     /// \return The source of the edge 
  2061     Value operator[](const Key& edge) const {
  2062       return graph.source(edge);
  2063     }
  2064 
  2065   private:
  2066     const Graph& graph;
  2067   };
  2068 
  2069   /// \brief Returns a \ref SourceMap class
  2070   ///
  2071   /// This function just returns an \ref SourceMap class.
  2072   /// \relates SourceMap
  2073   template <typename Graph>
  2074   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  2075     return SourceMap<Graph>(graph);
  2076   } 
  2077 
  2078   /// \brief Returns the target of the given edge.
  2079   ///
  2080   /// The TargetMap gives back the target Node of the given edge. 
  2081   /// \author Balazs Dezso
  2082   template <typename Graph>
  2083   class TargetMap {
  2084   public:
  2085 
  2086     typedef typename Graph::Node Value;
  2087     typedef typename Graph::Edge Key;
  2088 
  2089     /// \brief Constructor
  2090     ///
  2091     /// Constructor
  2092     /// \param _graph The graph that the map belongs to.
  2093     explicit TargetMap(const Graph& _graph) : graph(_graph) {}
  2094 
  2095     /// \brief The subscript operator.
  2096     ///
  2097     /// The subscript operator.
  2098     /// \param e The edge 
  2099     /// \return The target of the edge 
  2100     Value operator[](const Key& e) const {
  2101       return graph.target(e);
  2102     }
  2103 
  2104   private:
  2105     const Graph& graph;
  2106   };
  2107 
  2108   /// \brief Returns a \ref TargetMap class
  2109   ///
  2110   /// This function just returns a \ref TargetMap class.
  2111   /// \relates TargetMap
  2112   template <typename Graph>
  2113   inline TargetMap<Graph> targetMap(const Graph& graph) {
  2114     return TargetMap<Graph>(graph);
  2115   }
  2116 
  2117   /// \brief Returns the "forward" directed edge view of an undirected edge.
  2118   ///
  2119   /// Returns the "forward" directed edge view of an undirected edge.
  2120   /// \author Balazs Dezso
  2121   template <typename Graph>
  2122   class ForwardMap {
  2123   public:
  2124 
  2125     typedef typename Graph::Edge Value;
  2126     typedef typename Graph::UEdge Key;
  2127 
  2128     /// \brief Constructor
  2129     ///
  2130     /// Constructor
  2131     /// \param _graph The graph that the map belongs to.
  2132     explicit ForwardMap(const Graph& _graph) : graph(_graph) {}
  2133 
  2134     /// \brief The subscript operator.
  2135     ///
  2136     /// The subscript operator.
  2137     /// \param key An undirected edge 
  2138     /// \return The "forward" directed edge view of undirected edge 
  2139     Value operator[](const Key& key) const {
  2140       return graph.direct(key, true);
  2141     }
  2142 
  2143   private:
  2144     const Graph& graph;
  2145   };
  2146 
  2147   /// \brief Returns a \ref ForwardMap class
  2148   ///
  2149   /// This function just returns an \ref ForwardMap class.
  2150   /// \relates ForwardMap
  2151   template <typename Graph>
  2152   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  2153     return ForwardMap<Graph>(graph);
  2154   }
  2155 
  2156   /// \brief Returns the "backward" directed edge view of an undirected edge.
  2157   ///
  2158   /// Returns the "backward" directed edge view of an undirected edge.
  2159   /// \author Balazs Dezso
  2160   template <typename Graph>
  2161   class BackwardMap {
  2162   public:
  2163 
  2164     typedef typename Graph::Edge Value;
  2165     typedef typename Graph::UEdge Key;
  2166 
  2167     /// \brief Constructor
  2168     ///
  2169     /// Constructor
  2170     /// \param _graph The graph that the map belongs to.
  2171     explicit BackwardMap(const Graph& _graph) : graph(_graph) {}
  2172 
  2173     /// \brief The subscript operator.
  2174     ///
  2175     /// The subscript operator.
  2176     /// \param key An undirected edge 
  2177     /// \return The "backward" directed edge view of undirected edge 
  2178     Value operator[](const Key& key) const {
  2179       return graph.direct(key, false);
  2180     }
  2181 
  2182   private:
  2183     const Graph& graph;
  2184   };
  2185 
  2186   /// \brief Returns a \ref BackwardMap class
  2187 
  2188   /// This function just returns a \ref BackwardMap class.
  2189   /// \relates BackwardMap
  2190   template <typename Graph>
  2191   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  2192     return BackwardMap<Graph>(graph);
  2193   }
  2194 
  2195   /// \brief Potential difference map
  2196   ///
  2197   /// If there is an potential map on the nodes then we
  2198   /// can get an edge map as we get the substraction of the
  2199   /// values of the target and source.
  2200   template <typename Graph, typename NodeMap>
  2201   class PotentialDifferenceMap {
  2202   public:
  2203     typedef typename Graph::Edge Key;
  2204     typedef typename NodeMap::Value Value;
  2205 
  2206     /// \brief Constructor
  2207     ///
  2208     /// Contructor of the map
  2209     explicit PotentialDifferenceMap(const Graph& _graph, 
  2210                                     const NodeMap& _potential) 
  2211       : graph(_graph), potential(_potential) {}
  2212 
  2213     /// \brief Const subscription operator
  2214     ///
  2215     /// Const subscription operator
  2216     Value operator[](const Key& edge) const {
  2217       return potential[graph.target(edge)] - potential[graph.source(edge)];
  2218     }
  2219 
  2220   private:
  2221     const Graph& graph;
  2222     const NodeMap& potential;
  2223   };
  2224 
  2225   /// \brief Just returns a PotentialDifferenceMap
  2226   ///
  2227   /// Just returns a PotentialDifferenceMap
  2228   /// \relates PotentialDifferenceMap
  2229   template <typename Graph, typename NodeMap>
  2230   PotentialDifferenceMap<Graph, NodeMap> 
  2231   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  2232     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  2233   }
  2234 
  2235   /// \brief Map of the node in-degrees.
  2236   ///
  2237   /// This map returns the in-degree of a node. Once it is constructed,
  2238   /// the degrees are stored in a standard NodeMap, so each query is done
  2239   /// in constant time. On the other hand, the values are updated automatically
  2240   /// whenever the graph changes.
  2241   ///
  2242   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2243   /// alternative ways to modify the graph. The correct behavior of InDegMap
  2244   /// is not guarantied if these additional features are used. For example
  2245   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2246   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2247   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2248   /// of \ref ListGraph will \e not update the degree values correctly.
  2249   ///
  2250   /// \sa OutDegMap
  2251 
  2252   template <typename _Graph>
  2253   class InDegMap  
  2254     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2255       ::ItemNotifier::ObserverBase {
  2256 
  2257   public:
  2258     
  2259     typedef _Graph Graph;
  2260     typedef int Value;
  2261     typedef typename Graph::Node Key;
  2262 
  2263     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2264     ::ItemNotifier::ObserverBase Parent;
  2265 
  2266   private:
  2267 
  2268     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2269     public:
  2270 
  2271       typedef DefaultMap<_Graph, Key, int> Parent;
  2272       typedef typename Parent::Graph Graph;
  2273 
  2274       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2275       
  2276       virtual void add(const Key& key) {
  2277 	Parent::add(key);
  2278 	Parent::set(key, 0);
  2279       }
  2280 
  2281       virtual void add(const std::vector<Key>& keys) {
  2282 	Parent::add(keys);
  2283 	for (int i = 0; i < (int)keys.size(); ++i) {
  2284 	  Parent::set(keys[i], 0);
  2285 	}
  2286       }
  2287     };
  2288 
  2289   public:
  2290 
  2291     /// \brief Constructor.
  2292     ///
  2293     /// Constructor for creating in-degree map.
  2294     explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2295       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  2296       
  2297       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2298 	deg[it] = countInEdges(graph, it);
  2299       }
  2300     }
  2301     
  2302     /// Gives back the in-degree of a Node.
  2303     int operator[](const Key& key) const {
  2304       return deg[key];
  2305     }
  2306 
  2307   protected:
  2308     
  2309     typedef typename Graph::Edge Edge;
  2310 
  2311     virtual void add(const Edge& edge) {
  2312       ++deg[graph.target(edge)];
  2313     }
  2314 
  2315     virtual void add(const std::vector<Edge>& edges) {
  2316       for (int i = 0; i < (int)edges.size(); ++i) {
  2317         ++deg[graph.target(edges[i])];
  2318       }
  2319     }
  2320 
  2321     virtual void erase(const Edge& edge) {
  2322       --deg[graph.target(edge)];
  2323     }
  2324 
  2325     virtual void erase(const std::vector<Edge>& edges) {
  2326       for (int i = 0; i < (int)edges.size(); ++i) {
  2327         --deg[graph.target(edges[i])];
  2328       }
  2329     }
  2330 
  2331     virtual void build() {
  2332       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2333 	deg[it] = countInEdges(graph, it);
  2334       }      
  2335     }
  2336 
  2337     virtual void clear() {
  2338       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2339 	deg[it] = 0;
  2340       }
  2341     }
  2342   private:
  2343     
  2344     const _Graph& graph;
  2345     AutoNodeMap deg;
  2346   };
  2347 
  2348   /// \brief Map of the node out-degrees.
  2349   ///
  2350   /// This map returns the out-degree of a node. Once it is constructed,
  2351   /// the degrees are stored in a standard NodeMap, so each query is done
  2352   /// in constant time. On the other hand, the values are updated automatically
  2353   /// whenever the graph changes.
  2354   ///
  2355   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  2356   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  2357   /// is not guarantied if these additional features are used. For example
  2358   /// the functions \ref ListGraph::changeSource() "changeSource()",
  2359   /// \ref ListGraph::changeTarget() "changeTarget()" and
  2360   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  2361   /// of \ref ListGraph will \e not update the degree values correctly.
  2362   ///
  2363   /// \sa InDegMap
  2364 
  2365   template <typename _Graph>
  2366   class OutDegMap  
  2367     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  2368       ::ItemNotifier::ObserverBase {
  2369 
  2370   public:
  2371 
  2372     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  2373     ::ItemNotifier::ObserverBase Parent;
  2374     
  2375     typedef _Graph Graph;
  2376     typedef int Value;
  2377     typedef typename Graph::Node Key;
  2378 
  2379   private:
  2380 
  2381     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  2382     public:
  2383 
  2384       typedef DefaultMap<_Graph, Key, int> Parent;
  2385       typedef typename Parent::Graph Graph;
  2386 
  2387       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  2388       
  2389       virtual void add(const Key& key) {
  2390 	Parent::add(key);
  2391 	Parent::set(key, 0);
  2392       }
  2393       virtual void add(const std::vector<Key>& keys) {
  2394 	Parent::add(keys);
  2395 	for (int i = 0; i < (int)keys.size(); ++i) {
  2396 	  Parent::set(keys[i], 0);
  2397 	}
  2398       }
  2399     };
  2400 
  2401   public:
  2402 
  2403     /// \brief Constructor.
  2404     ///
  2405     /// Constructor for creating out-degree map.
  2406     explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  2407       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  2408       
  2409       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2410 	deg[it] = countOutEdges(graph, it);
  2411       }
  2412     }
  2413 
  2414     /// Gives back the out-degree of a Node.
  2415     int operator[](const Key& key) const {
  2416       return deg[key];
  2417     }
  2418 
  2419   protected:
  2420     
  2421     typedef typename Graph::Edge Edge;
  2422 
  2423     virtual void add(const Edge& edge) {
  2424       ++deg[graph.source(edge)];
  2425     }
  2426 
  2427     virtual void add(const std::vector<Edge>& edges) {
  2428       for (int i = 0; i < (int)edges.size(); ++i) {
  2429         ++deg[graph.source(edges[i])];
  2430       }
  2431     }
  2432 
  2433     virtual void erase(const Edge& edge) {
  2434       --deg[graph.source(edge)];
  2435     }
  2436 
  2437     virtual void erase(const std::vector<Edge>& edges) {
  2438       for (int i = 0; i < (int)edges.size(); ++i) {
  2439         --deg[graph.source(edges[i])];
  2440       }
  2441     }
  2442 
  2443     virtual void build() {
  2444       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2445 	deg[it] = countOutEdges(graph, it);
  2446       }      
  2447     }
  2448 
  2449     virtual void clear() {
  2450       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  2451 	deg[it] = 0;
  2452       }
  2453     }
  2454   private:
  2455     
  2456     const _Graph& graph;
  2457     AutoNodeMap deg;
  2458   };
  2459 
  2460 
  2461   ///Fast edge look up between given endpoints.
  2462   
  2463   ///\ingroup gutils
  2464   ///Using this class, you can find an edge in a graph from a given
  2465   ///source to a given target in time <em>O(log d)</em>,
  2466   ///where <em>d</em> is the out-degree of the source node.
  2467   ///
  2468   ///It is not possible to find \e all parallel edges between two nodes.
  2469   ///Use \ref AllEdgeLookUp for this purpose.
  2470   ///
  2471   ///\warning This class is static, so you should refresh() (or at least
  2472   ///refresh(Node)) this data structure
  2473   ///whenever the graph changes. This is a time consuming (superlinearly
  2474   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2475   ///
  2476   ///\param G The type of the underlying graph.
  2477   ///
  2478   ///\sa AllEdgeLookUp  
  2479   template<class G>
  2480   class EdgeLookUp 
  2481   {
  2482   public:
  2483     GRAPH_TYPEDEFS(typename G)
  2484     typedef G Graph;
  2485 
  2486   protected:
  2487     const Graph &_g;
  2488     typename Graph::template NodeMap<Edge> _head;
  2489     typename Graph::template EdgeMap<Edge> _left;
  2490     typename Graph::template EdgeMap<Edge> _right;
  2491     
  2492     class EdgeLess {
  2493       const Graph &g;
  2494     public:
  2495       EdgeLess(const Graph &_g) : g(_g) {}
  2496       bool operator()(Edge a,Edge b) const 
  2497       {
  2498 	return g.target(a)<g.target(b);
  2499       }
  2500     };
  2501     
  2502   public:
  2503     
  2504     ///Constructor
  2505 
  2506     ///Constructor.
  2507     ///
  2508     ///It builds up the search database, which remains valid until the graph
  2509     ///changes.
  2510     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2511     
  2512   private:
  2513     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
  2514     {
  2515       int m=(a+b)/2;
  2516       Edge me=v[m];
  2517       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
  2518       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
  2519       return me;
  2520     }
  2521   public:
  2522     ///Refresh the data structure at a node.
  2523 
  2524     ///Build up the search database of node \c n.
  2525     ///
  2526     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2527     ///the number of the outgoing edges of \c n.
  2528     void refresh(Node n) 
  2529     {
  2530       std::vector<Edge> v;
  2531       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2532       if(v.size()) {
  2533 	std::sort(v.begin(),v.end(),EdgeLess(_g));
  2534 	_head[n]=refresh_rec(v,0,v.size()-1);
  2535       }
  2536       else _head[n]=INVALID;
  2537     }
  2538     ///Refresh the full data structure.
  2539 
  2540     ///Build up the full search database. In fact, it simply calls
  2541     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2542     ///
  2543     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2544     ///the number of the edges of \c n and <em>D</em> is the maximum
  2545     ///out-degree of the graph.
  2546 
  2547     void refresh() 
  2548     {
  2549       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2550     }
  2551     
  2552     ///Find an edge between two nodes.
  2553     
  2554     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
  2555     /// <em>d</em> is the number of outgoing edges of \c s.
  2556     ///\param s The source node
  2557     ///\param t The target node
  2558     ///\return An edge from \c s to \c t if there exists,
  2559     ///\ref INVALID otherwise.
  2560     ///
  2561     ///\warning If you change the graph, refresh() must be called before using
  2562     ///this operator. If you change the outgoing edges of
  2563     ///a single node \c n, then
  2564     ///\ref refresh(Node) "refresh(n)" is enough.
  2565     ///
  2566     Edge operator()(Node s, Node t) const
  2567     {
  2568       Edge e;
  2569       for(e=_head[s];
  2570 	  e!=INVALID&&_g.target(e)!=t;
  2571 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  2572       return e;
  2573     }
  2574 
  2575   };
  2576 
  2577   ///Fast look up of all edges between given endpoints.
  2578   
  2579   ///\ingroup gutils
  2580   ///This class is the same as \ref EdgeLookUp, with the addition
  2581   ///that it makes it possible to find all edges between given endpoints.
  2582   ///
  2583   ///\warning This class is static, so you should refresh() (or at least
  2584   ///refresh(Node)) this data structure
  2585   ///whenever the graph changes. This is a time consuming (superlinearly
  2586   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2587   ///
  2588   ///\param G The type of the underlying graph.
  2589   ///
  2590   ///\sa EdgeLookUp  
  2591   template<class G>
  2592   class AllEdgeLookUp : public EdgeLookUp<G>
  2593   {
  2594     using EdgeLookUp<G>::_g;
  2595     using EdgeLookUp<G>::_right;
  2596     using EdgeLookUp<G>::_left;
  2597     using EdgeLookUp<G>::_head;
  2598 
  2599     GRAPH_TYPEDEFS(typename G)
  2600     typedef G Graph;
  2601     
  2602     typename Graph::template EdgeMap<Edge> _next;
  2603     
  2604     Edge refreshNext(Edge head,Edge next=INVALID)
  2605     {
  2606       if(head==INVALID) return next;
  2607       else {
  2608 	next=refreshNext(_right[head],next);
  2609 // 	_next[head]=next;
  2610 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2611 	  ? next : INVALID;
  2612 	return refreshNext(_left[head],head);
  2613       }
  2614     }
  2615     
  2616     void refreshNext()
  2617     {
  2618       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2619     }
  2620     
  2621   public:
  2622     ///Constructor
  2623 
  2624     ///Constructor.
  2625     ///
  2626     ///It builds up the search database, which remains valid until the graph
  2627     ///changes.
  2628     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
  2629 
  2630     ///Refresh the data structure at a node.
  2631 
  2632     ///Build up the search database of node \c n.
  2633     ///
  2634     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2635     ///the number of the outgoing edges of \c n.
  2636     
  2637     void refresh(Node n) 
  2638     {
  2639       EdgeLookUp<G>::refresh(n);
  2640       refreshNext(_head[n]);
  2641     }
  2642     
  2643     ///Refresh the full data structure.
  2644 
  2645     ///Build up the full search database. In fact, it simply calls
  2646     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2647     ///
  2648     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2649     ///the number of the edges of \c n and <em>D</em> is the maximum
  2650     ///out-degree of the graph.
  2651 
  2652     void refresh() 
  2653     {
  2654       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2655     }
  2656     
  2657     ///Find an edge between two nodes.
  2658     
  2659     ///Find an edge between two nodes.
  2660     ///\param s The source node
  2661     ///\param t The target node
  2662     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
  2663     ///not given, the operator finds the first appropriate edge.
  2664     ///\return An edge from \c s to \c t after \prev or
  2665     ///\ref INVALID if there is no more.
  2666     ///
  2667     ///For example, you can count the number of edges from \c u to \c v in the
  2668     ///following way.
  2669     ///\code
  2670     ///AllEdgeLookUp<ListGraph> ae(g);
  2671     ///...
  2672     ///int n=0;
  2673     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2674     ///\endcode
  2675     ///
  2676     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
  2677     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
  2678     ///consecutive edges are found in constant time.
  2679     ///
  2680     ///\warning If you change the graph, refresh() must be called before using
  2681     ///this operator. If you change the outgoing edges of
  2682     ///a single node \c n, then
  2683     ///\ref refresh(Node) "refresh(n)" is enough.
  2684     ///
  2685 #ifdef DOXYGEN
  2686     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
  2687 #else
  2688     using EdgeLookUp<G>::operator() ;
  2689     Edge operator()(Node s, Node t, Edge prev) const
  2690     {
  2691       return prev==INVALID?(*this)(s,t):_next[prev];
  2692     }
  2693 #endif
  2694       
  2695   };
  2696 
  2697   /// @}
  2698 
  2699 } //END OF NAMESPACE LEMON
  2700 
  2701 #endif