src/work/marci_bfs.hh
author marci
Fri, 16 Jan 2004 11:20:09 +0000
changeset 15 e41c71268807
parent 9 a9ed3f1c2c63
child 19 3151a1026db9
permissions -rw-r--r--
new method for making invalid iterators: make_invalid()
     1 #ifndef MARCI_BFS_HH
     2 #define MARCI_BFS_HH
     3 
     4 #include <queue>
     5 
     6 #include <marci_graph_traits.hh>
     7 #include <marci_property_vector.hh>
     8 
     9 namespace marci {
    10 
    11   template <typename graph_type>
    12   struct bfs {
    13     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    14     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    15     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    16     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    17 
    18     graph_type& G;
    19     node_iterator s;
    20     node_property_vector<graph_type, bool> reached;
    21     node_property_vector<graph_type, edge_iterator> pred;
    22     node_property_vector<graph_type, int> dist;
    23     std::queue<node_iterator> bfs_queue;
    24     bfs(graph_type& _G, node_iterator _s) : G(_G), s(_s), reached(_G), pred(_G), dist(_G) { 
    25       bfs_queue.push(s); 
    26       for(each_node_iterator i=G.first_node(); i.is_valid(); ++i) 
    27 	reached.put(i, false);
    28       reached.put(s, true);
    29       dist.put(s, 0); 
    30     }
    31     
    32     void run() {
    33       while (!bfs_queue.empty()) {
    34 	node_iterator v=bfs_queue.front();
    35 	out_edge_iterator e=G.first_out_edge(v);
    36 	bfs_queue.pop();
    37 	for( ; e.is_valid(); ++e) {
    38 	  node_iterator w=G.head(e);
    39 	  std::cout << "scan node " << G.id(w) << " from node " << G.id(v) << std::endl;
    40 	  if (!reached.get(w)) {
    41 	    std::cout << G.id(w) << " is newly reached :-)" << std::endl;
    42 	    bfs_queue.push(w);
    43 	    dist.put(w, dist.get(v)+1);
    44 	    pred.put(w, e);
    45 	    reached.put(w, true);
    46 	  } else {
    47 	    std::cout << G.id(w) << " is already reached" << std::endl;
    48 	  }
    49 	}
    50       }
    51     }
    52   };
    53 
    54   template <typename graph_type> 
    55   struct bfs_visitor {
    56     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    57     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    58     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    59     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    60     graph_type& G;
    61     bfs_visitor(graph_type& _G) : G(_G) { }
    62     void at_previously_reached(out_edge_iterator& e) { 
    63       //node_iterator v=G.tail(e);
    64       node_iterator w=G.head(e);
    65       std::cout << G.id(w) << " is already reached" << std::endl;
    66    }
    67     void at_newly_reached(out_edge_iterator& e) { 
    68       //node_iterator v=G.tail(e);
    69       node_iterator w=G.head(e);
    70       std::cout << G.id(w) << " is newly reached :-)" << std::endl;
    71     }
    72   };
    73 
    74   template <typename graph_type, typename reached_type, typename visitor_type>
    75   struct bfs_iterator {
    76     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    77     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    78     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    79     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    80 
    81     graph_type& G;
    82     std::queue<out_edge_iterator>& bfs_queue;
    83     reached_type& reached;
    84     visitor_type& visitor;
    85     void process() {
    86       while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
    87       if (bfs_queue.empty()) return;
    88       out_edge_iterator e=bfs_queue.front();
    89       //node_iterator v=G.tail(e);
    90       node_iterator w=G.head(e);
    91       if (!reached.get(w)) {
    92 	visitor.at_newly_reached(e);
    93 	bfs_queue.push(G.first_out_edge(w));
    94 	reached.put(w, true);
    95       } else {
    96 	visitor.at_previously_reached(e);
    97       }
    98     }
    99     bfs_iterator(graph_type& _G, std::queue<out_edge_iterator>& _bfs_queue, reached_type& _reached, visitor_type& _visitor) : G(_G), bfs_queue(_bfs_queue), reached(_reached), visitor(_visitor) { 
   100       //while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   101       is_valid();
   102     }
   103     bfs_iterator<graph_type, reached_type, visitor_type>& operator++() { 
   104       //while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   105       //if (bfs_queue.empty()) return *this;
   106       if (!is_valid()) return *this;
   107       ++(bfs_queue.front());
   108       //while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   109       is_valid();
   110       return *this;
   111     }
   112     //void next() { 
   113     //  while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   114     //  if (bfs_queue.empty()) return;
   115     //  ++(bfs_queue.front());
   116     //  while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   117     //}
   118     bool is_valid() { 
   119       while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   120       if (bfs_queue.empty()) return false; else return true;
   121     }
   122     //bool finished() { 
   123     //  while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   124     //  if (bfs_queue.empty()) return true; else return false;
   125     //}
   126     operator edge_iterator () { return bfs_queue.front(); }
   127 
   128   };
   129 
   130   template <typename graph_type, typename reached_type>
   131   struct bfs_iterator1 {
   132     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
   133     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
   134     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
   135     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
   136 
   137     graph_type& G;
   138     std::queue<out_edge_iterator>& bfs_queue;
   139     reached_type& reached;
   140     bool newly_reached;
   141     bfs_iterator1(graph_type& _G, std::queue<out_edge_iterator>& _bfs_queue, reached_type& _reached) : G(_G), bfs_queue(_bfs_queue), reached(_reached) { 
   142       is_valid();
   143       if (!bfs_queue.empty() && bfs_queue.front().is_valid()) { 
   144 	out_edge_iterator e=bfs_queue.front();
   145 	node_iterator w=G.head(e);
   146 	if (!reached.get(w)) {
   147 	  bfs_queue.push(G.first_out_edge(w));
   148 	  reached.put(w, true);
   149 	  newly_reached=true;
   150 	} else {
   151 	  newly_reached=false;
   152 	}
   153       }
   154     }
   155     bfs_iterator1<graph_type, reached_type>& operator++() { 
   156       if (!is_valid()) return *this;
   157       ++(bfs_queue.front());
   158       is_valid();
   159       if (!bfs_queue.empty() && bfs_queue.front().is_valid()) { 
   160 	out_edge_iterator e=bfs_queue.front();
   161 	node_iterator w=G.head(e);
   162 	if (!reached.get(w)) {
   163 	  bfs_queue.push(G.first_out_edge(w));
   164 	  reached.put(w, true);
   165 	  newly_reached=true;
   166 	} else {
   167 	  newly_reached=false;
   168 	}
   169       }
   170       return *this;
   171     }
   172     bool is_valid() { 
   173       while ( !bfs_queue.empty() && !bfs_queue.front().is_valid() ) { bfs_queue.pop(); } 
   174       if (bfs_queue.empty()) return false; else return true;
   175     }
   176     operator edge_iterator () { return bfs_queue.front(); }
   177     bool is_newly_reached() { return newly_reached; }
   178 
   179   };
   180 
   181 } // namespace marci
   182 
   183 #endif //MARCI_BFS_HH