src/lemon/dijkstra.h
author hegyi
Wed, 30 Mar 2005 14:29:55 +0000
changeset 1277 e4cc8e996912
parent 1229 aa65e46aebc3
child 1283 fc20371677b9
permissions -rw-r--r--
XY reading is being wrote.
     1 /* -*- C++ -*-
     2  * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/bin_heap.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 namespace lemon {
    31 
    32 
    33   
    34   ///Default traits class of Dijkstra class.
    35 
    36   ///Default traits class of Dijkstra class.
    37   ///\param GR Graph type.
    38   ///\param LM Type of length map.
    39   template<class GR, class LM>
    40   struct DijkstraDefaultTraits
    41   {
    42     ///The graph type the algorithm runs on. 
    43     typedef GR Graph;
    44     ///The type of the map that stores the edge lengths.
    45 
    46     ///The type of the map that stores the edge lengths.
    47     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    48     typedef LM LengthMap;
    49     //The type of the length of the edges.
    50     typedef typename LM::Value Value;
    51     ///The heap type used by Dijkstra algorithm.
    52 
    53     ///The heap type used by Dijkstra algorithm.
    54     ///
    55     ///\sa BinHeap
    56     ///\sa Dijkstra
    57     typedef BinHeap<typename Graph::Node,
    58 		    typename LM::Value,
    59 		    typename GR::template NodeMap<int>,
    60 		    std::less<Value> > Heap;
    61 
    62     ///\brief The type of the map that stores the last
    63     ///edges of the shortest paths.
    64     /// 
    65     ///The type of the map that stores the last
    66     ///edges of the shortest paths.
    67     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    68     ///
    69     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    70     ///Instantiates a PredMap.
    71  
    72     ///This function instantiates a \ref PredMap. 
    73     ///\param G is the graph, to which we would like to define the PredMap.
    74     ///\todo The graph alone may be insufficient for the initialization
    75     static PredMap *createPredMap(const GR &G) 
    76     {
    77       return new PredMap(G);
    78     }
    79 //     ///\brief The type of the map that stores the last but one
    80 //     ///nodes of the shortest paths.
    81 //     ///
    82 //     ///The type of the map that stores the last but one
    83 //     ///nodes of the shortest paths.
    84 //     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    85 //     ///
    86 //     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    87 //     ///Instantiates a PredNodeMap.
    88     
    89 //     ///This function instantiates a \ref PredNodeMap. 
    90 //     ///\param G is the graph, to which
    91 //     ///we would like to define the \ref PredNodeMap
    92 //     static PredNodeMap *createPredNodeMap(const GR &G)
    93 //     {
    94 //       return new PredNodeMap();
    95 //     }
    96 
    97     ///The type of the map that stores whether a nodes is processed.
    98  
    99     ///The type of the map that stores whether a nodes is processed.
   100     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   101     ///By default it is a NullMap.
   102     ///\todo If it is set to a real map,
   103     ///Dijkstra::processed() should read this.
   104     ///\todo named parameter to set this type, function to read and write.
   105     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   106     ///Instantiates a ProcessedMap.
   107  
   108     ///This function instantiates a \ref ProcessedMap. 
   109     ///\param G is the graph, to which
   110     ///we would like to define the \ref ProcessedMap
   111     static ProcessedMap *createProcessedMap(const GR &G)
   112     {
   113       return new ProcessedMap();
   114     }
   115     ///The type of the map that stores the dists of the nodes.
   116  
   117     ///The type of the map that stores the dists of the nodes.
   118     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   119     ///
   120     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   121     ///Instantiates a DistMap.
   122  
   123     ///This function instantiates a \ref DistMap. 
   124     ///\param G is the graph, to which we would like to define the \ref DistMap
   125     static DistMap *createDistMap(const GR &G)
   126     {
   127       return new DistMap(G);
   128     }
   129   };
   130   
   131   ///%Dijkstra algorithm class.
   132   
   133   /// \ingroup flowalgs
   134   ///This class provides an efficient implementation of %Dijkstra algorithm.
   135   ///The edge lengths are passed to the algorithm using a
   136   ///\ref concept::ReadMap "ReadMap",
   137   ///so it is easy to change it to any kind of length.
   138   ///
   139   ///The type of the length is determined by the
   140   ///\ref concept::ReadMap::Value "Value" of the length map.
   141   ///
   142   ///It is also possible to change the underlying priority heap.
   143   ///
   144   ///\param GR The graph type the algorithm runs on. The default value
   145   ///is \ref ListGraph. The value of GR is not used directly by
   146   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   147   ///\param LM This read-only EdgeMap determines the lengths of the
   148   ///edges. It is read once for each edge, so the map may involve in
   149   ///relatively time consuming process to compute the edge length if
   150   ///it is necessary. The default map type is \ref
   151   ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   152   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   153   ///DijkstraDefaultTraits.  \param TR Traits class to set
   154   ///various data types used by the algorithm.  The default traits
   155   ///class is \ref DijkstraDefaultTraits
   156   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   157   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   158   ///class.
   159   ///
   160   ///\author Jacint Szabo and Alpar Juttner
   161   ///\todo A compare object would be nice.
   162 
   163 #ifdef DOXYGEN
   164   template <typename GR,
   165 	    typename LM,
   166 	    typename TR>
   167 #else
   168   template <typename GR=ListGraph,
   169 	    typename LM=typename GR::template EdgeMap<int>,
   170 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   171 #endif
   172   class Dijkstra {
   173   public:
   174     /**
   175      * \brief \ref Exception for uninitialized parameters.
   176      *
   177      * This error represents problems in the initialization
   178      * of the parameters of the algorithms.
   179      */
   180     class UninitializedParameter : public lemon::UninitializedParameter {
   181     public:
   182       virtual const char* exceptionName() const {
   183 	return "lemon::Dijkstra::UninitializedParameter";
   184       }
   185     };
   186 
   187     typedef TR Traits;
   188     ///The type of the underlying graph.
   189     typedef typename TR::Graph Graph;
   190     ///\e
   191     typedef typename Graph::Node Node;
   192     ///\e
   193     typedef typename Graph::NodeIt NodeIt;
   194     ///\e
   195     typedef typename Graph::Edge Edge;
   196     ///\e
   197     typedef typename Graph::OutEdgeIt OutEdgeIt;
   198     
   199     ///The type of the length of the edges.
   200     typedef typename TR::LengthMap::Value Value;
   201     ///The type of the map that stores the edge lengths.
   202     typedef typename TR::LengthMap LengthMap;
   203     ///\brief The type of the map that stores the last
   204     ///edges of the shortest paths.
   205     typedef typename TR::PredMap PredMap;
   206 //     ///\brief The type of the map that stores the last but one
   207 //     ///nodes of the shortest paths.
   208 //     typedef typename TR::PredNodeMap PredNodeMap;
   209     ///The type of the map indicating if a node is processed.
   210     typedef typename TR::ProcessedMap ProcessedMap;
   211     ///The type of the map that stores the dists of the nodes.
   212     typedef typename TR::DistMap DistMap;
   213     ///The heap type used by the dijkstra algorithm.
   214     typedef typename TR::Heap Heap;
   215   private:
   216     /// Pointer to the underlying graph.
   217     const Graph *G;
   218     /// Pointer to the length map
   219     const LengthMap *length;
   220     ///Pointer to the map of predecessors edges.
   221     PredMap *_pred;
   222     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   223     bool local_pred;
   224 //     ///Pointer to the map of predecessors nodes.
   225 //     PredNodeMap *_predNode;
   226 //     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   227 //     bool local_predNode;
   228     ///Pointer to the map of distances.
   229     DistMap *_dist;
   230     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   231     bool local_dist;
   232     ///Pointer to the map of processed status of the nodes.
   233     ProcessedMap *_processed;
   234     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   235     bool local_processed;
   236 
   237 //     ///The source node of the last execution.
   238 //     Node source;
   239 
   240     ///Creates the maps if necessary.
   241     
   242     ///\todo Error if \c G or are \c NULL. What about \c length?
   243     ///\todo Better memory allocation (instead of new).
   244     void create_maps() 
   245     {
   246       if(!_pred) {
   247 	local_pred = true;
   248 	_pred = Traits::createPredMap(*G);
   249       }
   250 //       if(!_predNode) {
   251 // 	local_predNode = true;
   252 // 	_predNode = Traits::createPredNodeMap(*G);
   253 //       }
   254       if(!_dist) {
   255 	local_dist = true;
   256 	_dist = Traits::createDistMap(*G);
   257       }
   258       if(!_processed) {
   259 	local_processed = true;
   260 	_processed = Traits::createProcessedMap(*G);
   261       }
   262     }
   263     
   264   public :
   265  
   266     ///\name Named template parameters
   267 
   268     ///@{
   269 
   270     template <class T>
   271     struct DefPredMapTraits : public Traits {
   272       typedef T PredMap;
   273       static PredMap *createPredMap(const Graph &G) 
   274       {
   275 	throw UninitializedParameter();
   276       }
   277     };
   278     ///\ref named-templ-param "Named parameter" for setting PredMap type
   279 
   280     ///\ref named-templ-param "Named parameter" for setting PredMap type
   281     ///
   282     template <class T>
   283     class DefPredMap : public Dijkstra< Graph,
   284 					LengthMap,
   285 					DefPredMapTraits<T> > { };
   286     
   287 //     template <class T>
   288 //     struct DefPredNodeMapTraits : public Traits {
   289 //       typedef T PredNodeMap;
   290 //       static PredNodeMap *createPredNodeMap(const Graph &G) 
   291 //       {
   292 // 	throw UninitializedParameter();
   293 //       }
   294 //     };
   295 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   296 
   297 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   298 //     ///
   299 //     template <class T>
   300 //     class DefPredNodeMap : public Dijkstra< Graph,
   301 // 					    LengthMap,
   302 // 					    DefPredNodeMapTraits<T> > { };
   303     
   304     template <class T>
   305     struct DefDistMapTraits : public Traits {
   306       typedef T DistMap;
   307       static DistMap *createDistMap(const Graph &G) 
   308       {
   309 	throw UninitializedParameter();
   310       }
   311     };
   312     ///\ref named-templ-param "Named parameter" for setting DistMap type
   313 
   314     ///\ref named-templ-param "Named parameter" for setting DistMap type
   315     ///
   316     template <class T>
   317     class DefDistMap : public Dijkstra< Graph,
   318 					LengthMap,
   319 					DefDistMapTraits<T> > { };
   320     
   321     template <class T>
   322     struct DefProcessedMapTraits : public Traits {
   323       typedef T ProcessedMap;
   324       static ProcessedMap *createProcessedMap(const Graph &G) 
   325       {
   326 	throw UninitializedParameter();
   327       }
   328     };
   329     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   330 
   331     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   332     ///
   333     template <class T>
   334     class DefProcessedMap : public Dijkstra< Graph,
   335 					LengthMap,
   336 					DefProcessedMapTraits<T> > { };
   337     
   338     struct DefGraphProcessedMapTraits : public Traits {
   339       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   340       static ProcessedMap *createProcessedMap(const Graph &G) 
   341       {
   342 	return new ProcessedMap(G);
   343       }
   344     };
   345     ///\brief \ref named-templ-param "Named parameter"
   346     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   347     ///
   348     ///\ref named-templ-param "Named parameter"
   349     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   350     ///If you don't set it explicitely, it will be automatically allocated.
   351     template <class T>
   352     class DefProcessedMapToBeDefaultMap :
   353       public Dijkstra< Graph,
   354 		       LengthMap,
   355 		       DefGraphProcessedMapTraits> { };
   356     
   357     ///@}
   358 
   359 
   360   private:
   361     typename Graph::template NodeMap<int> _heap_map;
   362     Heap _heap;
   363   public:      
   364     
   365     ///Constructor.
   366     
   367     ///\param _G the graph the algorithm will run on.
   368     ///\param _length the length map used by the algorithm.
   369     Dijkstra(const Graph& _G, const LengthMap& _length) :
   370       G(&_G), length(&_length),
   371       _pred(NULL), local_pred(false),
   372 //       _predNode(NULL), local_predNode(false),
   373       _dist(NULL), local_dist(false),
   374       _processed(NULL), local_processed(false),
   375       _heap_map(*G,-1),_heap(_heap_map)
   376     { }
   377     
   378     ///Destructor.
   379     ~Dijkstra() 
   380     {
   381       if(local_pred) delete _pred;
   382 //       if(local_predNode) delete _predNode;
   383       if(local_dist) delete _dist;
   384       if(local_processed) delete _processed;
   385     }
   386 
   387     ///Sets the length map.
   388 
   389     ///Sets the length map.
   390     ///\return <tt> (*this) </tt>
   391     Dijkstra &lengthMap(const LengthMap &m) 
   392     {
   393       length = &m;
   394       return *this;
   395     }
   396 
   397     ///Sets the map storing the predecessor edges.
   398 
   399     ///Sets the map storing the predecessor edges.
   400     ///If you don't use this function before calling \ref run(),
   401     ///it will allocate one. The destuctor deallocates this
   402     ///automatically allocated map, of course.
   403     ///\return <tt> (*this) </tt>
   404     Dijkstra &predMap(PredMap &m) 
   405     {
   406       if(local_pred) {
   407 	delete _pred;
   408 	local_pred=false;
   409       }
   410       _pred = &m;
   411       return *this;
   412     }
   413 
   414 //     ///Sets the map storing the predecessor nodes.
   415 
   416 //     ///Sets the map storing the predecessor nodes.
   417 //     ///If you don't use this function before calling \ref run(),
   418 //     ///it will allocate one. The destuctor deallocates this
   419 //     ///automatically allocated map, of course.
   420 //     ///\return <tt> (*this) </tt>
   421 //     Dijkstra &predNodeMap(PredNodeMap &m) 
   422 //     {
   423 //       if(local_predNode) {
   424 // 	delete _predNode;
   425 // 	local_predNode=false;
   426 //       }
   427 //       _predNode = &m;
   428 //       return *this;
   429 //     }
   430 
   431     ///Sets the map storing the distances calculated by the algorithm.
   432 
   433     ///Sets the map storing the distances calculated by the algorithm.
   434     ///If you don't use this function before calling \ref run(),
   435     ///it will allocate one. The destuctor deallocates this
   436     ///automatically allocated map, of course.
   437     ///\return <tt> (*this) </tt>
   438     Dijkstra &distMap(DistMap &m) 
   439     {
   440       if(local_dist) {
   441 	delete _dist;
   442 	local_dist=false;
   443       }
   444       _dist = &m;
   445       return *this;
   446     }
   447 
   448   private:
   449     void finalizeNodeData(Node v,Value dst)
   450     {
   451       _processed->set(v,true);
   452       _dist->set(v, dst);
   453 //       if((*_pred)[v]!=INVALID)
   454 //       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
   455     }
   456 
   457   public:
   458     ///\name Execution control
   459     ///The simplest way to execute the algorithm is to use
   460     ///one of the member functions called \c run(...).
   461     ///\n
   462     ///If you need more control on the execution,
   463     ///first you must call \ref init(), then you can add several source nodes
   464     ///with \ref addSource().
   465     ///Finally \ref start() will perform the actual path
   466     ///computation.
   467 
   468     ///@{
   469 
   470     ///Initializes the internal data structures.
   471 
   472     ///Initializes the internal data structures.
   473     ///
   474     ///\todo _heap_map's type could also be in the traits class.
   475     ///\todo The heaps should be able to make themselves empty directly.
   476     void init()
   477     {
   478       create_maps();
   479       while(!_heap.empty()) _heap.pop();
   480       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   481 	_pred->set(u,INVALID);
   482 // 	_predNode->set(u,INVALID);
   483 	_processed->set(u,false);
   484 	_heap_map.set(u,Heap::PRE_HEAP);
   485       }
   486     }
   487     
   488     ///Adds a new source node.
   489 
   490     ///Adds a new source node to the priority heap.
   491     ///
   492     ///The optional second parameter is the initial distance of the node.
   493     ///
   494     ///It checks if the node has already been added to the heap and
   495     ///It is pushed to the heap only if either it was not in the heap
   496     ///or the shortest path found till then is longer then \c dst.
   497     void addSource(Node s,Value dst=0)
   498     {
   499 //       source = s;
   500       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   501       else if(_heap[s]<dst) {
   502 	_heap.push(s,dst);
   503 	_pred->set(s,INVALID);
   504       }
   505     }
   506     
   507     ///Processes the next node in the priority heap
   508 
   509     ///Processes the next node in the priority heap.
   510     ///
   511     ///\warning The priority heap must not be empty!
   512     void processNextNode()
   513     {
   514       Node v=_heap.top(); 
   515       Value oldvalue=_heap[v];
   516       _heap.pop();
   517       finalizeNodeData(v,oldvalue);
   518       
   519       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   520 	Node w=G->target(e); 
   521 	switch(_heap.state(w)) {
   522 	case Heap::PRE_HEAP:
   523 	  _heap.push(w,oldvalue+(*length)[e]); 
   524 	  _pred->set(w,e);
   525 //  	  _predNode->set(w,v);
   526 	  break;
   527 	case Heap::IN_HEAP:
   528 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   529 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   530 	    _pred->set(w,e);
   531 // 	    _predNode->set(w,v);
   532 	  }
   533 	  break;
   534 	case Heap::POST_HEAP:
   535 	  break;
   536 	}
   537       }
   538     }
   539 
   540     ///\brief Returns \c false if there are nodes
   541     ///to be processed in the priority heap
   542     ///
   543     ///Returns \c false if there are nodes
   544     ///to be processed in the priority heap
   545     bool emptyQueue() { return _heap.empty(); }
   546     ///Returns the number of the nodes to be processed in the priority heap
   547 
   548     ///Returns the number of the nodes to be processed in the priority heap
   549     ///
   550     int queueSize() { return _heap.size(); }
   551     
   552     ///Executes the algorithm.
   553 
   554     ///Executes the algorithm.
   555     ///
   556     ///\pre init() must be called and at least one node should be added
   557     ///with addSource() before using this function.
   558     ///
   559     ///This method runs the %Dijkstra algorithm from the root node(s)
   560     ///in order to
   561     ///compute the
   562     ///shortest path to each node. The algorithm computes
   563     ///- The shortest path tree.
   564     ///- The distance of each node from the root(s).
   565     ///
   566     void start()
   567     {
   568       while ( !_heap.empty() ) processNextNode();
   569     }
   570     
   571     ///Executes the algorithm until \c dest is reached.
   572 
   573     ///Executes the algorithm until \c dest is reached.
   574     ///
   575     ///\pre init() must be called and at least one node should be added
   576     ///with addSource() before using this function.
   577     ///
   578     ///This method runs the %Dijkstra algorithm from the root node(s)
   579     ///in order to
   580     ///compute the
   581     ///shortest path to \c dest. The algorithm computes
   582     ///- The shortest path to \c  dest.
   583     ///- The distance of \c dest from the root(s).
   584     ///
   585     void start(Node dest)
   586     {
   587       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   588       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   589     }
   590     
   591     ///Executes the algorithm until a condition is met.
   592 
   593     ///Executes the algorithm until a condition is met.
   594     ///
   595     ///\pre init() must be called and at least one node should be added
   596     ///with addSource() before using this function.
   597     ///
   598     ///\param nm must be a bool (or convertible) node map. The algorithm
   599     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   600     template<class NM>
   601     void start(const NM &nm)
   602     {
   603       while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   604       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   605     }
   606     
   607     ///Runs %Dijkstra algorithm from node \c s.
   608     
   609     ///This method runs the %Dijkstra algorithm from a root node \c s
   610     ///in order to
   611     ///compute the
   612     ///shortest path to each node. The algorithm computes
   613     ///- The shortest path tree.
   614     ///- The distance of each node from the root.
   615     ///
   616     ///\note d.run(s) is just a shortcut of the following code.
   617     ///\code
   618     ///  d.init();
   619     ///  d.addSource(s);
   620     ///  d.start();
   621     ///\endcode
   622     void run(Node s) {
   623       init();
   624       addSource(s);
   625       start();
   626     }
   627     
   628     ///Finds the shortest path between \c s and \c t.
   629     
   630     ///Finds the shortest path between \c s and \c t.
   631     ///
   632     ///\return The length of the shortest s---t path if there exists one,
   633     ///0 otherwise.
   634     ///\note Apart from the return value, d.run(s) is
   635     ///just a shortcut of the following code.
   636     ///\code
   637     ///  d.init();
   638     ///  d.addSource(s);
   639     ///  d.start(t);
   640     ///\endcode
   641     Value run(Node s,Node t) {
   642       init();
   643       addSource(s);
   644       start(t);
   645       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   646     }
   647     
   648     ///@}
   649 
   650     ///\name Query Functions
   651     ///The result of the %Dijkstra algorithm can be obtained using these
   652     ///functions.\n
   653     ///Before the use of these functions,
   654     ///either run() or start() must be called.
   655     
   656     ///@{
   657 
   658     ///The distance of a node from the root.
   659 
   660     ///Returns the distance of a node from the root.
   661     ///\pre \ref run() must be called before using this function.
   662     ///\warning If node \c v in unreachable from the root the return value
   663     ///of this funcion is undefined.
   664     Value dist(Node v) const { return (*_dist)[v]; }
   665 
   666     ///Returns the 'previous edge' of the shortest path tree.
   667 
   668     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   669     ///i.e. it returns the last edge of a shortest path from the root to \c
   670     ///v. It is \ref INVALID
   671     ///if \c v is unreachable from the root or if \c v=s. The
   672     ///shortest path tree used here is equal to the shortest path tree used in
   673     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   674     ///this function.
   675     ///\todo predEdge could be a better name.
   676     Edge pred(Node v) const { return (*_pred)[v]; }
   677 
   678     ///Returns the 'previous node' of the shortest path tree.
   679 
   680     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   681     ///i.e. it returns the last but one node from a shortest path from the
   682     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   683     ///\c v=s. The shortest path tree used here is equal to the shortest path
   684     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   685     ///using this function.
   686     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   687 				  G->source((*_pred)[v]); }
   688     
   689     ///Returns a reference to the NodeMap of distances.
   690 
   691     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   692     ///be called before using this function.
   693     const DistMap &distMap() const { return *_dist;}
   694  
   695     ///Returns a reference to the shortest path tree map.
   696 
   697     ///Returns a reference to the NodeMap of the edges of the
   698     ///shortest path tree.
   699     ///\pre \ref run() must be called before using this function.
   700     const PredMap &predMap() const { return *_pred;}
   701  
   702 //     ///Returns a reference to the map of nodes of shortest paths.
   703 
   704 //     ///Returns a reference to the NodeMap of the last but one nodes of the
   705 //     ///shortest path tree.
   706 //     ///\pre \ref run() must be called before using this function.
   707 //     const PredNodeMap &predNodeMap() const { return *_predNode;}
   708 
   709     ///Checks if a node is reachable from the root.
   710 
   711     ///Returns \c true if \c v is reachable from the root.
   712     ///\warning The source nodes are inditated as unreached.
   713     ///\pre \ref run() must be called before using this function.
   714     ///
   715     bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
   716     
   717     ///@}
   718   };
   719 
   720 
   721 
   722 
   723  
   724   ///Default traits class of Dijkstra function.
   725 
   726   ///Default traits class of Dijkstra function.
   727   ///\param GR Graph type.
   728   ///\param LM Type of length map.
   729   template<class GR, class LM>
   730   struct DijkstraWizardDefaultTraits
   731   {
   732     ///The graph type the algorithm runs on. 
   733     typedef GR Graph;
   734     ///The type of the map that stores the edge lengths.
   735 
   736     ///The type of the map that stores the edge lengths.
   737     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   738     typedef LM LengthMap;
   739     //The type of the length of the edges.
   740     typedef typename LM::Value Value;
   741     ///The heap type used by Dijkstra algorithm.
   742 
   743     ///The heap type used by Dijkstra algorithm.
   744     ///
   745     ///\sa BinHeap
   746     ///\sa Dijkstra
   747     typedef BinHeap<typename Graph::Node,
   748 		    typename LM::Value,
   749 		    typename GR::template NodeMap<int>,
   750 		    std::less<Value> > Heap;
   751 
   752     ///\brief The type of the map that stores the last
   753     ///edges of the shortest paths.
   754     /// 
   755     ///The type of the map that stores the last
   756     ///edges of the shortest paths.
   757     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   758     ///
   759     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   760     ///Instantiates a PredMap.
   761  
   762     ///This function instantiates a \ref PredMap. 
   763     ///\param G is the graph, to which we would like to define the PredMap.
   764     ///\todo The graph alone may be insufficient for the initialization
   765     static PredMap *createPredMap(const GR &G) 
   766     {
   767       return new PredMap();
   768     }
   769     ///The type of the map that stores whether a nodes is processed.
   770  
   771     ///The type of the map that stores whether a nodes is processed.
   772     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   773     ///By default it is a NullMap.
   774     ///\todo If it is set to a real map,
   775     ///Dijkstra::processed() should read this.
   776     ///\todo named parameter to set this type, function to read and write.
   777     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   778     ///Instantiates a ProcessedMap.
   779  
   780     ///This function instantiates a \ref ProcessedMap. 
   781     ///\param G is the graph, to which
   782     ///we would like to define the \ref ProcessedMap
   783     static ProcessedMap *createProcessedMap(const GR &G)
   784     {
   785       return new ProcessedMap();
   786     }
   787     ///The type of the map that stores the dists of the nodes.
   788  
   789     ///The type of the map that stores the dists of the nodes.
   790     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   791     ///
   792     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   793     ///Instantiates a DistMap.
   794  
   795     ///This function instantiates a \ref DistMap. 
   796     ///\param G is the graph, to which we would like to define the \ref DistMap
   797     static DistMap *createDistMap(const GR &G)
   798     {
   799       return new DistMap();
   800     }
   801   };
   802   
   803   /// Default traits used by \ref DijkstraWizard
   804 
   805   /// To make it easier to use Dijkstra algorithm
   806   ///we have created a wizard class.
   807   /// This \ref DijkstraWizard class needs default traits,
   808   ///as well as the \ref Dijkstra class.
   809   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   810   /// \ref DijkstraWizard class.
   811   /// \todo More named parameters are required...
   812   template<class GR,class LM>
   813   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   814   {
   815 
   816     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   817   protected:
   818     /// Type of the nodes in the graph.
   819     typedef typename Base::Graph::Node Node;
   820 
   821     /// Pointer to the underlying graph.
   822     void *_g;
   823     /// Pointer to the length map
   824     void *_length;
   825     ///Pointer to the map of predecessors edges.
   826     void *_pred;
   827 //     ///Pointer to the map of predecessors nodes.
   828 //     void *_predNode;
   829     ///Pointer to the map of distances.
   830     void *_dist;
   831     ///Pointer to the source node.
   832     Node _source;
   833 
   834     public:
   835     /// Constructor.
   836     
   837     /// This constructor does not require parameters, therefore it initiates
   838     /// all of the attributes to default values (0, INVALID).
   839     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   840 // 			   _predNode(0),
   841 			   _dist(0), _source(INVALID) {}
   842 
   843     /// Constructor.
   844     
   845     /// This constructor requires some parameters,
   846     /// listed in the parameters list.
   847     /// Others are initiated to 0.
   848     /// \param g is the initial value of  \ref _g
   849     /// \param l is the initial value of  \ref _length
   850     /// \param s is the initial value of  \ref _source
   851     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   852       _g((void *)&g), _length((void *)&l), _pred(0),
   853 //       _predNode(0),
   854       _dist(0), _source(s) {}
   855 
   856   };
   857   
   858   /// A class to make the usage of Dijkstra algorithm easier
   859 
   860   /// This class is created to make it easier to use Dijkstra algorithm.
   861   /// It uses the functions and features of the plain \ref Dijkstra,
   862   /// but it is much simpler to use it.
   863   ///
   864   /// Simplicity means that the way to change the types defined
   865   /// in the traits class is based on functions that returns the new class
   866   /// and not on templatable built-in classes.
   867   /// When using the plain \ref Dijkstra
   868   /// the new class with the modified type comes from
   869   /// the original class by using the ::
   870   /// operator. In the case of \ref DijkstraWizard only
   871   /// a function have to be called and it will
   872   /// return the needed class.
   873   ///
   874   /// It does not have own \ref run method. When its \ref run method is called
   875   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   876   /// method of it.
   877   template<class TR>
   878   class DijkstraWizard : public TR
   879   {
   880     typedef TR Base;
   881 
   882     ///The type of the underlying graph.
   883     typedef typename TR::Graph Graph;
   884     //\e
   885     typedef typename Graph::Node Node;
   886     //\e
   887     typedef typename Graph::NodeIt NodeIt;
   888     //\e
   889     typedef typename Graph::Edge Edge;
   890     //\e
   891     typedef typename Graph::OutEdgeIt OutEdgeIt;
   892     
   893     ///The type of the map that stores the edge lengths.
   894     typedef typename TR::LengthMap LengthMap;
   895     ///The type of the length of the edges.
   896     typedef typename LengthMap::Value Value;
   897     ///\brief The type of the map that stores the last
   898     ///edges of the shortest paths.
   899     typedef typename TR::PredMap PredMap;
   900 //     ///\brief The type of the map that stores the last but one
   901 //     ///nodes of the shortest paths.
   902 //     typedef typename TR::PredNodeMap PredNodeMap;
   903     ///The type of the map that stores the dists of the nodes.
   904     typedef typename TR::DistMap DistMap;
   905 
   906     ///The heap type used by the dijkstra algorithm.
   907     typedef typename TR::Heap Heap;
   908 public:
   909     /// Constructor.
   910     DijkstraWizard() : TR() {}
   911 
   912     /// Constructor that requires parameters.
   913 
   914     /// Constructor that requires parameters.
   915     /// These parameters will be the default values for the traits class.
   916     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   917       TR(g,l,s) {}
   918 
   919     ///Copy constructor
   920     DijkstraWizard(const TR &b) : TR(b) {}
   921 
   922     ~DijkstraWizard() {}
   923 
   924     ///Runs Dijkstra algorithm from a given node.
   925     
   926     ///Runs Dijkstra algorithm from a given node.
   927     ///The node can be given by the \ref source function.
   928     void run()
   929     {
   930       if(Base::_source==INVALID) throw UninitializedParameter();
   931       Dijkstra<Graph,LengthMap,TR> 
   932 	Dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   933       if(Base::_pred) Dij.predMap(*(PredMap*)Base::_pred);
   934 //       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   935       if(Base::_dist) Dij.distMap(*(DistMap*)Base::_dist);
   936       Dij.run(Base::_source);
   937     }
   938 
   939     ///Runs Dijkstra algorithm from the given node.
   940 
   941     ///Runs Dijkstra algorithm from the given node.
   942     ///\param s is the given source.
   943     void run(Node s)
   944     {
   945       Base::_source=s;
   946       run();
   947     }
   948 
   949     template<class T>
   950     struct DefPredMapBase : public Base {
   951       typedef T PredMap;
   952       static PredMap *createPredMap(const Graph &G) { return 0; };
   953       DefPredMapBase(const TR &b) : TR(b) {}
   954     };
   955     
   956     ///\brief \ref named-templ-param "Named parameter"
   957     ///function for setting PredMap type
   958     ///
   959     /// \ref named-templ-param "Named parameter"
   960     ///function for setting PredMap type
   961     ///
   962     template<class T>
   963     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   964     {
   965       Base::_pred=(void *)&t;
   966       return DijkstraWizard<DefPredMapBase<T> >(*this);
   967     }
   968     
   969 
   970 //     template<class T>
   971 //     struct DefPredNodeMapBase : public Base {
   972 //       typedef T PredNodeMap;
   973 //       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
   974 //       DefPredNodeMapBase(const TR &b) : TR(b) {}
   975 //     };
   976     
   977 //     ///\brief \ref named-templ-param "Named parameter"
   978 //     ///function for setting PredNodeMap type
   979 //     ///
   980 //     /// \ref named-templ-param "Named parameter"
   981 //     ///function for setting PredNodeMap type
   982 //     ///
   983 //     template<class T>
   984 //     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
   985 //     {
   986 //       Base::_predNode=(void *)&t;
   987 //       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
   988 //     }
   989    
   990     template<class T>
   991     struct DefDistMapBase : public Base {
   992       typedef T DistMap;
   993       static DistMap *createDistMap(const Graph &G) { return 0; };
   994       DefDistMapBase(const TR &b) : TR(b) {}
   995     };
   996     
   997     ///\brief \ref named-templ-param "Named parameter"
   998     ///function for setting DistMap type
   999     ///
  1000     /// \ref named-templ-param "Named parameter"
  1001     ///function for setting DistMap type
  1002     ///
  1003     template<class T>
  1004     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1005     {
  1006       Base::_dist=(void *)&t;
  1007       return DijkstraWizard<DefDistMapBase<T> >(*this);
  1008     }
  1009     
  1010     /// Sets the source node, from which the Dijkstra algorithm runs.
  1011 
  1012     /// Sets the source node, from which the Dijkstra algorithm runs.
  1013     /// \param s is the source node.
  1014     DijkstraWizard<TR> &source(Node s) 
  1015     {
  1016       Base::_source=s;
  1017       return *this;
  1018     }
  1019     
  1020   };
  1021   
  1022   ///Function type interface for Dijkstra algorithm.
  1023 
  1024   /// \ingroup flowalgs
  1025   ///Function type interface for Dijkstra algorithm.
  1026   ///
  1027   ///This function also has several
  1028   ///\ref named-templ-func-param "named parameters",
  1029   ///they are declared as the members of class \ref DijkstraWizard.
  1030   ///The following
  1031   ///example shows how to use these parameters.
  1032   ///\code
  1033   ///  dijkstra(g,length,source).predMap(preds).run();
  1034   ///\endcode
  1035   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1036   ///to the end of the parameter list.
  1037   ///\sa DijkstraWizard
  1038   ///\sa Dijkstra
  1039   template<class GR, class LM>
  1040   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1041   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1042   {
  1043     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1044   }
  1045 
  1046 } //END OF NAMESPACE LEMON
  1047 
  1048 #endif
  1049