Added the function isFinite(), and replaced the calls to finite() with it.
This was necessary because finite() is not a standard function. Neither can
we use its standard counterpart isfinite(), because it was introduced only
in C99, and therefore it is not supplied by all C++ implementations.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BELMANN_FORD_H
20 #define LEMON_BELMANN_FORD_H
22 /// \ingroup shortest_path
24 /// \brief BellmanFord algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bits/path_dump.h>
29 #include <lemon/bits/invalid.h>
30 #include <lemon/graph_utils.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
38 /// \brief Default OperationTraits for the BellmanFord algorithm class.
40 /// It defines all computational operations and constants which are
41 /// used in the Bellman-Ford algorithm. The default implementation
42 /// is based on the numeric_limits class. If the numeric type does not
43 /// have infinity value then the maximum value is used as extremal
47 bool has_infinity = std::numeric_limits<Value>::has_infinity>
48 struct BellmanFordDefaultOperationTraits {
49 /// \brief Gives back the zero value of the type.
51 return static_cast<Value>(0);
53 /// \brief Gives back the positive infinity value of the type.
54 static Value infinity() {
55 return std::numeric_limits<Value>::infinity();
57 /// \brief Gives back the sum of the given two elements.
58 static Value plus(const Value& left, const Value& right) {
61 /// \brief Gives back true only if the first value less than the second.
62 static bool less(const Value& left, const Value& right) {
67 template <typename Value>
68 struct BellmanFordDefaultOperationTraits<Value, false> {
70 return static_cast<Value>(0);
72 static Value infinity() {
73 return std::numeric_limits<Value>::max();
75 static Value plus(const Value& left, const Value& right) {
76 if (left == infinity() || right == infinity()) return infinity();
79 static bool less(const Value& left, const Value& right) {
84 /// \brief Default traits class of BellmanFord class.
86 /// Default traits class of BellmanFord class.
87 /// \param _Graph Graph type.
88 /// \param _LegthMap Type of length map.
89 template<class _Graph, class _LengthMap>
90 struct BellmanFordDefaultTraits {
91 /// The graph type the algorithm runs on.
94 /// \brief The type of the map that stores the edge lengths.
96 /// The type of the map that stores the edge lengths.
97 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
98 typedef _LengthMap LengthMap;
100 // The type of the length of the edges.
101 typedef typename _LengthMap::Value Value;
103 /// \brief Operation traits for Bellman-Ford algorithm.
105 /// It defines the infinity type on the given Value type
106 /// and the used operation.
107 /// \see BellmanFordDefaultOperationTraits
108 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
110 /// \brief The type of the map that stores the last edges of the
113 /// The type of the map that stores the last
114 /// edges of the shortest paths.
115 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
117 typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
119 /// \brief Instantiates a PredMap.
121 /// This function instantiates a \ref PredMap.
122 /// \param graph is the graph, to which we would like to define the PredMap.
123 static PredMap *createPredMap(const _Graph& graph) {
124 return new PredMap(graph);
127 /// \brief The type of the map that stores the dists of the nodes.
129 /// The type of the map that stores the dists of the nodes.
130 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
132 typedef typename Graph::template NodeMap<typename _LengthMap::Value>
135 /// \brief Instantiates a DistMap.
137 /// This function instantiates a \ref DistMap.
138 /// \param graph is the graph, to which we would like to define the
140 static DistMap *createDistMap(const _Graph& graph) {
141 return new DistMap(graph);
146 /// \brief %BellmanFord algorithm class.
148 /// \ingroup shortest_path
149 /// This class provides an efficient implementation of \c Bellman-Ford
150 /// algorithm. The edge lengths are passed to the algorithm using a
151 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
154 /// The Bellman-Ford algorithm solves the shortest path from one node
155 /// problem when the edges can have negative length but the graph should
156 /// not contain cycles with negative sum of length. If we can assume
157 /// that all edge is non-negative in the graph then the dijkstra algorithm
158 /// should be used rather.
160 /// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
162 /// The type of the length is determined by the
163 /// \ref concepts::ReadMap::Value "Value" of the length map.
165 /// \param _Graph The graph type the algorithm runs on. The default value
166 /// is \ref ListGraph. The value of _Graph is not used directly by
167 /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
168 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
169 /// edges. The default map type is \ref concepts::Graph::EdgeMap
170 /// "Graph::EdgeMap<int>". The value of _LengthMap is not used directly
171 /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
172 /// \param _Traits Traits class to set various data types used by the
173 /// algorithm. The default traits class is \ref BellmanFordDefaultTraits
174 /// "BellmanFordDefaultTraits<_Graph,_LengthMap>". See \ref
175 /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
178 /// \author Balazs Dezso
181 template <typename _Graph, typename _LengthMap, typename _Traits>
183 template <typename _Graph=ListGraph,
184 typename _LengthMap=typename _Graph::template EdgeMap<int>,
185 typename _Traits=BellmanFordDefaultTraits<_Graph,_LengthMap> >
190 /// \brief \ref Exception for uninitialized parameters.
192 /// This error represents problems in the initialization
193 /// of the parameters of the algorithms.
195 class UninitializedParameter : public lemon::UninitializedParameter {
197 virtual const char* what() const throw() {
198 return "lemon::BellmanFord::UninitializedParameter";
202 typedef _Traits Traits;
203 ///The type of the underlying graph.
204 typedef typename _Traits::Graph Graph;
206 typedef typename Graph::Node Node;
207 typedef typename Graph::NodeIt NodeIt;
208 typedef typename Graph::Edge Edge;
209 typedef typename Graph::OutEdgeIt OutEdgeIt;
211 /// \brief The type of the length of the edges.
212 typedef typename _Traits::LengthMap::Value Value;
213 /// \brief The type of the map that stores the edge lengths.
214 typedef typename _Traits::LengthMap LengthMap;
215 /// \brief The type of the map that stores the last
216 /// edges of the shortest paths.
217 typedef typename _Traits::PredMap PredMap;
218 /// \brief The type of the map that stores the dists of the nodes.
219 typedef typename _Traits::DistMap DistMap;
220 /// \brief The operation traits.
221 typedef typename _Traits::OperationTraits OperationTraits;
223 /// Pointer to the underlying graph.
225 /// Pointer to the length map
226 const LengthMap *length;
227 ///Pointer to the map of predecessors edges.
229 ///Indicates if \ref _pred is locally allocated (\c true) or not.
231 ///Pointer to the map of distances.
233 ///Indicates if \ref _dist is locally allocated (\c true) or not.
236 typedef typename Graph::template NodeMap<bool> MaskMap;
239 std::vector<Node> _process;
241 /// Creates the maps if necessary.
245 _pred = Traits::createPredMap(*graph);
249 _dist = Traits::createDistMap(*graph);
251 _mask = new MaskMap(*graph, false);
256 typedef BellmanFord Create;
258 /// \name Named template parameters
263 struct DefPredMapTraits : public Traits {
265 static PredMap *createPredMap(const Graph&) {
266 throw UninitializedParameter();
270 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
272 /// \ref named-templ-param "Named parameter" for setting PredMap type
276 : public BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > {
277 typedef BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
281 struct DefDistMapTraits : public Traits {
283 static DistMap *createDistMap(const Graph&) {
284 throw UninitializedParameter();
288 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
291 /// \ref named-templ-param "Named parameter" for setting DistMap type
295 : public BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > {
296 typedef BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
300 struct DefOperationTraitsTraits : public Traits {
301 typedef T OperationTraits;
304 /// \brief \ref named-templ-param "Named parameter" for setting
305 /// OperationTraits type
307 /// \ref named-templ-param "Named parameter" for setting OperationTraits
310 struct DefOperationTraits
311 : public BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
312 typedef BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
324 /// \brief Constructor.
326 /// \param _graph the graph the algorithm will run on.
327 /// \param _length the length map used by the algorithm.
328 BellmanFord(const Graph& _graph, const LengthMap& _length) :
329 graph(&_graph), length(&_length),
330 _pred(0), local_pred(false),
331 _dist(0), local_dist(false), _mask(0) {}
335 if(local_pred) delete _pred;
336 if(local_dist) delete _dist;
337 if(_mask) delete _mask;
340 /// \brief Sets the length map.
342 /// Sets the length map.
343 /// \return \c (*this)
344 BellmanFord &lengthMap(const LengthMap &m) {
349 /// \brief Sets the map storing the predecessor edges.
351 /// Sets the map storing the predecessor edges.
352 /// If you don't use this function before calling \ref run(),
353 /// it will allocate one. The destuctor deallocates this
354 /// automatically allocated map, of course.
355 /// \return \c (*this)
356 BellmanFord &predMap(PredMap &m) {
365 /// \brief Sets the map storing the distances calculated by the algorithm.
367 /// Sets the map storing the distances calculated by the algorithm.
368 /// If you don't use this function before calling \ref run(),
369 /// it will allocate one. The destuctor deallocates this
370 /// automatically allocated map, of course.
371 /// \return \c (*this)
372 BellmanFord &distMap(DistMap &m) {
381 /// \name Execution control
382 /// The simplest way to execute the algorithm is to use
383 /// one of the member functions called \c run(...).
385 /// If you need more control on the execution,
386 /// first you must call \ref init(), then you can add several source nodes
387 /// with \ref addSource().
388 /// Finally \ref start() will perform the actual path
393 /// \brief Initializes the internal data structures.
395 /// Initializes the internal data structures.
396 void init(const Value value = OperationTraits::infinity()) {
398 for (NodeIt it(*graph); it != INVALID; ++it) {
399 _pred->set(it, INVALID);
400 _dist->set(it, value);
403 if (OperationTraits::less(value, OperationTraits::infinity())) {
404 for (NodeIt it(*graph); it != INVALID; ++it) {
405 _process.push_back(it);
406 _mask->set(it, true);
411 /// \brief Adds a new source node.
413 /// Adds a new source node. The optional second parameter is the
414 /// initial distance of the node. It just sets the distance of the
415 /// node to the given value.
416 void addSource(Node source, Value dst = OperationTraits::zero()) {
417 _dist->set(source, dst);
418 if (!(*_mask)[source]) {
419 _process.push_back(source);
420 _mask->set(source, true);
424 /// \brief Executes one round from the Bellman-Ford algorithm.
426 /// If the algoritm calculated the distances in the previous round
427 /// exactly for all at most \f$ k \f$ length path lengths then it will
428 /// calculate the distances exactly for all at most \f$ k + 1 \f$
429 /// length path lengths. With \f$ k \f$ iteration this function
430 /// calculates the at most \f$ k \f$ length path lengths.
432 /// \warning The paths with limited edge number cannot be retrieved
433 /// easily with \ref path() or \ref predEdge() functions. If you
434 /// need the shortest path and not just the distance you should store
435 /// after each iteration the \ref predMap() map and manually build
438 /// \return %True when the algorithm have not found more shorter
440 bool processNextRound() {
441 for (int i = 0; i < int(_process.size()); ++i) {
442 _mask->set(_process[i], false);
444 std::vector<Node> nextProcess;
445 std::vector<Value> values(_process.size());
446 for (int i = 0; i < int(_process.size()); ++i) {
447 values[i] = (*_dist)[_process[i]];
449 for (int i = 0; i < int(_process.size()); ++i) {
450 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
451 Node target = graph->target(it);
452 Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
453 if (OperationTraits::less(relaxed, (*_dist)[target])) {
454 _pred->set(target, it);
455 _dist->set(target, relaxed);
456 if (!(*_mask)[target]) {
457 _mask->set(target, true);
458 nextProcess.push_back(target);
463 _process.swap(nextProcess);
464 return _process.empty();
467 /// \brief Executes one weak round from the Bellman-Ford algorithm.
469 /// If the algorithm calculated the distances in the
470 /// previous round at least for all at most k length paths then it will
471 /// calculate the distances at least for all at most k + 1 length paths.
472 /// This function does not make it possible to calculate strictly the
473 /// at most k length minimal paths, this is why it is
474 /// called just weak round.
475 /// \return %True when the algorithm have not found more shorter paths.
476 bool processNextWeakRound() {
477 for (int i = 0; i < int(_process.size()); ++i) {
478 _mask->set(_process[i], false);
480 std::vector<Node> nextProcess;
481 for (int i = 0; i < int(_process.size()); ++i) {
482 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
483 Node target = graph->target(it);
485 OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
486 if (OperationTraits::less(relaxed, (*_dist)[target])) {
487 _pred->set(target, it);
488 _dist->set(target, relaxed);
489 if (!(*_mask)[target]) {
490 _mask->set(target, true);
491 nextProcess.push_back(target);
496 _process.swap(nextProcess);
497 return _process.empty();
500 /// \brief Executes the algorithm.
502 /// \pre init() must be called and at least one node should be added
503 /// with addSource() before using this function.
505 /// This method runs the %BellmanFord algorithm from the root node(s)
506 /// in order to compute the shortest path to each node. The algorithm
508 /// - The shortest path tree.
509 /// - The distance of each node from the root(s).
511 int num = countNodes(*graph) - 1;
512 for (int i = 0; i < num; ++i) {
513 if (processNextWeakRound()) break;
517 /// \brief Executes the algorithm and checks the negative cycles.
519 /// \pre init() must be called and at least one node should be added
520 /// with addSource() before using this function. If there is
521 /// a negative cycle in the graph it gives back false.
523 /// This method runs the %BellmanFord algorithm from the root node(s)
524 /// in order to compute the shortest path to each node. The algorithm
526 /// - The shortest path tree.
527 /// - The distance of each node from the root(s).
528 bool checkedStart() {
529 int num = countNodes(*graph);
530 for (int i = 0; i < num; ++i) {
531 if (processNextWeakRound()) return true;
533 return _process.empty();
536 /// \brief Executes the algorithm with path length limit.
538 /// \pre init() must be called and at least one node should be added
539 /// with addSource() before using this function.
541 /// This method runs the %BellmanFord algorithm from the root
542 /// node(s) in order to compute the shortest path lengths with at
543 /// most \c num edge.
545 /// \warning The paths with limited edge number cannot be retrieved
546 /// easily with \ref path() or \ref predEdge() functions. If you
547 /// need the shortest path and not just the distance you should store
548 /// after each iteration the \ref predMap() map and manually build
551 /// The algorithm computes
552 /// - The predecessor edge from each node.
553 /// - The limited distance of each node from the root(s).
554 void limitedStart(int num) {
555 for (int i = 0; i < num; ++i) {
556 if (processNextRound()) break;
560 /// \brief Runs %BellmanFord algorithm from node \c s.
562 /// This method runs the %BellmanFord algorithm from a root node \c s
563 /// in order to compute the shortest path to each node. The algorithm
565 /// - The shortest path tree.
566 /// - The distance of each node from the root.
568 /// \note d.run(s) is just a shortcut of the following code.
580 /// \brief Runs %BellmanFord algorithm with limited path length
583 /// This method runs the %BellmanFord algorithm from a root node \c s
584 /// in order to compute the shortest path with at most \c len edges
585 /// to each node. The algorithm computes
586 /// - The shortest path tree.
587 /// - The distance of each node from the root.
589 /// \note d.run(s, num) is just a shortcut of the following code.
593 /// d.limitedStart(num);
595 void run(Node s, int num) {
603 /// \name Query Functions
604 /// The result of the %BellmanFord algorithm can be obtained using these
606 /// Before the use of these functions,
607 /// either run() or start() must be called.
611 /// \brief Lemon iterator for get the active nodes.
613 /// Lemon iterator for get the active nodes. This class provides a
614 /// common style lemon iterator which gives back a subset of the
615 /// nodes. The iterated nodes are active in the algorithm after
616 /// the last phase so these should be checked in the next phase to
617 /// find augmenting edges from these.
621 /// \brief Constructor.
623 /// Constructor for get the nodeset of the variable.
624 ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
626 _index = _algorithm->_process.size() - 1;
629 /// \brief Invalid constructor.
631 /// Invalid constructor.
632 ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
634 /// \brief Conversion to node.
636 /// Conversion to node.
637 operator Node() const {
638 return _index >= 0 ? _algorithm->_process[_index] : INVALID;
641 /// \brief Increment operator.
643 /// Increment operator.
644 ActiveIt& operator++() {
649 bool operator==(const ActiveIt& it) const {
650 return static_cast<Node>(*this) == static_cast<Node>(it);
652 bool operator!=(const ActiveIt& it) const {
653 return static_cast<Node>(*this) != static_cast<Node>(it);
655 bool operator<(const ActiveIt& it) const {
656 return static_cast<Node>(*this) < static_cast<Node>(it);
660 const BellmanFord* _algorithm;
664 typedef PredMapPath<Graph, PredMap> Path;
666 /// \brief Gives back the shortest path.
668 /// Gives back the shortest path.
669 /// \pre The \c t should be reachable from the source.
672 return Path(*graph, *_pred, t);
676 // TODO : implement negative cycle
677 // /// \brief Gives back a negative cycle.
679 // /// This function gives back a negative cycle.
680 // /// If the algorithm have not found yet negative cycle it will give back
681 // /// an empty path.
682 // Path negativeCycle() {
683 // typename Graph::template NodeMap<int> state(*graph, 0);
684 // for (ActiveIt it(*this); it != INVALID; ++it) {
685 // if (state[it] == 0) {
686 // for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
687 // if (state[t] == 0) {
689 // } else if (state[t] == 2) {
693 // typename Path::Builder b(p);
694 // b.setStartNode(t);
695 // b.pushFront(predEdge(t));
696 // for(Node s = predNode(t); s != t; s = predNode(s)) {
697 // b.pushFront(predEdge(s));
703 // for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
704 // if (state[t] == 1) {
715 /// \brief The distance of a node from the root.
717 /// Returns the distance of a node from the root.
718 /// \pre \ref run() must be called before using this function.
719 /// \warning If node \c v in unreachable from the root the return value
720 /// of this funcion is undefined.
721 Value dist(Node v) const { return (*_dist)[v]; }
723 /// \brief Returns the 'previous edge' of the shortest path tree.
725 /// For a node \c v it returns the 'previous edge' of the shortest path
726 /// tree, i.e. it returns the last edge of a shortest path from the root
727 /// to \c v. It is \ref INVALID if \c v is unreachable from the root or
728 /// if \c v=s. The shortest path tree used here is equal to the shortest
729 /// path tree used in \ref predNode().
730 /// \pre \ref run() must be called before using
732 Edge predEdge(Node v) const { return (*_pred)[v]; }
734 /// \brief Returns the 'previous node' of the shortest path tree.
736 /// For a node \c v it returns the 'previous node' of the shortest path
737 /// tree, i.e. it returns the last but one node from a shortest path from
738 /// the root to \c /v. It is INVALID if \c v is unreachable from the root
739 /// or if \c v=s. The shortest path tree used here is equal to the
740 /// shortest path tree used in \ref predEdge(). \pre \ref run() must be
741 /// called before using this function.
742 Node predNode(Node v) const {
743 return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]);
746 /// \brief Returns a reference to the NodeMap of distances.
748 /// Returns a reference to the NodeMap of distances. \pre \ref run() must
749 /// be called before using this function.
750 const DistMap &distMap() const { return *_dist;}
752 /// \brief Returns a reference to the shortest path tree map.
754 /// Returns a reference to the NodeMap of the edges of the
755 /// shortest path tree.
756 /// \pre \ref run() must be called before using this function.
757 const PredMap &predMap() const { return *_pred; }
759 /// \brief Checks if a node is reachable from the root.
761 /// Returns \c true if \c v is reachable from the root.
762 /// \pre \ref run() must be called before using this function.
764 bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
769 /// \brief Default traits class of BellmanFord function.
771 /// Default traits class of BellmanFord function.
772 /// \param _Graph Graph type.
773 /// \param _LengthMap Type of length map.
774 template <typename _Graph, typename _LengthMap>
775 struct BellmanFordWizardDefaultTraits {
776 /// \brief The graph type the algorithm runs on.
777 typedef _Graph Graph;
779 /// \brief The type of the map that stores the edge lengths.
781 /// The type of the map that stores the edge lengths.
782 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
783 typedef _LengthMap LengthMap;
785 /// \brief The value type of the length map.
786 typedef typename _LengthMap::Value Value;
788 /// \brief Operation traits for Bellman-Ford algorithm.
790 /// It defines the infinity type on the given Value type
791 /// and the used operation.
792 /// \see BellmanFordDefaultOperationTraits
793 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
795 /// \brief The type of the map that stores the last
796 /// edges of the shortest paths.
798 /// The type of the map that stores the last
799 /// edges of the shortest paths.
800 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
801 typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
803 /// \brief Instantiates a PredMap.
805 /// This function instantiates a \ref PredMap.
806 static PredMap *createPredMap(const _Graph &) {
807 return new PredMap();
809 /// \brief The type of the map that stores the dists of the nodes.
811 /// The type of the map that stores the dists of the nodes.
812 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
813 typedef NullMap<typename Graph::Node, Value> DistMap;
814 /// \brief Instantiates a DistMap.
816 /// This function instantiates a \ref DistMap.
817 static DistMap *createDistMap(const _Graph &) {
818 return new DistMap();
822 /// \brief Default traits used by \ref BellmanFordWizard
824 /// To make it easier to use BellmanFord algorithm
825 /// we have created a wizard class.
826 /// This \ref BellmanFordWizard class needs default traits,
827 /// as well as the \ref BellmanFord class.
828 /// The \ref BellmanFordWizardBase is a class to be the default traits of the
829 /// \ref BellmanFordWizard class.
830 /// \todo More named parameters are required...
831 template<class _Graph,class _LengthMap>
832 class BellmanFordWizardBase
833 : public BellmanFordWizardDefaultTraits<_Graph,_LengthMap> {
835 typedef BellmanFordWizardDefaultTraits<_Graph,_LengthMap> Base;
837 /// Type of the nodes in the graph.
838 typedef typename Base::Graph::Node Node;
840 /// Pointer to the underlying graph.
842 /// Pointer to the length map
844 ///Pointer to the map of predecessors edges.
846 ///Pointer to the map of distances.
848 ///Pointer to the source node.
854 /// This constructor does not require parameters, therefore it initiates
855 /// all of the attributes to default values (0, INVALID).
856 BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
857 _dist(0), _source(INVALID) {}
861 /// This constructor requires some parameters,
862 /// listed in the parameters list.
863 /// Others are initiated to 0.
864 /// \param graph is the initial value of \ref _graph
865 /// \param length is the initial value of \ref _length
866 /// \param source is the initial value of \ref _source
867 BellmanFordWizardBase(const _Graph& graph,
868 const _LengthMap& length,
869 Node source = INVALID) :
870 _graph(reinterpret_cast<void*>(const_cast<_Graph*>(&graph))),
871 _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))),
872 _pred(0), _dist(0), _source(source) {}
876 /// A class to make the usage of BellmanFord algorithm easier
878 /// This class is created to make it easier to use BellmanFord algorithm.
879 /// It uses the functions and features of the plain \ref BellmanFord,
880 /// but it is much simpler to use it.
882 /// Simplicity means that the way to change the types defined
883 /// in the traits class is based on functions that returns the new class
884 /// and not on templatable built-in classes.
885 /// When using the plain \ref BellmanFord
886 /// the new class with the modified type comes from
887 /// the original class by using the ::
888 /// operator. In the case of \ref BellmanFordWizard only
889 /// a function have to be called and it will
890 /// return the needed class.
892 /// It does not have own \ref run method. When its \ref run method is called
893 /// it initiates a plain \ref BellmanFord class, and calls the \ref
894 /// BellmanFord::run method of it.
895 template<class _Traits>
896 class BellmanFordWizard : public _Traits {
897 typedef _Traits Base;
899 ///The type of the underlying graph.
900 typedef typename _Traits::Graph Graph;
902 typedef typename Graph::Node Node;
903 typedef typename Graph::NodeIt NodeIt;
904 typedef typename Graph::Edge Edge;
905 typedef typename Graph::OutEdgeIt EdgeIt;
907 ///The type of the map that stores the edge lengths.
908 typedef typename _Traits::LengthMap LengthMap;
910 ///The type of the length of the edges.
911 typedef typename LengthMap::Value Value;
913 ///\brief The type of the map that stores the last
914 ///edges of the shortest paths.
915 typedef typename _Traits::PredMap PredMap;
917 ///The type of the map that stores the dists of the nodes.
918 typedef typename _Traits::DistMap DistMap;
922 BellmanFordWizard() : _Traits() {}
924 /// \brief Constructor that requires parameters.
926 /// Constructor that requires parameters.
927 /// These parameters will be the default values for the traits class.
928 BellmanFordWizard(const Graph& graph, const LengthMap& length,
930 : _Traits(graph, length, src) {}
932 /// \brief Copy constructor
933 BellmanFordWizard(const _Traits &b) : _Traits(b) {}
935 ~BellmanFordWizard() {}
937 /// \brief Runs BellmanFord algorithm from a given node.
939 /// Runs BellmanFord algorithm from a given node.
940 /// The node can be given by the \ref source function.
942 if(Base::_source == INVALID) throw UninitializedParameter();
943 BellmanFord<Graph,LengthMap,_Traits>
944 bf(*reinterpret_cast<const Graph*>(Base::_graph),
945 *reinterpret_cast<const LengthMap*>(Base::_length));
946 if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
947 if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
948 bf.run(Base::_source);
951 /// \brief Runs BellmanFord algorithm from the given node.
953 /// Runs BellmanFord algorithm from the given node.
954 /// \param src is the given source.
961 struct DefPredMapBase : public Base {
963 static PredMap *createPredMap(const Graph &) { return 0; };
964 DefPredMapBase(const _Traits &b) : _Traits(b) {}
967 ///\brief \ref named-templ-param "Named parameter"
968 ///function for setting PredMap type
970 /// \ref named-templ-param "Named parameter"
971 ///function for setting PredMap type
974 BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t)
976 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
977 return BellmanFordWizard<DefPredMapBase<T> >(*this);
981 struct DefDistMapBase : public Base {
983 static DistMap *createDistMap(const Graph &) { return 0; };
984 DefDistMapBase(const _Traits &b) : _Traits(b) {}
987 ///\brief \ref named-templ-param "Named parameter"
988 ///function for setting DistMap type
990 /// \ref named-templ-param "Named parameter"
991 ///function for setting DistMap type
994 BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
995 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
996 return BellmanFordWizard<DefDistMapBase<T> >(*this);
1000 struct DefOperationTraitsBase : public Base {
1001 typedef T OperationTraits;
1002 DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
1005 ///\brief \ref named-templ-param "Named parameter"
1006 ///function for setting OperationTraits type
1008 /// \ref named-templ-param "Named parameter"
1009 ///function for setting OperationTraits type
1012 BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
1013 return BellmanFordWizard<DefDistMapBase<T> >(*this);
1016 /// \brief Sets the source node, from which the BellmanFord algorithm runs.
1018 /// Sets the source node, from which the BellmanFord algorithm runs.
1019 /// \param src is the source node.
1020 BellmanFordWizard<_Traits>& source(Node src) {
1021 Base::_source = src;
1027 /// \brief Function type interface for BellmanFord algorithm.
1029 /// \ingroup shortest_path
1030 /// Function type interface for BellmanFord algorithm.
1032 /// This function also has several \ref named-templ-func-param
1033 /// "named parameters", they are declared as the members of class
1034 /// \ref BellmanFordWizard.
1036 /// example shows how to use these parameters.
1038 /// bellmanford(g,length,source).predMap(preds).run();
1040 /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1041 /// to the end of the parameter list.
1042 /// \sa BellmanFordWizard
1044 template<class _Graph, class _LengthMap>
1045 BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
1046 bellmanFord(const _Graph& graph,
1047 const _LengthMap& length,
1048 typename _Graph::Node source = INVALID) {
1049 return BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
1050 (graph, length, source);
1053 } //END OF NAMESPACE LEMON