lemon/max_matching.h
author ladanyi
Sat, 13 Oct 2007 08:48:07 +0000
changeset 2495 e4f8367beb41
parent 2386 81b47fc5c444
child 2505 1bb471764ab8
permissions -rwxr-xr-x
Added the function isFinite(), and replaced the calls to finite() with it.
This was necessary because finite() is not a standard function. Neither can
we use its standard counterpart isfinite(), because it was introduced only
in C99, and therefore it is not supplied by all C++ implementations.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAX_MATCHING_H
    20 #define LEMON_MAX_MATCHING_H
    21 
    22 #include <queue>
    23 #include <lemon/bits/invalid.h>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/graph_utils.h>
    26 
    27 ///\ingroup matching
    28 ///\file
    29 ///\brief Maximum matching algorithm in undirected graph.
    30 
    31 namespace lemon {
    32 
    33   /// \ingroup matching
    34 
    35   ///Edmonds' alternating forest maximum matching algorithm.
    36 
    37   ///This class provides Edmonds' alternating forest matching
    38   ///algorithm. The starting matching (if any) can be passed to the
    39   ///algorithm using read-in functions \ref readNMapNode, \ref
    40   ///readNMapEdge or \ref readEMapBool depending on the container. The
    41   ///resulting maximum matching can be attained by write-out functions
    42   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    43   ///depending on the preferred container. 
    44   ///
    45   ///The dual side of a matching is a map of the nodes to
    46   ///MaxMatching::pos_enum, having values D, A and C showing the
    47   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    48   ///a graph with factor-critical components, the nodes in A form the
    49   ///barrier, and the nodes in C induce a graph having a perfect
    50   ///matching. This decomposition can be attained by calling \ref
    51   ///writePos after running the algorithm. 
    52   ///
    53   ///\param Graph The undirected graph type the algorithm runs on.
    54   ///
    55   ///\author Jacint Szabo  
    56   template <typename Graph>
    57   class MaxMatching {
    58 
    59   protected:
    60 
    61     typedef typename Graph::Node Node;
    62     typedef typename Graph::Edge Edge;
    63     typedef typename Graph::UEdge UEdge;
    64     typedef typename Graph::UEdgeIt UEdgeIt;
    65     typedef typename Graph::NodeIt NodeIt;
    66     typedef typename Graph::IncEdgeIt IncEdgeIt;
    67 
    68     typedef typename Graph::template NodeMap<int> UFECrossRef;
    69     typedef UnionFindEnum<UFECrossRef> UFE;
    70 
    71   public:
    72     
    73     ///Indicates the Gallai-Edmonds decomposition of the graph.
    74 
    75     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    76     ///shows an upper bound on the size of a maximum matching. The
    77     ///nodes with pos_enum \c D induce a graph with factor-critical
    78     ///components, the nodes in \c A form the canonical barrier, and the
    79     ///nodes in \c C induce a graph having a perfect matching. 
    80     enum pos_enum {
    81       D=0,
    82       A=1,
    83       C=2
    84     }; 
    85 
    86   protected:
    87 
    88     static const int HEUR_density=2;
    89     const Graph& g;
    90     typename Graph::template NodeMap<Node> _mate;
    91     typename Graph::template NodeMap<pos_enum> position;
    92      
    93   public:
    94     
    95     MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
    96 
    97     ///Runs Edmonds' algorithm.
    98 
    99     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
   100     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   101     ///heuristic of postponing shrinks for dense graphs. 
   102     void run() {
   103       if ( countUEdges(g) < HEUR_density*countNodes(g) ) {
   104 	greedyMatching();
   105 	runEdmonds(0);
   106       } else runEdmonds(1);
   107     }
   108 
   109 
   110     ///Runs Edmonds' algorithm.
   111     
   112     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   113     ///Edmonds' algorithm with a heuristic of postponing shrinks,
   114     ///giving a faster algorithm for dense graphs.  
   115     void runEdmonds( int heur = 1 ) {
   116       
   117       //each vertex is put to C
   118       for(NodeIt v(g); v!=INVALID; ++v)
   119 	position.set(v,C);      
   120       
   121       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   122       //undefined for the base nodes of the blossoms (i.e. for the
   123       //representative elements of UFE blossom) and for the nodes in C 
   124       
   125       UFECrossRef blossom_base(g);
   126       UFE blossom(blossom_base);
   127 
   128       UFECrossRef tree_base(g);
   129       UFE tree(tree_base);
   130 
   131       //If these UFE's would be members of the class then also
   132       //blossom_base and tree_base should be a member.
   133       
   134       //We build only one tree and the other vertices uncovered by the
   135       //matching belong to C. (They can be considered as singleton
   136       //trees.) If this tree can be augmented or no more
   137       //grow/augmentation/shrink is possible then we return to this
   138       //"for" cycle.
   139       for(NodeIt v(g); v!=INVALID; ++v) {
   140 	if ( position[v]==C && _mate[v]==INVALID ) {
   141 	  blossom.insert(v);
   142 	  tree.insert(v); 
   143 	  position.set(v,D);
   144 	  if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   145 	  else normShrink( v, ear, blossom, tree );
   146 	}
   147       }
   148     }
   149 
   150 
   151     ///Finds a greedy matching starting from the actual matching.
   152     
   153     ///Starting form the actual matching stored, it finds a maximal
   154     ///greedy matching.
   155     void greedyMatching() {
   156       for(NodeIt v(g); v!=INVALID; ++v)
   157 	if ( _mate[v]==INVALID ) {
   158 	  for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   159 	    Node y=g.runningNode(e);
   160 	    if ( _mate[y]==INVALID && y!=v ) {
   161 	      _mate.set(v,y);
   162 	      _mate.set(y,v);
   163 	      break;
   164 	    }
   165 	  }
   166 	} 
   167     }
   168 
   169     ///Returns the size of the actual matching stored.
   170 
   171     ///Returns the size of the actual matching stored. After \ref
   172     ///run() it returns the size of a maximum matching in the graph.
   173     int size() const {
   174       int s=0;
   175       for(NodeIt v(g); v!=INVALID; ++v) {
   176 	if ( _mate[v]!=INVALID ) {
   177 	  ++s;
   178 	}
   179       }
   180       return s/2;
   181     }
   182 
   183 
   184     ///Resets the actual matching to the empty matching.
   185 
   186     ///Resets the actual matching to the empty matching.  
   187     ///
   188     void resetMatching() {
   189       for(NodeIt v(g); v!=INVALID; ++v)
   190 	_mate.set(v,INVALID);      
   191     }
   192 
   193     ///Returns the mate of a node in the actual matching.
   194 
   195     ///Returns the mate of a \c node in the actual matching. 
   196     ///Returns INVALID if the \c node is not covered by the actual matching. 
   197     Node mate(Node& node) const {
   198       return _mate[node];
   199     } 
   200 
   201     ///Reads a matching from a \c Node valued \c Node map.
   202 
   203     ///Reads a matching from a \c Node valued \c Node map. This map
   204     ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
   205     ///must hold, and \c uv will be an edge of the matching.
   206     template<typename NMapN>
   207     void readNMapNode(NMapN& map) {
   208       for(NodeIt v(g); v!=INVALID; ++v) {
   209 	_mate.set(v,map[v]);   
   210       } 
   211     } 
   212     
   213     ///Writes the stored matching to a \c Node valued \c Node map.
   214 
   215     ///Writes the stored matching to a \c Node valued \c Node map. The
   216     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   217     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   218     template<typename NMapN>
   219     void writeNMapNode (NMapN& map) const {
   220       for(NodeIt v(g); v!=INVALID; ++v) {
   221 	map.set(v,_mate[v]);   
   222       } 
   223     } 
   224 
   225     ///Reads a matching from an \c UEdge valued \c Node map.
   226 
   227     ///Reads a matching from an \c UEdge valued \c Node map. \c
   228     ///map[v] must be an \c UEdge incident to \c v. This map must
   229     ///have the property that if \c g.oppositeNode(u,map[u])==v then
   230     ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
   231     ///joining \c u to \c v will be an edge of the matching.
   232     template<typename NMapE>
   233     void readNMapEdge(NMapE& map) {
   234       for(NodeIt v(g); v!=INVALID; ++v) {
   235 	UEdge e=map[v];
   236 	if ( e!=INVALID )
   237 	  _mate.set(v,g.oppositeNode(v,e));
   238       } 
   239     } 
   240     
   241     ///Writes the matching stored to an \c UEdge valued \c Node map.
   242 
   243     ///Writes the stored matching to an \c UEdge valued \c Node
   244     ///map. \c map[v] will be an \c UEdge incident to \c v. This
   245     ///map will have the property that if \c g.oppositeNode(u,map[u])
   246     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   247     ///of the matching.
   248     template<typename NMapE>
   249     void writeNMapEdge (NMapE& map)  const {
   250       typename Graph::template NodeMap<bool> todo(g,true); 
   251       for(NodeIt v(g); v!=INVALID; ++v) {
   252 	if ( todo[v] && _mate[v]!=INVALID ) {
   253 	  Node u=_mate[v];
   254 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   255 	    if ( g.runningNode(e) == u ) {
   256 	      map.set(u,e);
   257 	      map.set(v,e);
   258 	      todo.set(u,false);
   259 	      todo.set(v,false);
   260 	      break;
   261 	    }
   262 	  }
   263 	}
   264       } 
   265     }
   266 
   267 
   268     ///Reads a matching from a \c bool valued \c Edge map.
   269     
   270     ///Reads a matching from a \c bool valued \c Edge map. This map
   271     ///must have the property that there are no two incident edges \c
   272     ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   273     ///map[e]==true form the matching.
   274     template<typename EMapB>
   275     void readEMapBool(EMapB& map) {
   276       for(UEdgeIt e(g); e!=INVALID; ++e) {
   277 	if ( map[e] ) {
   278 	  Node u=g.source(e);	  
   279 	  Node v=g.target(e);
   280 	  _mate.set(u,v);
   281 	  _mate.set(v,u);
   282 	} 
   283       } 
   284     }
   285 
   286 
   287     ///Writes the matching stored to a \c bool valued \c Edge map.
   288 
   289     ///Writes the matching stored to a \c bool valued \c Edge
   290     ///map. This map will have the property that there are no two
   291     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   292     ///edges \c e with \c map[e]==true form the matching.
   293     template<typename EMapB>
   294     void writeEMapBool (EMapB& map) const {
   295       for(UEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   296 
   297       typename Graph::template NodeMap<bool> todo(g,true); 
   298       for(NodeIt v(g); v!=INVALID; ++v) {
   299 	if ( todo[v] && _mate[v]!=INVALID ) {
   300 	  Node u=_mate[v];
   301 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   302 	    if ( g.runningNode(e) == u ) {
   303 	      map.set(e,true);
   304 	      todo.set(u,false);
   305 	      todo.set(v,false);
   306 	      break;
   307 	    }
   308 	  }
   309 	}
   310       } 
   311     }
   312 
   313 
   314     ///Writes the canonical decomposition of the graph after running
   315     ///the algorithm.
   316 
   317     ///After calling any run methods of the class, it writes the
   318     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   319     ///must be a node map of \ref pos_enum 's.
   320     template<typename NMapEnum>
   321     void writePos (NMapEnum& map) const {
   322       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   323     }
   324 
   325   private: 
   326 
   327  
   328     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   329 		    UFE& blossom, UFE& tree);
   330 
   331     void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   332 		    UFE& blossom, UFE& tree);
   333 
   334     void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,  
   335 		UFE& blossom, UFE& tree,std::queue<Node>& Q);
   336 
   337     void shrinkStep(Node& top, Node& middle, Node& bottom,
   338 		    typename Graph::template NodeMap<Node>& ear,  
   339 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   340 
   341     bool growOrAugment(Node& y, Node& x, typename Graph::template 
   342 		       NodeMap<Node>& ear, UFE& blossom, UFE& tree, 
   343 		       std::queue<Node>& Q);
   344 
   345     void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
   346 		 UFE& blossom, UFE& tree);
   347 
   348   };
   349 
   350 
   351   // **********************************************************************
   352   //  IMPLEMENTATIONS
   353   // **********************************************************************
   354 
   355 
   356   template <typename Graph>
   357   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template 
   358 				      NodeMap<Node>& ear, UFE& blossom, 
   359                                       UFE& tree) {
   360     //We have one tree which we grow, and also shrink but only if it cannot be
   361     //postponed. If we augment then we return to the "for" cycle of
   362     //runEdmonds().
   363 
   364     std::queue<Node> Q;   //queue of the totally unscanned nodes
   365     Q.push(v);  
   366     std::queue<Node> R;   
   367     //queue of the nodes which must be scanned for a possible shrink
   368       
   369     while ( !Q.empty() ) {
   370       Node x=Q.front();
   371       Q.pop();
   372       for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   373 	Node y=g.runningNode(e);
   374 	//growOrAugment grows if y is covered by the matching and
   375 	//augments if not. In this latter case it returns 1.
   376 	if ( position[y]==C && growOrAugment(y, x, ear, blossom, tree, Q) ) 
   377           return;
   378       }
   379       R.push(x);
   380     }
   381       
   382     while ( !R.empty() ) {
   383       Node x=R.front();
   384       R.pop();
   385 	
   386       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   387 	Node y=g.runningNode(e);
   388 
   389 	if ( position[y] == D && blossom.find(x) != blossom.find(y) )  
   390 	  //Recall that we have only one tree.
   391 	  shrink( x, y, ear, blossom, tree, Q);	
   392 	
   393 	while ( !Q.empty() ) {
   394 	  Node z=Q.front();
   395 	  Q.pop();
   396 	  for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
   397 	    Node w=g.runningNode(f);
   398 	    //growOrAugment grows if y is covered by the matching and
   399 	    //augments if not. In this latter case it returns 1.
   400 	    if ( position[w]==C && growOrAugment(w, z, ear, blossom, tree, Q) )
   401               return;
   402 	  }
   403 	  R.push(z);
   404 	}
   405       } //for e
   406     } // while ( !R.empty() )
   407   }
   408 
   409 
   410   template <typename Graph>
   411   void MaxMatching<Graph>::normShrink(Node v,
   412 				      typename Graph::template
   413 				      NodeMap<Node>& ear,  
   414 				      UFE& blossom, UFE& tree) {
   415     //We have one tree, which we grow and shrink. If we augment then we
   416     //return to the "for" cycle of runEdmonds().
   417     
   418     std::queue<Node> Q;   //queue of the unscanned nodes
   419     Q.push(v);  
   420     while ( !Q.empty() ) {
   421 
   422       Node x=Q.front();
   423       Q.pop();
   424 	
   425       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   426 	Node y=g.runningNode(e);
   427 	      
   428 	switch ( position[y] ) {
   429 	case D:          //x and y must be in the same tree
   430 	  if ( blossom.find(x) != blossom.find(y) )
   431 	    //x and y are in the same tree
   432 	    shrink( x, y, ear, blossom, tree, Q);
   433 	  break;
   434 	case C:
   435 	  //growOrAugment grows if y is covered by the matching and
   436 	  //augments if not. In this latter case it returns 1.
   437 	  if ( growOrAugment(y, x, ear, blossom, tree, Q) ) return;
   438 	  break;
   439 	default: break;
   440        	}
   441       }
   442     }
   443   }
   444   
   445 
   446   template <typename Graph>
   447     void MaxMatching<Graph>::shrink(Node x,Node y, typename 
   448 				    Graph::template NodeMap<Node>& ear,  
   449 				    UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   450     //x and y are the two adjacent vertices in two blossoms.
   451    
   452     typename Graph::template NodeMap<bool> path(g,false);
   453     
   454     Node b=blossom.find(x);
   455     path.set(b,true);
   456     b=_mate[b];
   457     while ( b!=INVALID ) { 
   458       b=blossom.find(ear[b]);
   459       path.set(b,true);
   460       b=_mate[b];
   461     } //we go until the root through bases of blossoms and odd vertices
   462     
   463     Node top=y;
   464     Node middle=blossom.find(top);
   465     Node bottom=x;
   466     while ( !path[middle] )
   467       shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   468     //Until we arrive to a node on the path, we update blossom, tree
   469     //and the positions of the odd nodes.
   470     
   471     Node base=middle;
   472     top=x;
   473     middle=blossom.find(top);
   474     bottom=y;
   475     Node blossom_base=blossom.find(base);
   476     while ( middle!=blossom_base )
   477       shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   478     //Until we arrive to a node on the path, we update blossom, tree
   479     //and the positions of the odd nodes.
   480     
   481     blossom.makeRep(base);
   482   }
   483 
   484 
   485 
   486   template <typename Graph>
   487   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom,
   488 				      typename Graph::template
   489 				      NodeMap<Node>& ear,  
   490 				      UFE& blossom, UFE& tree,
   491 				      std::queue<Node>& Q) {
   492     //We traverse a blossom and update everything.
   493     
   494     ear.set(top,bottom);
   495     Node t=top;
   496     while ( t!=middle ) {
   497       Node u=_mate[t];
   498       t=ear[u];
   499       ear.set(t,u);
   500     } 
   501     bottom=_mate[middle];
   502     position.set(bottom,D);
   503     Q.push(bottom);
   504     top=ear[bottom];		
   505     Node oldmiddle=middle;
   506     middle=blossom.find(top);
   507     tree.erase(bottom);
   508     tree.erase(oldmiddle);
   509     blossom.insert(bottom);
   510     blossom.join(bottom, oldmiddle);
   511     blossom.join(top, oldmiddle);
   512   }
   513 
   514 
   515   template <typename Graph>
   516   bool MaxMatching<Graph>::growOrAugment(Node& y, Node& x, typename Graph::template
   517 					 NodeMap<Node>& ear, UFE& blossom, UFE& tree,
   518 					 std::queue<Node>& Q) {
   519     //x is in a blossom in the tree, y is outside. If y is covered by
   520     //the matching we grow, otherwise we augment. In this case we
   521     //return 1.
   522     
   523     if ( _mate[y]!=INVALID ) {       //grow
   524       ear.set(y,x);
   525       Node w=_mate[y];
   526       blossom.insert(w);
   527       position.set(y,A);
   528       position.set(w,D);
   529       tree.insert(y);
   530       tree.insert(w);
   531       tree.join(y,blossom.find(x));  
   532       tree.join(w,y);  
   533       Q.push(w);
   534     } else {                      //augment 
   535       augment(x, ear, blossom, tree);
   536       _mate.set(x,y);
   537       _mate.set(y,x);
   538       return true;
   539     }
   540     return false;
   541   }
   542   
   543 
   544   template <typename Graph>
   545   void MaxMatching<Graph>::augment(Node x,
   546 				   typename Graph::template NodeMap<Node>& ear,  
   547 				   UFE& blossom, UFE& tree) { 
   548     Node v=_mate[x];
   549     while ( v!=INVALID ) {
   550 	
   551       Node u=ear[v];
   552       _mate.set(v,u);
   553       Node tmp=v;
   554       v=_mate[u];
   555       _mate.set(u,tmp);
   556     }
   557     Node y=blossom.find(x);
   558     for (typename UFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {   
   559       if ( position[tit] == D ) {
   560 	for (typename UFE::ItemIt bit(blossom, tit); bit != INVALID; ++bit) {  
   561 	  position.set( bit ,C);
   562 	}
   563 	blossom.eraseClass(tit);
   564       } else position.set( tit ,C);
   565     }
   566     tree.eraseClass(y);
   567 
   568   }
   569 
   570   
   571 } //END OF NAMESPACE LEMON
   572 
   573 #endif //LEMON_MAX_MATCHING_H