src/work/athos/mincostflow.h
author marci
Fri, 14 May 2004 14:41:30 +0000
changeset 636 e59b0c363a9e
parent 633 305bd9c56f10
child 645 d93d8b9906d1
permissions -rw-r--r--
(none)
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOW_H
     3 #define HUGO_MINCOSTFLOW_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
     8 
     9 
    10 #include <hugo/dijkstra.h>
    11 #include <hugo/graph_wrapper.h>
    12 #include <hugo/maps.h>
    13 #include <vector>
    14 #include <for_each_macros.h>
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup galgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
    23   /// 
    24   ///
    25   /// The class \ref hugo::MinCostFlow "MinCostFlow" implements
    26   /// an algorithm for solving the following general minimum cost flow problem>
    27   /// 
    28   ///
    29   ///
    30   /// \warning It is assumed here that the problem has a feasible solution
    31   ///
    32   /// The range of the length (weight) function is nonnegative reals but 
    33   /// the range of capacity function is the set of nonnegative integers. 
    34   /// It is not a polinomial time algorithm for counting the minimum cost
    35   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    36   /// where \c M is the value of the maximal flow.
    37   ///
    38   ///\author Attila Bernath
    39   template <typename Graph, typename LengthMap, typename SupplyDemandMap>
    40   class MinCostFlow {
    41 
    42     typedef typename LengthMap::ValueType Length;
    43 
    44 
    45     typedef typename SupplyDemandMap::ValueType SupplyDemand;
    46     
    47     typedef typename Graph::Node Node;
    48     typedef typename Graph::NodeIt NodeIt;
    49     typedef typename Graph::Edge Edge;
    50     typedef typename Graph::OutEdgeIt OutEdgeIt;
    51     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    52 
    53     //    typedef ConstMap<Edge,int> ConstMap;
    54 
    55     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    56     typedef typename ResGraphType::Edge ResGraphEdge;
    57 
    58     class ModLengthMap {   
    59       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    60       typedef typename Graph::template NodeMap<Length> NodeMap;
    61       const ResGraphType& G;
    62       //      const EdgeIntMap& rev;
    63       const LengthMap &ol;
    64       const NodeMap &pot;
    65     public :
    66       typedef typename LengthMap::KeyType KeyType;
    67       typedef typename LengthMap::ValueType ValueType;
    68 	
    69       ValueType operator[](typename ResGraphType::Edge e) const {     
    70 	if (G.forward(e))
    71 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    72 	else
    73 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    74       }     
    75 	
    76       ModLengthMap(const ResGraphType& _G,
    77 		   const LengthMap &o,  const NodeMap &p) : 
    78 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    79     };//ModLengthMap
    80 
    81 
    82   protected:
    83     
    84     //Input
    85     const Graph& G;
    86     const LengthMap& length;
    87     const SupplyDemandMap& supply_demand;//supply or demand of nodes
    88 
    89 
    90     //auxiliary variables
    91 
    92     //To store the flow
    93     EdgeIntMap flow; 
    94     //To store the potentila (dual variables)
    95     typename Graph::template NodeMap<Length> potential;
    96     //To store excess-deficit values
    97     SupplyDemandMap excess_deficit;
    98     
    99 
   100     Length total_length;
   101 
   102 
   103   public :
   104 
   105 
   106     MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G), 
   107       length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ }
   108 
   109     
   110     ///Runs the algorithm.
   111 
   112     ///Runs the algorithm.
   113 
   114     ///\todo May be it does make sense to be able to start with a nonzero 
   115     /// feasible primal-dual solution pair as well.
   116     int run() {
   117 
   118       //Resetting variables from previous runs
   119       //total_length = 0;
   120 
   121       typedef typename Graph::template NodeMap<int> HeapMap;
   122       typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>,
   123 	std::greater<SupplyDemand> > 	HeapType;
   124 
   125       //A heap for the excess nodes
   126       HeapMap excess_nodes_map(G,-1);
   127       HeapType excess_nodes(excess_nodes_map);
   128 
   129       //A heap for the deficit nodes
   130       HeapMap deficit_nodes_map(G,-1);
   131       HeapType deficit_nodes(deficit_nodes_map);
   132 
   133       
   134       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   135 	flow.set(e,0);
   136       }
   137 
   138       //Initial value for delta
   139       SupplyDemand delta = 0;
   140 
   141       FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   142        	excess_deficit.set(n,supply_demand[n]);
   143 	//A supply node
   144 	if (excess_deficit[n] > 0){
   145 	  excess_nodes.push(n,excess_deficit[n]);
   146 	}
   147 	//A demand node
   148 	if (excess_deficit[n] < 0){
   149 	  deficit_nodes.push(n, - excess_deficit[n]);
   150 	}
   151 	//Finding out starting value of delta
   152 	if (delta < abs(excess_deficit[n])){
   153 	  delta = abs(excess_deficit[n]);
   154 	}
   155 	//Initialize the copy of the Dijkstra potential to zero
   156 	potential.set(n,0);
   157       }
   158 
   159       //It'll be allright as an initial value, though this value 
   160       //can be the maximum deficit here
   161       SupplyDemand max_excess = delta;
   162       
   163       //We need a residual graph which is uncapacitated
   164       ResGraphType res_graph(G, flow);
   165 
   166 
   167       
   168       ModLengthMap mod_length(res_graph, length, potential);
   169 
   170       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   171 
   172 
   173       while (max_excess > 0){
   174 
   175 	
   176 	//Merge and stuff
   177 
   178 	Node s = excess_nodes.top(); 
   179 	SupplyDemand max_excess = excess_nodes[s];
   180 	Node t = deficit_nodes.top(); 
   181 	if (max_excess < dificit_nodes[t]){
   182 	  max_excess = dificit_nodes[t];
   183 	}
   184 
   185 
   186 	while(max_excess > ){
   187 
   188 	  
   189 	  //s es t valasztasa
   190 
   191 	  //Dijkstra part	
   192 	  dijkstra.run(s);
   193 
   194 	  /*We know from theory that t can be reached
   195 	  if (!dijkstra.reached(t)){
   196 	    //There are no k paths from s to t
   197 	    break;
   198 	  };
   199 	  */
   200 	  
   201 	  //We have to change the potential
   202 	  FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){
   203 	    potential[n] += dijkstra.distMap()[n];
   204 	  }
   205 
   206 
   207 	  //Augmenting on the sortest path
   208 	  Node n=t;
   209 	  ResGraphEdge e;
   210 	  while (n!=s){
   211 	    e = dijkstra.pred(n);
   212 	    n = dijkstra.predNode(n);
   213 	    res_graph.augment(e,delta);
   214 	    /*
   215 	    //Let's update the total length
   216 	    if (res_graph.forward(e))
   217 	      total_length += length[e];
   218 	    else 
   219 	      total_length -= length[e];	    
   220 	    */
   221 	  }
   222 
   223 	  //Update the excess_nodes heap
   224 	  if (delta >= excess_nodes[s]){
   225 	    if (delta > excess_nodes[s])
   226 	      deficit_nodes.push(s,delta - excess_nodes[s]);
   227 	    excess_nodes.pop();
   228 	    
   229 	  } 
   230 	  else{
   231 	    excess_nodes[s] -= delta;
   232 	  }
   233 	  //Update the deficit_nodes heap
   234 	  if (delta >= deficit_nodes[t]){
   235 	    if (delta > deficit_nodes[t])
   236 	      excess_nodes.push(t,delta - deficit_nodes[t]);
   237 	    deficit_nodes.pop();
   238 	    
   239 	  } 
   240 	  else{
   241 	    deficit_nodes[t] -= delta;
   242 	  }
   243 	  //Dijkstra part ends here
   244 	}
   245 
   246 	/*
   247 	 * End of the delta scaling phase 
   248 	*/
   249 
   250 	//Whatever this means
   251 	delta = delta / 2;
   252 
   253 	/*This is not necessary here
   254 	//Update the max_excess
   255 	max_excess = 0;
   256 	FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   257 	  if (max_excess < excess_deficit[n]){
   258 	    max_excess = excess_deficit[n];
   259 	  }
   260 	}
   261 	*/
   262 	//Reset delta if still too big
   263 	if (8*number_of_nodes*max_excess <= delta){
   264 	  delta = max_excess;
   265 	  
   266 	}
   267 	  
   268       }//while(max_excess > 0)
   269       
   270 
   271       return i;
   272     }
   273 
   274 
   275 
   276 
   277     ///This function gives back the total length of the found paths.
   278     ///Assumes that \c run() has been run and nothing changed since then.
   279     Length totalLength(){
   280       return total_length;
   281     }
   282 
   283     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   284     ///be called before using this function.
   285     const EdgeIntMap &getFlow() const { return flow;}
   286 
   287   ///Returns a const reference to the NodeMap \c potential (the dual solution).
   288     /// \pre \ref run() must be called before using this function.
   289     const EdgeIntMap &getPotential() const { return potential;}
   290 
   291     ///This function checks, whether the given solution is optimal
   292     ///Running after a \c run() should return with true
   293     ///In this "state of the art" this only check optimality, doesn't bother with feasibility
   294     ///
   295     ///\todo Is this OK here?
   296     bool checkComplementarySlackness(){
   297       Length mod_pot;
   298       Length fl_e;
   299       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   300 	//C^{\Pi}_{i,j}
   301 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   302 	fl_e = flow[e];
   303 	//	std::cout << fl_e << std::endl;
   304 	if (0<fl_e && fl_e<capacity[e]){
   305 	  if (mod_pot != 0)
   306 	    return false;
   307 	}
   308 	else{
   309 	  if (mod_pot > 0 && fl_e != 0)
   310 	    return false;
   311 	  if (mod_pot < 0 && fl_e != capacity[e])
   312 	    return false;
   313 	}
   314       }
   315       return true;
   316     }
   317     
   318 
   319   }; //class MinCostFlow
   320 
   321   ///@}
   322 
   323 } //namespace hugo
   324 
   325 #endif //HUGO_MINCOSTFLOW_H