lemon/list_graph.h
author alpar
Fri, 07 Oct 2005 11:05:08 +0000
changeset 1715 e71778873dd0
parent 1692 a34203867181
child 1718 6a958ab38386
permissions -rw-r--r--
Doc improvments
     1 /* -*- C++ -*-
     2  * lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LIST_GRAPH_H
    18 #define LEMON_LIST_GRAPH_H
    19 
    20 ///\ingroup graphs
    21 ///\file
    22 ///\brief ListGraph, UndirListGraph classes.
    23 
    24 #include <lemon/bits/erasable_graph_extender.h>
    25 #include <lemon/bits/clearable_graph_extender.h>
    26 #include <lemon/bits/extendable_graph_extender.h>
    27 #include <lemon/bits/iterable_graph_extender.h>
    28 #include <lemon/bits/alteration_notifier.h>
    29 #include <lemon/bits/default_map.h>
    30 
    31 #include <lemon/bits/undir_graph_extender.h>
    32 
    33 #include <list>
    34 
    35 namespace lemon {
    36 
    37   class ListGraphBase {
    38 
    39   protected:
    40     struct NodeT {
    41       int first_in, first_out;
    42       int prev, next;
    43     };
    44  
    45     struct EdgeT {
    46       int target, source;
    47       int prev_in, prev_out;
    48       int next_in, next_out;
    49     };
    50 
    51     std::vector<NodeT> nodes;
    52 
    53     int first_node;
    54 
    55     int first_free_node;
    56 
    57     std::vector<EdgeT> edges;
    58 
    59     int first_free_edge;
    60     
    61   public:
    62     
    63     typedef ListGraphBase Graph;
    64     
    65     class Node {
    66       friend class ListGraphBase;
    67     protected:
    68 
    69       int id;
    70       Node(int pid) { id = pid;}
    71 
    72     public:
    73       Node() {}
    74       Node (Invalid) { id = -1; }
    75       bool operator==(const Node& node) const {return id == node.id;}
    76       bool operator!=(const Node& node) const {return id != node.id;}
    77       bool operator<(const Node& node) const {return id < node.id;}
    78     };
    79 
    80     class Edge {
    81       friend class ListGraphBase;
    82     protected:
    83 
    84       int id;
    85       Edge(int pid) { id = pid;}
    86 
    87     public:
    88       Edge() {}
    89       Edge (Invalid) { id = -1; }
    90       bool operator==(const Edge& edge) const {return id == edge.id;}
    91       bool operator!=(const Edge& edge) const {return id != edge.id;}
    92       bool operator<(const Edge& edge) const {return id < edge.id;}
    93     };
    94 
    95 
    96 
    97     ListGraphBase()
    98       : nodes(), first_node(-1),
    99 	first_free_node(-1), edges(), first_free_edge(-1) {}
   100 
   101     
   102     /// Maximum node ID.
   103     
   104     /// Maximum node ID.
   105     ///\sa id(Node)
   106     int maxId(Node = INVALID) const { return nodes.size()-1; } 
   107 
   108     /// Maximum edge ID.
   109     
   110     /// Maximum edge ID.
   111     ///\sa id(Edge)
   112     int maxId(Edge = INVALID) const { return edges.size()-1; }
   113 
   114     Node source(Edge e) const { return edges[e.id].source; }
   115     Node target(Edge e) const { return edges[e.id].target; }
   116 
   117 
   118     void first(Node& node) const { 
   119       node.id = first_node;
   120     }
   121 
   122     void next(Node& node) const {
   123       node.id = nodes[node.id].next;
   124     }
   125 
   126 
   127     void first(Edge& e) const { 
   128       int n;
   129       for(n = first_node; 
   130 	  n!=-1 && nodes[n].first_in == -1; 
   131 	  n = nodes[n].next);
   132       e.id = (n == -1) ? -1 : nodes[n].first_in;
   133     }
   134 
   135     void next(Edge& edge) const {
   136       if (edges[edge.id].next_in != -1) {
   137 	edge.id = edges[edge.id].next_in;
   138       } else {
   139 	int n;
   140 	for(n = nodes[edges[edge.id].target].next;
   141 	  n!=-1 && nodes[n].first_in == -1; 
   142 	  n = nodes[n].next);
   143 	edge.id = (n == -1) ? -1 : nodes[n].first_in;
   144       }      
   145     }
   146 
   147     void firstOut(Edge &e, const Node& v) const {
   148       e.id = nodes[v.id].first_out;
   149     }
   150     void nextOut(Edge &e) const {
   151       e.id=edges[e.id].next_out;
   152     }
   153 
   154     void firstIn(Edge &e, const Node& v) const {
   155       e.id = nodes[v.id].first_in;
   156     }
   157     void nextIn(Edge &e) const {
   158       e.id=edges[e.id].next_in;
   159     }
   160 
   161     
   162     static int id(Node v) { return v.id; }
   163     static int id(Edge e) { return e.id; }
   164 
   165     static Node fromId(int id, Node) { return Node(id);}
   166     static Edge fromId(int id, Edge) { return Edge(id);}
   167 
   168     /// Adds a new node to the graph.
   169 
   170     /// \warning It adds the new node to the front of the list.
   171     /// (i.e. the lastly added node becomes the first.)
   172     Node addNode() {     
   173       int n;
   174       
   175       if(first_free_node==-1) {
   176 	n = nodes.size();
   177 	nodes.push_back(NodeT());
   178       } else {
   179 	n = first_free_node;
   180 	first_free_node = nodes[n].next;
   181       }
   182       
   183       nodes[n].next = first_node;
   184       if(first_node != -1) nodes[first_node].prev = n;
   185       first_node = n;
   186       nodes[n].prev = -1;
   187       
   188       nodes[n].first_in = nodes[n].first_out = -1;
   189       
   190       return Node(n);
   191     }
   192     
   193     Edge addEdge(Node u, Node v) {
   194       int n;      
   195 
   196       if (first_free_edge == -1) {
   197 	n = edges.size();
   198 	edges.push_back(EdgeT());
   199       } else {
   200 	n = first_free_edge;
   201 	first_free_edge = edges[n].next_in;
   202       }
   203       
   204       edges[n].source = u.id; 
   205       edges[n].target = v.id;
   206 
   207       edges[n].next_out = nodes[u.id].first_out;
   208       if(nodes[u.id].first_out != -1) {
   209 	edges[nodes[u.id].first_out].prev_out = n;
   210       }
   211       
   212       edges[n].next_in = nodes[v.id].first_in;
   213       if(nodes[v.id].first_in != -1) {
   214 	edges[nodes[v.id].first_in].prev_in = n;
   215       }
   216       
   217       edges[n].prev_in = edges[n].prev_out = -1;
   218 	
   219       nodes[u.id].first_out = nodes[v.id].first_in = n;
   220 
   221       return Edge(n);
   222     }
   223     
   224     void erase(const Node& node) {
   225       int n = node.id;
   226       
   227       if(nodes[n].next != -1) {
   228 	nodes[nodes[n].next].prev = nodes[n].prev;
   229       }
   230       
   231       if(nodes[n].prev != -1) {
   232 	nodes[nodes[n].prev].next = nodes[n].next;
   233       } else {
   234 	first_node = nodes[n].next;
   235       }
   236       
   237       nodes[n].next = first_free_node;
   238       first_free_node = n;
   239 
   240     }
   241     
   242     void erase(const Edge& edge) {
   243       int n = edge.id;
   244       
   245       if(edges[n].next_in!=-1) {
   246 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   247       }
   248 
   249       if(edges[n].prev_in!=-1) {
   250 	edges[edges[n].prev_in].next_in = edges[n].next_in;
   251       } else {
   252 	nodes[edges[n].target].first_in = edges[n].next_in;
   253       }
   254 
   255       
   256       if(edges[n].next_out!=-1) {
   257 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   258       } 
   259 
   260       if(edges[n].prev_out!=-1) {
   261 	edges[edges[n].prev_out].next_out = edges[n].next_out;
   262       } else {
   263 	nodes[edges[n].source].first_out = edges[n].next_out;
   264       }
   265       
   266       edges[n].next_in = first_free_edge;
   267       first_free_edge = n;      
   268 
   269     }
   270 
   271     void clear() {
   272       edges.clear();
   273       nodes.clear();
   274       first_node = first_free_node = first_free_edge = -1;
   275     }
   276 
   277   protected:
   278     void _changeTarget(Edge e, Node n) 
   279     {
   280       if(edges[e.id].next_in != -1)
   281 	edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
   282       if(edges[e.id].prev_in != -1)
   283 	edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
   284       else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
   285       if (nodes[n.id].first_in != -1) {
   286 	edges[nodes[n.id].first_in].prev_in = e.id;
   287       }
   288       edges[e.id].target = n.id;
   289       edges[e.id].prev_in = -1;
   290       edges[e.id].next_in = nodes[n.id].first_in;
   291       nodes[n.id].first_in = e.id;
   292     }
   293     void _changeSource(Edge e, Node n) 
   294     {
   295       if(edges[e.id].next_out != -1)
   296 	edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
   297       if(edges[e.id].prev_out != -1)
   298 	edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
   299       else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
   300       if (nodes[n.id].first_out != -1) {
   301 	edges[nodes[n.id].first_out].prev_out = e.id;
   302       }
   303       edges[e.id].source = n.id;
   304       edges[e.id].prev_out = -1;
   305       edges[e.id].next_out = nodes[n.id].first_out;
   306       nodes[n.id].first_out = e.id;
   307     }
   308 
   309   };
   310 
   311   typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
   312   typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
   313   typedef MappableGraphExtender<IterableListGraphBase> MappableListGraphBase;
   314   typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
   315   typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
   316   typedef ErasableGraphExtender<
   317     ClearableGraphExtender<
   318     ExtendableGraphExtender<
   319     MappableGraphExtender<
   320     IterableGraphExtender<
   321     AlterableGraphExtender<ListGraphBase> > > > > > ExtendedListGraphBase;
   322 
   323 /// \addtogroup graphs
   324 /// @{
   325 
   326   ///A list graph class.
   327 
   328   ///This is a simple and fast erasable graph implementation.
   329   ///
   330   ///It addition that it conforms to the
   331   ///\ref concept::ErasableGraph "ErasableGraph" concept,
   332   ///it also provides several additional useful extra functionalities.
   333   ///\sa concept::ErasableGraph.
   334 
   335   class ListGraph : public ExtendedListGraphBase 
   336   {
   337   public:
   338     /// Changes the target of \c e to \c n
   339 
   340     /// Changes the target of \c e to \c n
   341     ///
   342     ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
   343     ///referencing the changed edge remain
   344     ///valid. However <tt>InEdge</tt>'s are invalidated.
   345     void changeTarget(Edge e, Node n) { _changeTarget(e,n); }
   346     /// Changes the source of \c e to \c n
   347 
   348     /// Changes the source of \c e to \c n
   349     ///
   350     ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
   351     ///referencing the changed edge remain
   352     ///valid. However <tt>OutEdge</tt>'s are invalidated.
   353     void changeSource(Edge e, Node n) { _changeSource(e,n); }
   354 
   355     /// Invert the direction of an edge.
   356 
   357     ///\note The <tt>Edge</tt>'s
   358     ///referencing the changed edge remain
   359     ///valid. However <tt>OutEdge</tt>'s  and <tt>InEdge</tt>'s are invalidated.
   360     void reverseEdge(Edge e) {
   361       Node t=target(e);
   362       _changeTarget(e,source(e));
   363       _changeSource(e,t);
   364     }
   365 
   366     ///Using this it possible to avoid the superfluous memory allocation.
   367 
   368     ///Using this it possible to avoid the superfluous memory allocation.
   369     ///\todo more docs...
   370     void reserveEdge(int n) { edges.reserve(n); };
   371 
   372     ///Contract two nodes.
   373 
   374     ///This function contracts two nodes.
   375     ///
   376     ///Node \p b will be removed but instead of deleting
   377     ///its neighboring edges, they will be joined to \p a.
   378     ///The last parameter \p r controls whether to remove loops. \c true
   379     ///means that loops will be removed.
   380     ///
   381     ///\note The <tt>Edge</tt>s
   382     ///referencing a moved edge remain
   383     ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
   384     ///may be invalidated.
   385     void contract(Node a,Node b,bool r=true) 
   386     {
   387       for(OutEdgeIt e(*this,b);e!=INVALID;) {
   388 	OutEdgeIt f=e;
   389 	++f;
   390 	if(r && target(e)==a) erase(e);
   391 	else changeSource(e,a);
   392 	e=f;
   393       }
   394       for(InEdgeIt e(*this,b);e!=INVALID;) {
   395 	InEdgeIt f=e;
   396 	++f;
   397 	if(r && source(e)==a) erase(e);
   398 	else changeTarget(e,a);
   399 	e=f;
   400       }
   401       erase(b);
   402     }
   403 
   404     ///Split a node.
   405 
   406     ///This function splits a node. First a new node is added to the graph,
   407     ///then the source of each outgoing edge of \c n is moved to this new node.
   408     ///If \c connect is \c true (this is the default value), then a new edge
   409     ///from \c n to the newly created node is also added.
   410     ///\return The newly created node.
   411     ///
   412     ///\note The <tt>Edge</tt>s
   413     ///referencing a moved edge remain
   414     ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
   415     ///may be invalidated.
   416     ///\warning This functionality cannot be used together with the SnapShot
   417     ///feature.
   418     ///\todo It could be implemented in a bit faster way.
   419     Node split(Node n, bool connect = true) 
   420     {
   421       Node b = addNode();
   422       for(OutEdgeIt e(*this,n);e!=INVALID;) {
   423  	OutEdgeIt f=e;
   424 	++f;
   425 	changeSource(e,b);
   426 	e=f;
   427       }
   428       if(connect) addEdge(n,b);
   429       return b;
   430     }
   431       
   432     ///Class to make a snapshot of the graph and to restrore to it later.
   433 
   434     ///Class to make a snapshot of the graph and to restrore to it later.
   435     ///
   436     ///The newly added nodes and edges can be removed using the
   437     ///restore() function.
   438     ///
   439     ///\warning Edge and node deletions cannot be restored.
   440     ///\warning SnapShots cannot be nested.
   441     ///\todo \c SnapShot or \c Snapshot?
   442     class SnapShot : protected AlterationNotifier<Node>::ObserverBase,
   443 		     protected AlterationNotifier<Edge>::ObserverBase
   444     {
   445       protected:
   446       
   447       ListGraph *g;
   448       std::list<Node> added_nodes;
   449       std::list<Edge> added_edges;
   450       
   451       bool active;
   452       virtual void add(const Node& n) {
   453 	added_nodes.push_back(n);
   454       };
   455       ///\bug Exception...
   456       ///
   457       virtual void erase(const Node&) 
   458       {
   459 	exit(1);
   460       }
   461       virtual void add(const Edge& n) {
   462 	added_edges.push_back(n);
   463       };
   464       ///\bug Exception...
   465       ///
   466       virtual void erase(const Edge&) 
   467       {
   468 	exit(1);
   469       }
   470 
   471       ///\bug What is this used for?
   472       ///
   473       virtual void build() {}
   474       ///\bug What is this used for?
   475       ///
   476       virtual void clear() {}
   477 
   478       void regist(ListGraph &_g) {
   479 	g=&_g;
   480 	AlterationNotifier<Node>::ObserverBase::
   481 	  attach(g->getNotifier(Node()));
   482 	AlterationNotifier<Edge>::ObserverBase::
   483 	  attach(g->getNotifier(Edge()));
   484       }
   485             
   486       void deregist() {
   487 	AlterationNotifier<Node>::ObserverBase::
   488 	  detach();
   489 	AlterationNotifier<Edge>::ObserverBase::
   490 	  detach();
   491 	g=0;
   492       }
   493             
   494     public:
   495       ///Default constructur.
   496       
   497       ///Default constructur.
   498       ///To actually make a snapshot you must call save().
   499       ///
   500       SnapShot() : g(0) {}
   501       ///Constructor that immediately makes a snapshot.
   502       
   503       ///This constructor immediately makes a snapshot of the graph.
   504       ///\param _g The graph we make a snapshot of.
   505       SnapShot(ListGraph &_g) {
   506 	regist(_g);
   507       }
   508       ///\bug Is it necessary?
   509       ///
   510       ~SnapShot() 
   511       {
   512 	if(g) deregist();
   513       }
   514       
   515       ///Make a snapshot.
   516 
   517       ///Make a snapshot of the graph.
   518       ///
   519       ///This function can be called more than once. In case of a repeated
   520       ///call, the previous snapshot gets lost.
   521       ///\param _g The graph we make the snapshot of.
   522       void save(ListGraph &_g) 
   523       {
   524 	if(g!=&_g) {
   525 	  if(g) deregist();
   526 	  regist(_g);
   527 	}
   528 	added_nodes.clear();
   529 	added_edges.clear();
   530       }
   531       
   532     ///Undo the changes until the last snapshot.
   533 
   534     ///Undo the changes until last snapshot created by save().
   535     ///
   536     ///\todo This function might be called undo().
   537       void restore() {
   538 	ListGraph &old_g=*g;
   539 	deregist();
   540 	while(!added_edges.empty()) {
   541 	  old_g.erase(added_edges.front());
   542 	  added_edges.pop_front();
   543 	}
   544  	while(!added_nodes.empty()) {
   545 	  old_g.erase(added_nodes.front());
   546 	  added_nodes.pop_front();
   547 	}
   548       }
   549     };
   550     
   551   };
   552 
   553   ///@}
   554 
   555   /**************** Undirected List Graph ****************/
   556 
   557   typedef ErasableUndirGraphExtender<
   558     ClearableUndirGraphExtender<
   559     ExtendableUndirGraphExtender<
   560     MappableUndirGraphExtender<
   561     IterableUndirGraphExtender<
   562     AlterableUndirGraphExtender<
   563     UndirGraphExtender<ListGraphBase> > > > > > > ExtendedUndirListGraphBase;
   564 
   565 /// \addtogroup graphs
   566 /// @{
   567 
   568   ///An undirected list graph class.
   569 
   570   ///This is a simple and fast erasable undirected graph implementation.
   571   ///
   572   ///It conforms to the
   573   ///\ref concept::UndirGraph "UndirGraph" concept.
   574   ///
   575   ///\sa concept::UndirGraph.
   576   ///
   577   ///\todo SnapShot, reverseEdge(), changeTarget(), changeSource(), contract()
   578   ///haven't been implemented yet.
   579   ///
   580   class UndirListGraph : public ExtendedUndirListGraphBase {
   581   };
   582 
   583   
   584   /// @}  
   585 } //namespace lemon
   586   
   587 
   588 #endif