src/include/dijkstra.h
author alpar
Mon, 26 Apr 2004 09:00:12 +0000
changeset 406 e8377ac921b6
parent 373 259ea2d741a2
child 421 54b943063901
permissions -rw-r--r--
Docs are now divided into modules.
     1 // -*- C++ -*-
     2 #ifndef HUGO_DIJKSTRA_H
     3 #define HUGO_DIJKSTRA_H
     4 
     5 ///\file
     6 ///\brief Dijkstra algorithm.
     7 
     8 #include <bin_heap.h>
     9 #include <invalid.h>
    10 
    11 namespace hugo {
    12 
    13   ///%Dijkstra algorithm class.
    14 
    15   ///This class provides an efficient implementation of %Dijkstra algorithm.
    16   ///The edge lengths are passed to the algorithm using a
    17   ///\ref ReadMapSkeleton "readable map",
    18   ///so it is easy to change it to any kind of length.
    19   ///
    20   ///The type of the length is determined by the \c ValueType of the length map.
    21   ///
    22   ///It is also possible to change the underlying priority heap.
    23   ///
    24   ///\param Graph The graph type the algorithm runs on.
    25   ///\param LengthMap This read-only
    26   ///EdgeMap
    27   ///determines the
    28   ///lengths of the edges. It is read once for each edge, so the map
    29   ///may involve in relatively time consuming process to compute the edge
    30   ///length if it is necessary. The default map type is
    31   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    32   ///\param Heap The heap type used by the %Dijkstra
    33   ///algorithm. The default
    34   ///is using \ref BinHeap "binary heap".
    35   
    36 #ifdef DOXYGEN
    37   template <typename Graph,
    38 	    typename LengthMap,
    39 	    typename Heap>
    40 #else
    41   template <typename Graph,
    42 	    typename LengthMap=typename Graph::EdgeMap<int>,
    43 	    template <class,class,class> class Heap = BinHeap >
    44 #endif
    45   class Dijkstra{
    46   public:
    47     typedef typename Graph::Node Node;
    48     typedef typename Graph::NodeIt NodeIt;
    49     typedef typename Graph::Edge Edge;
    50     typedef typename Graph::OutEdgeIt OutEdgeIt;
    51     
    52     typedef typename LengthMap::ValueType ValueType;
    53     typedef typename Graph::NodeMap<Edge> PredMap;
    54     typedef typename Graph::NodeMap<Node> PredNodeMap;
    55     typedef typename Graph::NodeMap<ValueType> DistMap;
    56 
    57   private:
    58     const Graph& G;
    59     const LengthMap& length;
    60     PredMap predecessor;
    61     PredNodeMap pred_node;
    62     DistMap distance;
    63     
    64   public :
    65     
    66     Dijkstra(Graph& _G, LengthMap& _length) :
    67       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    68     
    69     void run(Node s);
    70     
    71     ///The distance of a node from the root.
    72 
    73     ///Returns the distance of a node from the root.
    74     ///\pre \ref run() must be called before using this function.
    75     ///\warning If node \c v in unreachable from the root the return value
    76     ///of this funcion is undefined.
    77     ValueType dist(Node v) const { return distance[v]; }
    78 
    79     ///Returns the previous edge of the shortest path tree.
    80 
    81     ///For a node \c v it returns the previous edge of the shortest path tree,
    82     ///i.e. it returns the last edge from a shortest path from the root to \c
    83     ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
    84     ///shortest path tree used here is equal to the shortest path tree used in
    85     ///\ref predNode(Node v).  \pre \ref run() must be called before using
    86     ///this function.
    87     Edge pred(Node v) const { return predecessor[v]; }
    88 
    89     ///Returns the previous node of the shortest path tree.
    90 
    91     ///For a node \c v it returns the previous node of the shortest path tree,
    92     ///i.e. it returns the last but one node from a shortest path from the
    93     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
    94     ///\c v=s. The shortest path tree used here is equal to the shortest path
    95     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
    96     ///using this function.
    97     Node predNode(Node v) const { return pred_node[v]; }
    98     
    99     ///Returns a reference to the NodeMap of distances.
   100 
   101     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   102     ///be called before using this function.
   103     const DistMap &distMap() const { return distance;}
   104  
   105     ///Returns a reference to the shortest path tree map.
   106 
   107     ///Returns a reference to the NodeMap of the edges of the
   108     ///shortest path tree.
   109     ///\pre \ref run() must be called before using this function.
   110     const PredMap &predMap() const { return predecessor;}
   111  
   112     ///Returns a reference to the map of nodes of shortest paths.
   113 
   114     ///Returns a reference to the NodeMap of the last but one nodes of the
   115     ///shortest path tree.
   116     ///\pre \ref run() must be called before using this function.
   117     const PredNodeMap &predNodeMap() const { return pred_node;}
   118 
   119     ///Checks if a node is reachable from the root.
   120 
   121     ///Returns \c true if \c v is reachable from the root.
   122     ///\warning the root node is reported to be unreached!
   123     ///\todo Is this what we want?
   124     ///\pre \ref run() must be called before using this function.
   125     ///
   126     bool reached(Node v) { return G.valid(predecessor[v]); }
   127     
   128   };
   129   
   130 
   131   // **********************************************************************
   132   //  IMPLEMENTATIONS
   133   // **********************************************************************
   134 
   135   ///Runs %Dijkstra algorithm from node the root.
   136 
   137   ///This method runs the %Dijkstra algorithm from a root node \c s
   138   ///in order to
   139   ///compute the
   140   ///shortest path to each node. The algorithm computes
   141   ///- The shortest path tree.
   142   ///- The distance of each node from the root.
   143   template <typename Graph, typename LengthMap,
   144 	    template<class,class,class> class Heap >
   145   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   146     
   147     NodeIt u;
   148     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   149       predecessor.set(u,INVALID);
   150       pred_node.set(u,INVALID);
   151     }
   152     
   153     typename Graph::NodeMap<int> heap_map(G,-1);
   154     
   155     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
   156     
   157     heap.push(s,0); 
   158     
   159       while ( !heap.empty() ) {
   160 	
   161 	Node v=heap.top(); 
   162 	ValueType oldvalue=heap[v];
   163 	heap.pop();
   164 	distance.set(v, oldvalue);
   165 	
   166 	{ //FIXME this bracket is for e to be local
   167 	  OutEdgeIt e;
   168 	for(G.first(e, v);
   169 	    G.valid(e); G.next(e)) {
   170 	  Node w=G.head(e); 
   171 	  
   172 	  switch(heap.state(w)) {
   173 	  case heap.PRE_HEAP:
   174 	    heap.push(w,oldvalue+length[e]); 
   175 	    predecessor.set(w,e);
   176 	    pred_node.set(w,v);
   177 	    break;
   178 	  case heap.IN_HEAP:
   179 	    if ( oldvalue+length[e] < heap[w] ) {
   180 	      heap.decrease(w, oldvalue+length[e]); 
   181 	      predecessor.set(w,e);
   182 	      pred_node.set(w,v);
   183 	    }
   184 	    break;
   185 	  case heap.POST_HEAP:
   186 	    break;
   187 	  }
   188 	}
   189       } //FIXME tis bracket
   190       }
   191   }
   192   
   193 } //END OF NAMESPACE HUGO
   194 
   195 #endif
   196 
   197